1
|
Zeng X, Zhang Z, Li D, Huang X, Wang Z, Wang Y, Zhou W, Wang P, Zhu M, Wei Q, Gong H, Wei L. Evaluation of monolithic crystal detector with dual-ended readout utilizing multiplexing method. Phys Med Biol 2024; 69:085003. [PMID: 38484392 DOI: 10.1088/1361-6560/ad3417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Objective.Monolithic crystal detectors are increasingly being applied in positron emission tomography (PET) devices owing to their excellent depth-of-interaction (DOI) resolution capabilities and high detection efficiency. In this study, we constructed and evaluated a dual-ended readout monolithic crystal detector based on a multiplexing method.Approach.We employed two 12 × 12 silicon photomultiplier (SiPM) arrays for readout, and the signals from the 12 × 12 array were merged into 12 X and 12 Y channels using channel multiplexing. In 2D reconstruction, three methods based on the centre of gravity (COG) were compared, and the concept of thresholds was introduced. Furthermore, a light convolutional neural network (CNN) was employed for testing. To enhance depth localization resolution, we proposed a method by utilizing the mutual information from both ends of the SiPMs. The source width and collimation effect were simulated using GEANT4, and the intrinsic spatial resolution was separated from the measured values.Main results.At an operational voltage of 29 V for the SiPM, an energy resolution of approximately 12.5 % was achieved. By subtracting a 0.8 % threshold from the total energy in every channel, a 2D spatial resolution of approximately 0.90 mm full width at half maximum (FWHM) can be obtained. Furthermore, a higher level of resolution, approximately 0.80 mm FWHM, was achieved using a CNN, with some alleviation of edge effects. With the proposed DOI method, a significant 1.36 mm FWHM average DOI resolution can be achieved. Additionally, it was found that polishing and black coating on the crystal surface yielded smaller edge effects compared to a rough surface with a black coating.Significance.The introduction of a threshold in COG method and a dual-ended readout scheme can lead to excellent spatial resolution for monolithic crystal detectors, which can help to develop PET systems with both high sensitivity and high spatial resolution.
Collapse
Affiliation(s)
- Xiangtao Zeng
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Zhiming Zhang
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Daowu Li
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Xianchao Huang
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Zhuoran Wang
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Yingjie Wang
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Wei Zhou
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Peilin Wang
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Meiling Zhu
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Qing Wei
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Huixing Gong
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| | - Long Wei
- Beijing Engineering Research Centre of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Jinan Laboratory of Applied Nuclear Science, Jinan 250131, People's Republic of China
- CAEA Centre of Excellence on Nuclear Technology Applications for Nuclear Detection and Imaging, Beijing 100049, People's Republic of China
| |
Collapse
|
2
|
Abstract
Biomedical research has long relied on small-animal studies to elucidate disease process and develop new medical treatments. The introduction of in vivo functional imaging technology, such as PET, has allowed investigators to peer inside their subjects and follow disease progression longitudinally as well as improve understanding of normal biological processes. Recent developments in CRISPR, immuno-PET, and high-resolution in vivo imaging have only increased the importance of small-animal, or preclinical, PET imaging. Other drivers of preclinical PET innovation include new combinations of imaging technologies, such as PET/MR imaging, which require changes to PET hardware.
Collapse
Affiliation(s)
- Adrienne L Lehnert
- Department of Radiology, University of Washington, 1959 Northeast Pacific Street, UW Box 356043, Seattle, WA, USA.
| | - Robert S Miyaoka
- Department of Radiology, University of Washington, 1959 Northeast Pacific Street, UW Box 356043, Seattle, WA, USA
| |
Collapse
|
3
|
Liu Z, Mungai S, Niu M, Kuang Z, Ren N, Wang X, Sang Z, Yang Y. Edge effect reduction of high-resolution PET detectors using LYSO and GAGG phoswich crystals. Phys Med Biol 2023; 68. [PMID: 36808920 DOI: 10.1088/1361-6560/acbde1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/21/2023] [Indexed: 02/23/2023]
Abstract
Objective. Small-animal positron emission tomography (PET) is a powerful preclinical imaging tool in animal model studies. The spatial resolution and sensitivity of current PET scanners developed for small-animal imaging need to be improved to increase the quantitative accuracy of preclinical animal studies. This study aimed to improve the identification capability of edge scintillator crystals of a PET detector which will enable to apply a crystal array with the same cross-section area as the active area of a photodetector for improving the detection area and thus reducing or eliminating the inter-detector gaps.Approach. PET detectors using crystal arrays with mixed lutetium yttrium orthosilicate (LYSO) and gadolinium aluminum gallium garnet (GAGG) crystals were developed and evaluated. The crystal arrays consisted of 31 × 31 array of 0.49 × 0.49 × 20 mm3crystals; they were read out by two silicon photomultiplier arrays with pixel sizes of 2 × 2 mm2that were placed at both ends of the crystal arrays. The second or first outermost layer of the LYSO crystals was replaced by GAGG crystals in the two crystal arrays. The two crystal types were identified using a pulse-shape discrimination technique to provide better edge crystal identification.Main results. Using the pulse shape discrimination technique, almost all (except for a few edge) crystals were resolved in the two detectors; high sensitivity was achieved by using the scintillator array and the photodetector with the same areas and achieved high resolution by using crystals with sizes equal to 0.49 × 0.49 × 20 mm3. Energy resolutions of 19.3 ± 1.8% and 18.9 ± 1.5%, depth-of-interaction resolutions of 2.02 ± 0.17 mm and 2.04 ± 0.18 mm, and timing resolutions of 1.6 ± 0.2 ns and 1.5 ± 0.2 ns were achieved by the two detectors, respectively.Significance. In summary, novel three-dimensional high-resolution PET detectors consisting of a mixture of LYSO and GAGG crystals were developed. The detectors significantly improve the detection area with the same photodetectors and thus improve the detection efficiency.
Collapse
Affiliation(s)
- Zheng Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Samuel Mungai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Ming Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhonghua Kuang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Ning Ren
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaohui Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Ziru Sang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| |
Collapse
|
4
|
Performance Evaluation of a PET of 7T Bruker Micro-PET/MR Based on NEMA NU 4-2008 Standards. ELECTRONICS 2022. [DOI: 10.3390/electronics11142194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Purpose: This study aimed to measure the performance evaluation of the Bruker sequential micro-positron emission tomography/magnetic resonance imaging (PET/MRI) scanner by following National Electrical Manufacturers Association (NEMA) NU 4-2008 standards’ protocol. The system consists of a high-performance silicon photomultiplier (SiPM) advanced technology detector and a continuous lutetium-yttrium oxyorthosilicate (LYSO) crystal. Methods: A 22Na (sodium-22) point source was utilized to assess the spatial resolution and system sensitivity, and the Micro-PET scatter phantom measurements were conducted to measure count rate measurements and scatter fractions (SF). A mouse-like Micro-PET image quality (IQ) phantom was utilized as a model to analyze the uniformity, recovery coefficient (RC), and spillover ratio (SOR). A small animal PET/MRI imaging study was performed in a rat. Results: We calculated the spatial resolutions of filtered back-projection (FBP), and used 3D-MLEM to reconstruct PET images at the axial center and ¼ of the axial field of view (FOV) in axial, radial, and tangential directions. The best observed spatial resolutions in both reconstructed images were obtained in the tangential direction, and the values were 0.80 mm in 3D-MLEM and 0.94 mm in FBP. The peak noise equivalent count rate (NECR) in the 358–664 keV energy window was 477.30 kcps at 95.83 MBq and 774.45 kcps at 103.6 MBq for rat and mouse-sized scatter phantoms, respectively. The rat and mouse-sized phantoms scatter fractions (SF) were 14.2% and 6.9%, respectively. Conclusions: According to our results, the performance characteristics of the scanner are high sensitivity, good spatial resolution, low scatter fraction, and good IQ, indicating that it is suitable for preclinical imaging studies.
Collapse
|
5
|
Freire M, Gonzalez-Montoro A, Cañizares G, Rezaei A, Nuyts J, Berr SS, Williams MB, Benlloch JM, Gonzalez AJ. Experimental validation of a rodent PET scanner prototype based on a single LYSO crystal tube. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:697-706. [PMID: 35909498 PMCID: PMC9328404 DOI: 10.1109/trpms.2021.3124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Improving sensitivity and spatial resolution in small animal Positron Emission Tomography imaging instrumentation constitutes one of the main goals of nuclear imaging research. These parameters are degraded by the presence of gaps between the detectors. The present manuscript experimentally validates our prototype of an edge-less pre-clinical PET system based on a single LYSO:Ce annulus with an inner diameter of 62 mm and 10 outer facets of 26 × 52 mm2. Scintillation light is read out by arrays of 8 × 8 SiPMs coupled to the facets, using a projection readout of the rows and columns signals. The readout provides accurate Depth of Interaction (DOI). We have implemented a calibration that mitigates the DOI-dependency of the transaxial and axial impact coordinates, and the energy photopeak gain. An energy resolution of 23.4 ± 1.8% was determined. Average spatial resolution of 1.4 ± 0.2 and 1.3 ± 0.4 mm FWHM were achieved for the radial and axial directions, respectively. We found a peak sensitivity of 3.8% at the system center, and a maximum NECR at 40.6 kcps for 0.27 mCi. The image quality was evaluated using reconstructed images of an array of sources and the NEMA image quality phantom was also studied.
Collapse
Affiliation(s)
- Marta Freire
- Instituto de Instrumentación para la Imagen Molecular (i3M-CSIC-UPV), Valencia, Spain
| | | | - Gabriel Cañizares
- Instituto de Instrumentación para la Imagen Molecular (i3M-CSIC-UPV), Valencia, Spain
| | - Ahmadreza Rezaei
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Leuven, Belgium
| | - Stuart S Berr
- Department of Radiology and Medical Imaging, The University of Virginia, Charlottesville, Virginia, United States
| | - Mark B Williams
- Department of Radiology and Medical Imaging, The University of Virginia, Charlottesville, Virginia, United States
| | - Jose M Benlloch
- Instituto de Instrumentación para la Imagen Molecular (i3M-CSIC-UPV), Valencia, Spain
| | - Antonio J Gonzalez
- Instituto de Instrumentación para la Imagen Molecular (i3M-CSIC-UPV), Valencia, Spain
| |
Collapse
|
6
|
Jaliparthi G, Martone PF, Stolin AV, Raylman RR. Deep residual-convolutional neural networks for event positioning in a monolithic annular PET scanner. Phys Med Biol 2021; 66:10.1088/1361-6560/ac0d0c. [PMID: 34153950 PMCID: PMC8908313 DOI: 10.1088/1361-6560/ac0d0c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 11/12/2022]
Abstract
PET scanners based on monolithic pieces of scintillator can potentially produce superior performance characteristics (high spatial resolution and detection sensitivity, for example) compared to conventional PET scanners. Consequently, we initiated development of a preclinical PET system based on a single 7.2 cm long annulus of LYSO, called AnnPET. While this system could facilitate creation of high-quality images, its unique geometry results in optics that can complicate estimation of event positioning in the detector. To address this challenge, we evaluated deep-residual convolutional neural networks (DR-CNN) to estimate the three-dimensional position of annihilation photon interactions. Monte Carlo simulations of the AnnPET scanner were used to replicate the physics, including optics, of the scanner. It was determined that a ten-layer-DR-CNN was most suited to application with AnnPET. The errors between known event positions, and those estimated by this network and those calculated with the commonly used center-of-mass algorithm (COM) were used to assess performance. The mean absolute errors (MAE) for the ten-layer-DR-CNN-based event positions were 0.54 mm, 0.42 mm and 0.45 mm along thex(axial)-,y(transaxial)- andz- (depth-of-interaction) axes, respectively. For COM estimates, the MAEs were 1.22 mm, 1.04 mm and 2.79 mm in thex-,y- andz-directions, respectively. Reconstruction of the network-estimated data with the 3D-FBP algorithm (5 mm source offset) yielded spatial resolutions (full-width-at-half-maximum (FWHM)) of 0.8 mm (radial), 0.7 mm (tangential) and 0.71 mm (axial). Reconstruction of the COM-derived data yielded spatial resolutions (FWHM) of 1.15 mm (radial), 0.96 mm (tangential) and 1.14 mm (axial). These findings demonstrated that use of a ten-layer-DR-CNN with a PET scanner based on a monolithic annulus of scintillator has the potential to produce excellent performance compared to standard analytical methods.
Collapse
Affiliation(s)
- Gangadhar Jaliparthi
- Center for Advanced Imaging, Department of Radiology, School of Medicine, West Virginia University, Morgantown, WV, United States of America
| | - Peter F Martone
- Center for Advanced Imaging, Department of Radiology, School of Medicine, West Virginia University, Morgantown, WV, United States of America
| | - Alexander V Stolin
- Center for Advanced Imaging, Department of Radiology, School of Medicine, West Virginia University, Morgantown, WV, United States of America
| | - Raymond R Raylman
- Center for Advanced Imaging, Department of Radiology, School of Medicine, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
7
|
Zhang X, Yu H, Xie Q, Xie S, Ye B, Guo M, Zhao Z, Huang Q, Xu J, Peng Q. Design study of a PET detector with 0.5 mm crystal pitch for high-resolution preclinical imaging. Phys Med Biol 2021; 66. [PMID: 34130263 DOI: 10.1088/1361-6560/ac0b82] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/15/2021] [Indexed: 11/12/2022]
Abstract
Preclinical positron emission tomography (PET) is a sensitive and quantitative molecule imaging modality widely used in characterizing the biological processes and diseases in small animals. The purpose of this study is to investigate the methods to optimize a PET detector for high-resolution preclinical imaging. The PET detector proposed in this study consists of a 28 × 28 array of LYSO crystals 0.5 × 0.5 × 6.25 mm3in size, a wedged lightguide, and a 6 × 6 array of SiPMs 3 × 3 mm2in size. The simulation results showed that the most uniform flood map was achieved when the thickness of the lightguide was 2.35 mm. The quality of the flood map was significantly improved by suppressing the electronics noises using the simple threshold method with a best threshold. The peak-to-valley ratio of flood map improved 25.4% when the algorithm of ICS rejection was applied. An energy resolution (12.96% ± 1.03%) was measured on the prototype scanner constructed with 12 proposed detectors. Lastly, a prototype preclinic PET imager was constructed with 12 optimized detectors. The point source experiment was performed and an excellent spatial resolution (axial: 0.56 mm, tangential: 0.46 mm, radial: 0.42 mm) was achieved with the proposed high-performance PET detectors.
Collapse
Affiliation(s)
- Xi Zhang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Hongsen Yu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Qiangqiang Xie
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Siwei Xie
- Institute of Biomedical Engineering Shenzhen Bay Laboratory, Shenzhen, 518132, People's Republic of China
| | - Baihezi Ye
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Minghao Guo
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Zhixiang Zhao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Qiu Huang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Jianfeng Xu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, People's Republic of China
| | - Qiyu Peng
- Institute of Biomedical Engineering Shenzhen Bay Laboratory, Shenzhen, 518132, People's Republic of China
| |
Collapse
|
8
|
Gaudin É, Thibaudeau C, Arpin L, Leroux JD, Toussaint M, Beaudoin JF, Cadorette J, Paillé M, Pepin CM, Koua K, Bouchard J, Viscogliosi N, Paulin C, Fontaine R, Lecomte R. Performance evaluation of the mouse version of the LabPET II PET scanner. Phys Med Biol 2021; 66:065019. [PMID: 33412542 DOI: 10.1088/1361-6560/abd952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The LabPET II is a new positron emission tomography technology platform designed to achieve submillimetric spatial resolution imaging using fully pixelated avalanche photodiodes-based detectors and highly integrated parallel front-end processing electronics. The detector was designed as a generic building block to develop devices for preclinical imaging of small to mid-sized animals and for clinical imaging of the human brain. The aim of this work is to assess the physical characteristics and imaging performance of the mouse version of LabPET II scanner following the NEMA NU4-2008 standard and using high resolution phantoms and in vivo imaging applications. A reconstructed spatial resolution of 0.78 mm (0.5 μ l) is measured close to the center of the radial field of view. With an energy window of 350 650 keV, the system absolute sensitivity is 1.2% and its maximum noise equivalent count rate reaches 61.1 kcps at 117 MBq. Submillimetric spatial resolution is achieved in a hot spot phantom and tiny bone structures were resolved with unprecedented contrast in the mouse. These results provide convincing evidence of the capabilities of the LabPET II technology for biomolecular imaging in preclinical research.
Collapse
Affiliation(s)
- Émilie Gaudin
- Sherbrooke Molecular Imaging Center and Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Domínguez-Jiménez DY, Alva-Sánchez H. Energy spectra due to the intrinsic radiation of LYSO/LSO scintillators for a wide range of crystal sizes. Med Phys 2021; 48:1596-1607. [PMID: 33475160 DOI: 10.1002/mp.14729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Most detectors in current positron emission tomography (PET) scanners and prototypes use lutetium oxyorthosilicate (LSO) or lutetium yttrium oxyorthosilicate (LYSO) scintillators. The aim of this work is to provide a complete set of background energy spectra, due to the scintillator intrinsic radioactivity, for a wide range of crystal sizes. METHODS An analytical model, developed and validated in a previous work, was used to obtain the background energy spectra of square base cuboids of different dimensions. The model uses the photon absorption probabilities of the three gamma rays (88, 202, and 307 keV) emitted following the beta decay of 176 Lu to 176 Hf excited states. These probabilities were obtained for each crystal size considered in this work from Monte Carlo simulations using the PENELOPE code. The probabilities are then used to normalize and shift the beta spectrum to the corresponding energy value of the simultaneous detection of one, two, or three gamma rays in the scintillator. The simulated cuboids had side lengths of 5, 10, 20, 30, 40, 50, and 60 mm and crystal thickness T = 2.5, 5, 10, 15, and 20 mm. From these results a complete set of energy spectra, including intermediate dimensions, were obtained. In addition, LYSO and LSO were compared in terms of their analytical background energy spectra for two crystal sizes. The analytical spectra were convolved using a variable Gaussian kernel to account for the energy resolution of a typical detector. A parameterization of the photon absorption probabilities for each gamma ray energy as a function of the cuboid volume to surface area ratio was obtained. RESULTS A data set of L(Y)SO background energy spectra was obtained and is available for the reader as 2D histograms. The model accurately predicts the structure of the energy spectra including the relative peak and valley intensities. The data allow visualizing how the structure evolves with increasing crystal length and thickness. Lutetium yttrium oxyorthosilicate and LSO present very similar background energy spectra for the range of sizes studied in this work and therefore the data generated can be confidently used for both scintillator materials. The filtered spectra showed a variable shift in the main peaks, depending on crystal size, alerting that to achieve a correct detector calibration using the background spectrum is not straight forward and requires precise data analysis and measurements. In addition, we found that square base L(Y)SO cuboids with same volume to surface area ratio have background spectra with the same structure. CONCLUSIONS We present the energy spectra of L(Y)SO crystal of different sizes which will be very useful for industry and research groups developing and simulating detectors for positron imaging applications in terms of calibration, quality assurance, crystal maps, detector fine gain tuning, background reduction and other applications using the long-lived 176 Lu source. We analyzed the data produced in this work and found that crystal cuboids with equal volume to surface area ratio produce the same background energy spectra, a conclusion that simplifies its calculation and clarifies why the same energy spectrum is observed under different experimental setups.
Collapse
Affiliation(s)
| | - Héctor Alva-Sánchez
- Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, Mexico City, 01000, Mexico
| |
Collapse
|
10
|
Freire M, Gonzalez-Montoro A, Cañizares G, Berr SS, Vidal LF, Hernandez L, Gonzalez AJ. Calibration Methodology of an Edgeless PET System Prototype. IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD. NUCLEAR SCIENCE SYMPOSIUM 2020; 2020:10.1109/NSS/MIC42677.2020.9508042. [PMID: 34908824 PMCID: PMC8667022 DOI: 10.1109/nss/mic42677.2020.9508042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Instrumentation research in small animal Positron Emission Tomography (PET) imaging is driven by improving timing, spatial resolution and sensitivity. Conventional PET scanners are built of multiple detectors placed in a cylindrical geometry with gaps between them in both the transaxial and axial planes. These gaps decrease sensitivity and degrade spatial resolution towards the edges of the system field of view (FOV). To mitigate these problems, we have designed and validated an edgeless pre-clinical PET system based on a single LYSO annulus with an inner diameter of 62 mm and 10 outer facets of 26 × 52 mm2 each. The scintillation light is read out using the row and columns of Silicon Photomultipliers (SiPMs) mounted in magnetic-field compatible PCBs. The objective of this work is to provide a calibration method for this system. The particular design of the annulus produces some undesirable effects in the light distributions (LD) at the module joints, which needs to be addressed. Nevertheless, after calibration, the system allows one to properly retrieve both, the energy and 3D photon impact positions.
Collapse
Affiliation(s)
- Marta Freire
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - Andrea Gonzalez-Montoro
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - Gabriel Cañizares
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | | | - Luis F Vidal
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - Liczandro Hernandez
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| | - Antonio J Gonzalez
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC-Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|