1
|
Kim SM, Lee JS. A comprehensive review on Compton camera image reconstruction: from principles to AI innovations. Biomed Eng Lett 2024; 14:1175-1193. [PMID: 39465108 PMCID: PMC11502649 DOI: 10.1007/s13534-024-00418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 10/29/2024] Open
Abstract
Compton cameras have emerged as promising tools in biomedical imaging, offering sensitive gamma-ray imaging capabilities for diverse applications. This review paper comprehensively overviews the latest advancements in Compton camera image reconstruction technologies. Beginning with a discussion of the fundamental principles of Compton scattering and its relevance to gamma-ray imaging, the paper explores the key components and design considerations of Compton camera systems. We then review various image reconstruction algorithms employed in Compton camera systems, including analytical, iterative, and statistical approaches. Recent developments in machine learning-based reconstruction methods are also discussed, highlighting their potential to enhance image quality and reduce reconstruction time in biomedical applications. In particular, we focus on the challenges posed by conical back-projection in Compton camera image reconstruction, and how innovative signal processing techniques have addressed these challenges to improve image accuracy and spatial resolution. Furthermore, experimental validations of Compton camera imaging in preclinical and clinical settings, including multi-tracer and whole-gamma imaging studies are introduced. In summary, this review provides potentially useful information about the current state-of-the-art Compton camera image reconstruction technologies, offering a helpful guide for investigators new to this field.
Collapse
Affiliation(s)
- Soo Mee Kim
- Maritime ICT & Mobility Research Department, Korea Institute of Ocean Science and Technology, Busan, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Brightonix Imaging Inc., Seoul, Korea
| |
Collapse
|
2
|
Ren F, Liu H, Wang H. A LiDAR-Camera Joint Calibration Algorithm Based on Deep Learning. SENSORS (BASEL, SWITZERLAND) 2024; 24:6033. [PMID: 39338778 PMCID: PMC11435776 DOI: 10.3390/s24186033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Multisensor (MS) data fusion is important for improving the stability of vehicle environmental perception systems. MS joint calibration is a prerequisite for the fusion of multimodality sensors. Traditional calibration methods based on calibration boards require the manual extraction of many features and manual registration, resulting in a cumbersome calibration process and significant errors. A joint calibration algorithm for a Light Laser Detection and Ranging (LiDAR) and camera is proposed based on deep learning without the need for other special calibration objects. A network model constructed based on deep learning can automatically capture object features in the environment and complete the calibration by matching and calculating object features. A mathematical model was constructed for joint LiDAR-camera calibration, and the process of sensor joint calibration was analyzed in detail. By constructing a deep-learning-based network model to determine the parameters of the rotation matrix and translation matrix, the relative spatial positions of the two sensors were determined to complete the joint calibration. The network model consists of three parts: a feature extraction module, a feature-matching module, and a feature aggregation module. The feature extraction module extracts the image features of color and depth images, the feature-matching module calculates the correlation between the two, and the feature aggregation module determines the calibration matrix parameters. The proposed algorithm was validated and tested on the KITTI-odometry dataset and compared with other advanced algorithms. The experimental results show that the average translation error of the calibration algorithm is 0.26 cm, and the average rotation error is 0.02°. The calibration error is lower than those of other advanced algorithms.
Collapse
Affiliation(s)
- Fujie Ren
- College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Haibin Liu
- College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huanjie Wang
- College of Mechanical and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Kim D, Yan L, Shimazoe K, Takahashi H, Ogane K, Yoshino M, Kamada K, Uenomachi M. Demonstration of in-vivo simultaneous 3D imaging with 18F-FDG and Na 131I using Compton-PET system. Sci Rep 2024; 14:20946. [PMID: 39251751 PMCID: PMC11385225 DOI: 10.1038/s41598-024-71750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Simultaneous imaging of the SPECT tracer 131I and PET tracer 18F is important in the diagnosis of high- and low-grade thyroid cancers because high-grade thyroid cancers have high 18F-FDG and low 131I uptake, while low-grade thyroid cancers have high 131I and low 18F-FDG uptake. In this study, Na131I and 18F-FDG were simultaneously imaged using the Compton-PET system, in vivo. The angular resolution and sensitivity of the Compton camera with 356 keV gamma ray measured using a 133Ba point source were 12.3° and 2 × 10-5, respectively. The spatial resolution and sensitivity of PET were measured with a 22Na point source. The transaxial and axial spatial resolutions of the PET at the center of the FOV were 1.15 mm and 2.04 mm, respectively. Its sensitivity was 1.2 × 10-4. In-vivo images of the 18F and 131I isotopes were simultaneously acquired from mice. These showed that 18F-FDG was active in the heart, brown fat, and brain, while Na131I was active in the thyroid, stomach, and bladder. Artifacts were found in the Compton camera images when the activity of 131I was much lower than that of 18F. This study demonstrates the potential of simultaneous clinical imaging of 18F and 131I.
Collapse
Affiliation(s)
- Donghwan Kim
- Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo, Japan.
| | - Linlin Yan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo, Japan
| | - Kenji Shimazoe
- Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo, Japan
| | - Hiroyuki Takahashi
- Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo, Japan
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo, Japan
| | - Kenichiro Ogane
- Department of Nuclear Medicine, International University of Health and Welfare, 1-4-3 Mita, Minato City, Tokyo, Japan
| | - Masao Yoshino
- Institute for Materials Research, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Kei Kamada
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Mizuki Uenomachi
- Unit of Synergetic Studies for Space, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
4
|
Yamaya T, Tashima H, Takyu S, Takahashi M. Whole Gamma Imaging: Challenges and Opportunities. PET Clin 2024; 19:83-93. [PMID: 37718218 DOI: 10.1016/j.cpet.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Compton imaging has been recognized as a possible nuclear medicine imaging method following the establishment of SPECT and PET. Whole gamma imaging (WGI), a combination of PET and Compton imaging, could be the first practical method to bring out the potential of Compton imaging in nuclear medicine. With the use of such positron emitters as 89Zr and 44Sc, WGI may enable highly sensitive imaging of antibody drugs for early tumor detection and quantitative hypoxia imaging for effective tumor treatment. Some of these concepts have been demonstrated preliminarily in physics experiments and small animal imaging tests with a developed WGI prototype.
Collapse
Affiliation(s)
- Taiga Yamaya
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Hideaki Tashima
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Sodai Takyu
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Miwako Takahashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
5
|
Sakai M, Tamaki S, Murata I, Parajuli RK, Matsumura A, Kubo N, Tashiro M. Experimental study on Compton camera for boron neutron capture therapy applications. Sci Rep 2023; 13:22883. [PMID: 38129553 PMCID: PMC10739814 DOI: 10.1038/s41598-023-49955-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a high-dose-intensive radiation therapy that has gained popularity due to advancements in accelerator neutron sources. To determine the dose for BNCT, it is necessary to know the difficult-to-determine boron concentration and neutron fluence. To estimate this dose, we propose a method of measuring the prompt γ-rays (PGs) from the boron neutron capture reaction (BNCR) using a Compton camera. We performed a fundamental experiment to verify basic imaging performance and the ability to discern the PGs from 511 keV annihilation γ-rays. A Si/CdTe Compton camera was used to image the BNCR and showed an energy peak of 478 keV PGs, separate from the annihilation γ-ray peak. The Compton camera could visualize the boron target with low neutron intensity and high boron concentration. This study experimentally confirms the ability of Si/CdTe Compton cameras to image BNCRs.
Collapse
Affiliation(s)
- M Sakai
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - S Tamaki
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - I Murata
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - R K Parajuli
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Sydney Imaging Core Research Facility, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - A Matsumura
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - N Kubo
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - M Tashiro
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
6
|
Llosá G, Rafecas M. Hybrid PET/Compton-camera imaging: an imager for the next generation. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:214. [PMID: 36911362 PMCID: PMC9990967 DOI: 10.1140/epjp/s13360-023-03805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Compton cameras can offer advantages over gamma cameras for some applications, since they are well suited for multitracer imaging and for imaging high-energy radiotracers, such as those employed in radionuclide therapy. While in conventional clinical settings state-of-the-art Compton cameras cannot compete with well-established methods such as PET and SPECT, there are specific scenarios in which they can constitute an advantageous alternative. The combination of PET and Compton imaging can benefit from the improved resolution and sensitivity of current PET technology and, at the same time, overcome PET limitations in the use of multiple radiotracers. Such a system can provide simultaneous assessment of different radiotracers under identical conditions and reduce errors associated with physical factors that can change between acquisitions. Advances are being made both in instrumentation developments combining PET and Compton cameras for multimodal or three-gamma imaging systems, and in image reconstruction, addressing the challenges imposed by the combination of the two modalities or the new techniques. This review article summarizes the advances made in Compton cameras for medical imaging and their combination with PET.
Collapse
Affiliation(s)
- Gabriela Llosá
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Catedrático Beltrán, 2., 46980 Paterna, Valencia, Spain
| | - Magdalena Rafecas
- Institute of Medical Engineering (IMT), Universität zu Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
7
|
Multi-molecule imaging and inter-molecular imaging in nuclear medicine. BIO-ALGORITHMS AND MED-SYSTEMS 2022. [DOI: 10.2478/bioal-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Multi-molecule imaging and inter-molecular imaging are not fully implemented yet, however, can become an alternative in nuclear medicine. In this review article, we present arguments demonstrating that the advent of the Compton positron emission tomography (Compton-PET) system and the invention of the quantum chemical sensing method with double photon emission imaging (DPEI) provide realistic perspectives for visualizing inter-molecular and multi-molecule in nuclear medicine with MeV photon. In particular, the pH change of InCl3 solutions can be detected and visualized in a three-dimensional image by combining the hyperfine electric quadrupole interaction sensing and DPEI. Moreover, chemical states, such as chelating, can be detected through angular correlation sensing. We argue that multi-molecule and chemical sensing could be a realistic stream of research in future nuclear medicine.
Collapse
|
8
|
Parajuli RK, Sakai M, Parajuli R, Tashiro M. Development and Applications of Compton Camera-A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:7374. [PMID: 36236474 PMCID: PMC9573429 DOI: 10.3390/s22197374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The history of Compton cameras began with the detection of radiation sources originally for applications in astronomy. A Compton camera is a promising γ-ray detector that operates in the wide energy range of a few tens of keV to MeV. The γ-ray detection method of a Compton camera is based on Compton scattering kinematics, which is used to determine the direction and energy of the γ-rays without using a mechanical collimator. Although the Compton camera was originally designed for astrophysical applications, it was later applied in medical imaging as well. Moreover, its application in environmental radiation measurements is also under study. Although a few review papers regarding Compton cameras have been published, they either focus very specifically on the detectors used in such cameras or the particular applications of Compton cameras. Thus, the aim of this paper is to review the features and types of Compton cameras and introduce their applications, associated imaging algorithms, improvement scopes, and their future aspects.
Collapse
Affiliation(s)
- Raj Kumar Parajuli
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
- Gunma University Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| | | | - Mutsumi Tashiro
- Gunma University Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-machi, Maebashi 371-8511, Japan
| |
Collapse
|
9
|
Takyu S, Yoshida E, Nishikido F, Obata F, Tashima H, Kamada K, Yoshikawa A, Yamaya T. Development of a Two-Layer Staggered GAGG Scatter Detector for Whole Gamma Imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sodai Takyu
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Eiji Yoshida
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Fumihiko Nishikido
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Fujino Obata
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hideaki Tashima
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | | | - Taiga Yamaya
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
10
|
Compton imaging for medical applications. Radiol Phys Technol 2022; 15:187-205. [PMID: 35867197 DOI: 10.1007/s12194-022-00666-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022]
Abstract
Compton imaging exploits inelastic scattering, known as Compton scattering, using a Compton camera consisting of a scatterer detector in the front layer and an absorber detector in the back layer. This method was developed for astronomy, and in recent years, research and development for environmental and medical applications has been actively conducted. Compton imaging can discriminate gamma rays over a wide energy range from several hundred keV to several MeV. Therefore, it is expected to be applied to the simultaneous imaging of multiple nuclides in nuclear medicine and prompt gamma ray imaging for range verification in particle therapy. In addition, multiple gamma coincidence imaging is expected to be realized, which allows the source position to be determined from a single coincidence event using nuclides that emit multiple gamma rays simultaneously, such as nuclides that emit a single gamma ray simultaneously with positron decay. This review introduces various efforts toward the practical application of Compton imaging in the medical field, including in vivo studies, and discusses its prospects.
Collapse
|
11
|
Yabu G, Yoneda H, Orita T, Takeda S, Caradonna P, Takahashi T, Watanabe S, Moriyama F. Tomographic Imaging by a Si/CdTe Compton Camera for ¹¹¹In and ¹³¹I Radionuclides. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3104665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Goro Yabu
- Department of Physics, Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Japan
| | | | - Tadashi Orita
- Department of Physics, Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Japan
| | - Shin'ichiro Takeda
- Department of Physics, Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Japan
| | - Pietro Caradonna
- Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Japan
| | - Tadayuki Takahashi
- Department of Physics, Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Japan
| | - Shin Watanabe
- Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Kanagawa, Japan
| | - Fumiki Moriyama
- Occupational Health and Safety Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
12
|
Hou Z, Geng C, Tang X, Tian F, Zhao S, Qi J, Shu D, Gong C. Boron concentration prediction from Compton camera image for boron neutron capture therapy based on generative adversarial network. Appl Radiat Isot 2022; 186:110302. [DOI: 10.1016/j.apradiso.2022.110302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/16/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
|
13
|
Rapid compton camera imaging for source terms investigation in the nuclear decommissioning with a subset-driven origin ensemble algorithm. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Multi-modal 3D imaging of radionuclides using multiple hybrid Compton cameras. Sci Rep 2022; 12:2546. [PMID: 35169183 PMCID: PMC8847431 DOI: 10.1038/s41598-022-06401-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
For radiological diagnosis and radionuclide therapy, X-ray and gamma-ray imaging technologies are essential. Single-photon emission tomography (SPECT) and positron emission tomography (PET) play essential roles in radiological diagnosis, such as the early detection of tumors. Radionuclide therapy is also rapidly developing with the use of these modalities. Nevertheless, a limited number of radioactive tracers are imaged owing to the limitations of the imaging devices. In a previous study, we developed a hybrid Compton camera that conducts simultaneous Compton and pinhole imaging within a single system. In this study, we developed a system that simultaneously realizes three modalities: Compton, pinhole, and PET imaging in 3D space using multiple hybrid Compton cameras. We achieved the simultaneous imaging of Cs-137 (Compton mode targeting 662 keV), Na-22 (PET mode targeting 511 keV), and Am-241 (pinhole mode targeting 60 keV) within the same field of view. In addition, the imaging of Ga-67 and In-111, which are used in various diagnostic scenarios, was conducted. We also verified that the 3D distribution of the At-211 tracer inside a mouse could be imaged using the pinhole mode.
Collapse
|
15
|
Shibuya K, Saito H, Tashima H, Yamaya T. Using inverse Laplace transform in positronium lifetime imaging. Phys Med Biol 2022; 67. [PMID: 35008076 DOI: 10.1088/1361-6560/ac499b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
Positronium (Ps) lifetime imaging is gaining attention to bring out additional biomedical information from positron emission tomography (PET). The lifetime of Psin vivocan change depending on the physical and chemical environments related to some diseases. Due to the limited sensitivity, Ps lifetime imaging may require merging some voxels for statistical accuracy. This paper presents a method for separating the lifetime components in the voxel to avoid information loss due to averaging. The mathematics for this separation is the inverse Laplace transform (ILT), and the authors examined an iterative numerical ILT algorithm using Tikhonov regularization, namely CONTIN, to discriminate a small lifetime difference due to oxygen saturation. The separability makes it possible to merge voxels without missing critical information on whether they contain abnormally long or short lifetime components. The authors conclude that ILT can compensate for the weaknesses of Ps lifetime imaging and extract the maximum amount of information.
Collapse
Affiliation(s)
- Kengo Shibuya
- Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.,Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Haruo Saito
- Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Hideaki Tashima
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Taiga Yamaya
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
16
|
Abstract
Carbon ion radiotherapy is a sophisticated radiation treatment modality because of its superiority in achieving precise dosage distribution and high biological effectiveness. However, there exist beam range uncertainties that affect treatment efficiency. This problem can be resolved if the clinical beam could be monitored precisely in real-time, such as by imaging the prompt gamma emission from the target. In this study, we performed real-time detection and imaging of 718 keV prompt gamma emissions using a Si/CdTe Compton camera. We conducted experiments on graphite phantoms using clinical carbon ion beams of 290 MeV/u energy. Compton images were reconstructed using simple back-projection methods from the energy events of 718 keV prompt gamma emissions. The peak intensity position in reconstructed 718 keV prompt gamma images was few millimeters below the Bragg peak position. Moreover, the dual- and triple-energy window images for all positions of phantoms were not affected by scattered gammas, and their peak intensity positions were approximately similar to those observed in the reconstructed 718 keV prompt gamma images. In conclusion, the findings of the current study demonstrate the feasibility of using our Compton camera for real-time beam monitoring of carbon ion beams under clinical beam intensity.
Collapse
|
17
|
Uenomachi M, Takahashi M, Shimazoe K, Takahashi H, Kamada K, Orita T, Ogane K, Tsuji AB. Simultaneous in vivo imaging with PET and SPECT tracers using a Compton-PET hybrid camera. Sci Rep 2021; 11:17933. [PMID: 34504184 PMCID: PMC8429650 DOI: 10.1038/s41598-021-97302-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/24/2021] [Indexed: 01/11/2023] Open
Abstract
Positron-emission tomography (PET) and single-photon-emission computed tomography (SPECT) are well-established nuclear-medicine imaging methods used in modern medical diagnoses. Combining PET with 18F-fluorodeoxyglucose (FDG) and SPECT with an 111In-labelled ligand provides clinicians with information about the aggressiveness and specific types of tumors. However, it is difficult to integrate a SPECT system with a PET system because SPECT requires a collimator. Herein, we describe a novel method that provides simultaneous imaging with PET and SPECT nuclides by combining PET imaging and Compton imaging. The latter is an imaging method that utilizes Compton scattering to visualize gamma rays over a wide range of energies without requiring a collimator. Using Compton imaging with SPECT nuclides, instead of the conventional SPECT imaging method, enables PET imaging and Compton imaging to be performed with one system. In this research, we have demonstrated simultaneous in vivo imaging of a tumor-bearing mouse injected with 18F-FDG and an 111In-antibody by using a prototype Compton-PET hybrid camera. We have succeeded in visualizing accumulations of 18F-FDG and 111In-antibody by performing PET imaging and Compton imaging simultaneously. As simultaneous imaging utilizes the same coordinate axes, it is expected to improve the accuracy of diagnoses.
Collapse
Affiliation(s)
- Mizuki Uenomachi
- Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Miwako Takahashi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Inage, Chiba, Chiba, Japan
| | - Kenji Shimazoe
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan. .,JST, PRESTO, Saitama, 332-0012, Japan.
| | - Hiroyuki Takahashi
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Kei Kamada
- Tohoku University, 2-1-1, Katahira, Sendai, Miyagi, Japan
| | - Tadashi Orita
- Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kenichiro Ogane
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Nuclear Medicine, International University of Health and Welfare, 1-4-3, Minato-ku, Tokyo, Japan
| | - Atsushi B Tsuji
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Inage, Chiba, Chiba, Japan
| |
Collapse
|
18
|
Mausolf EJ, Johnstone EV, Mayordomo N, Williams DL, Guan EYZ, Gary CK. Fusion-Based Neutron Generator Production of Tc-99m and Tc-101: A Prospective Avenue to Technetium Theranostics. Pharmaceuticals (Basel) 2021; 14:ph14090875. [PMID: 34577575 PMCID: PMC8467155 DOI: 10.3390/ph14090875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Presented are the results of 99mTc and 101Tc production via neutron irradiation of natural isotopic molybdenum (Mo) with epithermal/resonance neutrons. Neutrons were produced using a deuterium-deuterium (D-D) neutron generator with an output of 2 × 1010 n/s. The separation of Tc from an irradiated source of bulk, low-specific activity (LSA) Mo on activated carbon (AC) was demonstrated. The yields of 99mTc and 101Tc, together with their potential use in medical single-photon emission computed tomography (SPECT) procedures, have been evaluated from the perspective of commercial production, with a patient dose consisting of 740 MBq (20 mCi) of 99mTc. The number of neutron generators to meet the annual 40,000,000 world-wide procedures is estimated for each imaging modality: 99mTc versus 101Tc, D-D versus deuterium-tritium (D-T) neutron generator system outputs, and whether or not natural molybdenum or enriched targets are used for production. The financial implications for neutron generator production of these isotopes is also presented. The use of 101Tc as a diagnostic, therapeutic, and/or theranostic isotope for use in medical applications is proposed and compared to known commercial nuclear diagnostic and therapeutic isotopes.
Collapse
Affiliation(s)
| | - Erik V. Johnstone
- Innovative Fuel Solutions LLC, North Las Vegas, NV 89031, USA;
- Correspondence:
| | - Natalia Mayordomo
- Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany;
| | - David L. Williams
- Adelphi Technology, Inc., Redwood City, CA 94063, USA; (D.L.W.); (E.Y.Z.G.); (C.K.G.)
| | - Eugene Yao Z. Guan
- Adelphi Technology, Inc., Redwood City, CA 94063, USA; (D.L.W.); (E.Y.Z.G.); (C.K.G.)
| | - Charles K. Gary
- Adelphi Technology, Inc., Redwood City, CA 94063, USA; (D.L.W.); (E.Y.Z.G.); (C.K.G.)
| |
Collapse
|
19
|
Ogane K, Uenomachi M, Shimazoe K, Takahashi M, Takahashi H, Seto Y, Momose T. Simultaneous measurements of single gamma ray of 131I and annihilation radiation of 18F with Compton PET hybrid camera. Appl Radiat Isot 2021; 176:109864. [PMID: 34265566 DOI: 10.1016/j.apradiso.2021.109864] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022]
Abstract
In internal 131I therapy for thyroid cancer, a decision to continue treatment is made by comparing 131I scintigraphy and [18F]FDG-PET. However, with current SPECT and PET systems, simultaneous imaging of diagnostic PET nuclides and therapeutic 131I nuclides has not been achieved so far. Therefore, we demonstrated that the recently developed Compton PET hybrid camera with Ce:Gd3(Al,Ga)5O12 (GAGG)- Silicon Photomultiplier(SiPM) scintillation detectors can be used to simultaneously image 131I Compton image and 18F PET image.
Collapse
Affiliation(s)
- Kenichiro Ogane
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan; Department of Nuclear Medicine, International University of Health and Welfare, 1-4-3, Mita, Minato-ku, Tokyo, Japan.
| | - Mizuki Uenomachi
- Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kenji Shimazoe
- Department of Bioengineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Miwako Takahashi
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inege-ku, Chiba, Japan
| | - Hiroyuki Takahashi
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Toshimitsu Momose
- Department of Nuclear Medicine, International University of Health and Welfare, 1-4-3, Mita, Minato-ku, Tokyo, Japan
| |
Collapse
|
20
|
Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, Jones T, James M, Sutcliffe J, Ouyang J, Petibon Y, Ma C, El Fakhri G, Surti S, Karp JS, Badawi RD, Yamaya T, Akamatsu G, Schramm G, Rezaei A, Nuyts J, Fulton R, Kyme A, Lois C, Sari H, Price J, Boellaard R, Jeraj R, Bailey DL, Eslick E, Willowson KP, Dutta J. Quantitative PET in the 2020s: a roadmap. Phys Med Biol 2021; 66:06RM01. [PMID: 33339012 PMCID: PMC9358699 DOI: 10.1088/1361-6560/abd4f7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Positron emission tomography (PET) plays an increasingly important role in research and clinical applications, catalysed by remarkable technical advances and a growing appreciation of the need for reliable, sensitive biomarkers of human function in health and disease. Over the last 30 years, a large amount of the physics and engineering effort in PET has been motivated by the dominant clinical application during that period, oncology. This has led to important developments such as PET/CT, whole-body PET, 3D PET, accelerated statistical image reconstruction, and time-of-flight PET. Despite impressive improvements in image quality as a result of these advances, the emphasis on static, semi-quantitative 'hot spot' imaging for oncologic applications has meant that the capability of PET to quantify biologically relevant parameters based on tracer kinetics has not been fully exploited. More recent advances, such as PET/MR and total-body PET, have opened up the ability to address a vast range of new research questions, from which a future expansion of applications and radiotracers appears highly likely. Many of these new applications and tracers will, at least initially, require quantitative analyses that more fully exploit the exquisite sensitivity of PET and the tracer principle on which it is based. It is also expected that they will require more sophisticated quantitative analysis methods than those that are currently available. At the same time, artificial intelligence is revolutionizing data analysis and impacting the relationship between the statistical quality of the acquired data and the information we can extract from the data. In this roadmap, leaders of the key sub-disciplines of the field identify the challenges and opportunities to be addressed over the next ten years that will enable PET to realise its full quantitative potential, initially in research laboratories and, ultimately, in clinical practice.
Collapse
Affiliation(s)
- Steven R Meikle
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Canada
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Richard Banati
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - David Mankoff
- Department of Radiology, University of Pennsylvania, United States of America
| | - Terry Jones
- Department of Radiology, University of California, Davis, United States of America
| | - Michelle James
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), CA, United States of America
- Department of Neurology and Neurological Sciences, Stanford University, CA, United States of America
| | - Julie Sutcliffe
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Internal Medicine, University of California, Davis, CA, United States of America
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, United States of America
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Taiga Yamaya
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Go Akamatsu
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Georg Schramm
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Ahmadreza Rezaei
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Roger Fulton
- Brain and Mind Centre, The University of Sydney, Australia
- Department of Medical Physics, Westmead Hospital, Sydney, Australia
| | - André Kyme
- Brain and Mind Centre, The University of Sydney, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Australia
| | - Cristina Lois
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Hasan Sari
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Julie Price
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Ronald Boellaard
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, location VUMC, Netherlands
| | - Robert Jeraj
- Departments of Medical Physics, Human Oncology and Radiology, University of Wisconsin, United States of America
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
| | - Dale L Bailey
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Enid Eslick
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Kathy P Willowson
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Joyita Dutta
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, United States of America
| |
Collapse
|
21
|
Tashima H, Yoshida E, Wakizaka H, Takahashi M, Nagatsu K, Tsuji AB, Kamada K, Parodi K, Yamaya T. 3D Compton image reconstruction method for whole gamma imaging. Phys Med Biol 2020; 65:225038. [PMID: 32937613 DOI: 10.1088/1361-6560/abb92e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Compton imaging or Compton camera imaging has been studied well, but its advantages in nuclear medicine and molecular imaging have not been demonstrated yet. Therefore, the aim of this work was to compare Compton imaging with positron emission tomography (PET) by using the same imaging platform of whole gamma imaging (WGI). WGI is a concept that combines PET with Compton imaging by inserting a scatterer ring into a PET ring. This concept utilizes diverse types of gamma rays for 3D tomographic imaging. In this paper, we remodeled our previous WGI prototype for small animal imaging, and we developed an image reconstruction method based on a list-mode ordered subset expectation maximization algorithm incorporating detector response function modeling, random correction and normalization (sensitivity correction) for either PET and Compton imaging. To the best of our knowledge, this is the world's first realization of a full-ring Compton imaging system. We selected 89Zr as an imaging target because a 89Zr nuclide emits a 909 keV single-gamma ray as well as a positron, and we can directly compare Compton imaging of 909 keV photons with PET, a well-established modality. We measured a cylindrical phantom and a small rod phantom filled with 89Zr solutions of 10.3 MBq and 10.2 MBq activity, respectively, for 1 h each. The uniform radioactivity distribution of the cylindrical phantom was reconstructed with normalization in both PET and Compton imaging. Coefficients of variation for region-of-interest values were 4.2% for Compton imaging and 3.3% for PET; the difference might be explained by the difference in the detected count number. The small rod phantom experiment showed that the WGI Compton imaging had spatial resolution better than 3.0 mm at the peripheral region although the center region had lower resolution. PET resolved 2.2 mm rods clearly at any location. We measured a mouse for 1 h, 1 d after injection of 9.8 MBq 89Zr oxalate. The 89Zr assimilated in the mouse bony structures was clearly depicted, and Compton imaging results agreed well with PET images, especially for the region inside the scatterer ring. In conclusion, we demonstrated the performance of WGI using the developed Compton image reconstruction method. We realized Compton imaging with a quality approaching that of PET, which is supporting a future expectation that Compton imaging outperforms PET.
Collapse
Affiliation(s)
- Hideaki Tashima
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Performance demonstration of a hybrid Compton camera with an active pinhole for wide-band X-ray and gamma-ray imaging. Sci Rep 2020; 10:14064. [PMID: 32820211 PMCID: PMC7441182 DOI: 10.1038/s41598-020-71019-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
X-ray and gamma-ray imaging are technologies with several applications in nuclear medicine, homeland security, and high-energy astrophysics. However, it is generally difficult to realize simultaneous wide-band imaging ranging from a few tens of keV to MeV because different interactions between photons and the detector material occur, depending on the photon energies. For instance, photoabsorption occurs below 100 keV, whereas Compton scattering dominates above a few hundreds of keV. Moreover, radioactive sources generally emit both X-ray and gamma-ray photons. In this study, we develop a “hybrid” Compton camera that can simultaneously achieve X-ray and gamma-ray imaging by combining features of “Compton” and “pinhole” cameras in a single detector system. Similar to conventional Compton cameras, the detector consists of two layers of scintillator arrays with the forward layer acting as a scatterer for high-energy photons (> 200 keV) and an active pinhole for low-energy photons (< 200 keV). The experimental results on the performance of the hybrid camera were consistent with those from the Geant4 simulation. We simultaneously imaged \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{241}$$\end{document}241Am (60 keV) and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{137}$$\end{document}137Cs (662 keV) in the same field of view, achieving an angular resolution of 10\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^\circ $$\end{document}∘ (FWHM) for both sources. In addition, imaging of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{211}$$\end{document}211At was conducted for the application in future nuclear medicine, particularly radionuclide therapy. The initial demonstrative images of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{211}$$\end{document}211At phantom were reconstructed using the pinhole mode (using 79 keV) and Compton mode (using 570 keV), exhibiting significant similarities in source-position localization. We also verified that a mouse injected with 1 MBq of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{211}$$\end{document}211At can be imaged via pinhole-mode measurement in an hour.
Collapse
|
23
|
Yoshida E, Tashima H, Nagatsu K, Tsuji AB, Kamada K, Parodi K, Yamaya T. Whole gamma imaging: a new concept of PET combined with Compton imaging. Phys Med Biol 2020; 65:125013. [PMID: 32348968 DOI: 10.1088/1361-6560/ab8e89] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We proposed a concept of whole gamma imaging (WGI) that utilizes all detectable gamma rays for imaging. An additional detector ring, which is used as the scatterer, is inserted in the field-of-view of a PET ring so that single gamma rays can be detected by the Compton imaging method. In particular, for the non-pure positron emitters which emit an additional gamma ray almost at the same time, triple gamma imaging will be enabled; localization on each line-of-response (LOR) is possible by using the Compton cone of the additional gamma ray. We developed a prototype to show a proof of the WGI concept. The diameters of scatterer ring and PET ring were set as 20 cm and 66 cm, respectively. For Compton imaging of the 662-keV gamma ray from a 137Cs point source, spatial resolution obtained by the list-mode OSEM algorithm was 4.4 mm FWHM at the 8 cm off-center position and 13.1 mm FWHM at the center position. For PET imaging of a 22Na point source, spatial resolution was about 2 mm FWHM at all positions. For the triple gamma imaging, 5.7 mm FWHM (center) and 4.8 mm FWHM (8 cm off-center) were obtained for the 22Na point source just by plotting the intersecting points between each LOR and each Compton cone of the 1275-keV gamma ray. No image reconstruction was applied. Scandium-44 was produced as a practical candidate of the non-pure positron emitters, and 6.6 mm FWHM (center) and 5.8 mm FWHM (8 cm off-center) were obtained in the same manner. This direct imaging approach which neither requires time-consuming event integration nor iterative image reconstruction may allow in vivo real-time tracking of a tiny amount of activity. Our initial results showed the feasibility of the WGI concept, which is a novel combination of PET and Compton imaging.
Collapse
Affiliation(s)
- Eiji Yoshida
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Shiba S, Parajuli RK, Sakai M, Oike T, Ohno T, Nakano T. Use of a Si/CdTe Compton Camera for In vivo Real-Time Monitoring of Annihilation Gamma Rays Generated by Carbon Ion Beam Irradiation. Front Oncol 2020; 10:635. [PMID: 32509570 PMCID: PMC7248380 DOI: 10.3389/fonc.2020.00635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/06/2020] [Indexed: 01/03/2023] Open
Abstract
The application of annihilation gamma-ray monitoring to the adaptive therapy of carbon ion radiotherapy (C-ion RT) requires identification of the peak intensity position and confirmation of activated elements with annihilation gamma-rays generated at the C-ion-irradiated site from those transported to unirradiated sites. Real-time monitoring of C-ion-induced annihilation gamma-rays was implemented using a Compton camera in a mouse model. An adult C57BL/6 mouse was anesthetized, and C-ion beams were directed into the abdomen at 1 × 109 particles/s for 20 s. The 511 keV annihilation gamma-rays, generated by the interaction between the irradiated C-ion beam and the target mouse, were detected using a silicon/cadmium telluride (Si/CdTe) Compton camera for 20 min immediately after irradiation. The irradiated site and the peak intensity position of 511 keV gamma emissions due to C-ion beam irradiation on a mouse were observed at the abdomen of the mouse by developing Compton images. Moreover, the positron emitter transport was observed by evaluating the range of gamma-ray emission after the C-ion beam irradiation on the mouse. Our data suggest that by confirming the peak intensity and beam range of C-ion RT with Si/CdTe-based Compton camera, it would be possible to reduce the intra-fractional and inter-fractional dose distribution degradation. Therefore, the results of this study would contribute to the future development of adaptive therapy with C-ion RT for humans.
Collapse
Affiliation(s)
- Shintaro Shiba
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Raj Kumar Parajuli
- Gunma University Heavy Ion Medical Center, Maebashi, Japan.,Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Inage, Japan
| | - Makoto Sakai
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Maebashi, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Inage, Japan
| |
Collapse
|
25
|
Sakai M, Parajuli RK, Kubota Y, Kubo N, Yamaguchi M, Nagao Y, Kawachi N, Kikuchi M, Arakawa K, Tashiro M. Crosstalk Reduction Using a Dual Energy Window Scatter Correction in Compton Imaging. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2453. [PMID: 32357411 PMCID: PMC7249665 DOI: 10.3390/s20092453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 11/17/2022]
Abstract
Compton cameras can simultaneously detect multi-isotopes; however, when simultaneous imaging is performed, crosstalk artifacts appear on the images obtained using a low-energy window. In conventional single-photon emission computed tomography, a dual energy window (DEW) subtraction method is used to reduce crosstalk. This study aimed to evaluate the effectiveness of employing the DEW technique to reduce crosstalk artifacts in Compton images obtained using low-energy windows. To this end, in this study, we compared reconstructed images obtained using either a photo-peak window or a scatter window by performing image subtraction based on the differences between the two images. Simulation calculations were performed to obtain the list data for the Compton camera using a 171 and a 511 keV point source. In the images reconstructed using these data, crosstalk artifacts were clearly observed in the images obtained using a 171 keV photo-peak energy window. In the images obtained using a scatter window (176-186 keV), only crosstalk artifacts were visible. The DEW method could eliminate the influence of high-energy sources on the images obtained with a photo-peak window, thereby improving quantitative capability. This was also observed when the DEW method was used on experimentally obtained images.
Collapse
Affiliation(s)
- Makoto Sakai
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Raj Kumar Parajuli
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba 263-8555, Japan
| | - Yoshiki Kubota
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Mitsutaka Yamaguchi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki 370-1292, Japan
| | - Yuto Nagao
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki 370-1292, Japan
| | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki-Machi, Takasaki 370-1292, Japan
| | - Mikiko Kikuchi
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Kazuo Arakawa
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| | - Mutsumi Tashiro
- Graduate School of Medicine, Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Japan
| |
Collapse
|
26
|
Sakai M, Parajuli RK, Kubota Y, Kubo N, Kikuchi M, Arakawa K, Nakano T. Improved iterative reconstruction method for Compton imaging using median filter. PLoS One 2020; 15:e0229366. [PMID: 32142552 PMCID: PMC7059936 DOI: 10.1371/journal.pone.0229366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/04/2020] [Indexed: 11/18/2022] Open
Abstract
A Compton camera is a device for imaging a radio-source distribution without using a mechanical collimator. Ordered-subset expectation-maximization (OS-EM) is widely used to reconstruct Compton images. However, the OS-EM algorithm tends to over-concentrate and amplify noise in the reconstructed image. It is, thus, necessary to optimize the number of iterations to develop high-quality images, but this has not yet been achieved. In this paper, we apply a median filter to an OS-EM algorithm and introduce a median root prior expectation-maximization (MRP-EM) algorithm to overcome this problem. In MRP-EM, the median filter is used to update the image in each iteration. We evaluated the quality of images reconstructed by our proposed method and compared them with those reconstructed by conventional algorithms using mathematical phantoms. The spatial resolution was estimated using the images of two point sources. Reproducibility was evaluated on an ellipsoidal phantom by calculating the residual sum of squares, zero-mean normalized cross-correlation, and mutual information. In addition, we evaluated the semi-quantitative performance and uniformity on the ellipsoidal phantom. MRP-EM reduces the generated noise and is robust with respect to the number of iterations. An evaluation of the reconstructed image quality using some statistical indices shows that our proposed method delivers better results than conventional techniques.
Collapse
Affiliation(s)
- Makoto Sakai
- Gunma University Heavy Ion Medical Center, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
| | - Raj Kumar Parajuli
- Gunma University Heavy Ion Medical Center, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan.,Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Anagawa, Inage, Chiba, Japan
| | - Yoshiki Kubota
- Gunma University Heavy Ion Medical Center, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
| | - Nobuteru Kubo
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
| | - Mikiko Kikuchi
- Gunma University Heavy Ion Medical Center, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
| | - Kazuo Arakawa
- Gunma University Heavy Ion Medical Center, Graduate School of Medicine, Gunma University, Showa-machi, Maebashi, Gunma, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, Japan
| |
Collapse
|