1
|
Fira AMR, Keta OD, Petković VD, Đorđević M, Petringa G, Fattori S, Catalano R, Cirrone GP, Cuttone G, Sakata D, Tran NH, Chatzipapas K, Incerti S, Petrović IM. In vitro validation of helium ion irradiations as a function of linear energy transfer in radioresistant human malignant cells. Int J Radiat Biol 2024; 100:1426-1437. [PMID: 39058324 DOI: 10.1080/09553002.2024.2373752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Based on considerable interest to enlarge the experimental database of radioresistant cells after their irradiation with helium ions, HTB140, MCF-7 and HTB177 human malignant cells are exposed to helium ion beams having different linear energy transfer (LET). MATERIALS AND METHODS The cells are irradiated along the widened 62 MeV/u helium ion Bragg peak, providing LET of 4.9, 9.8, 23.4 and 36.8 keV/µm. Numerical simulations with the Geant4 toolkit are used for the experimental design. Cell survival is evaluated and compared with reference γ-rays. DNA double strand breaks are assessed via γ-H2AX foci. RESULTS With the increase of LET, surviving fractions at 2 Gy decrease, while RBE (2 Gy, γ) gradually increase. For HTB140 cells, above the dose of 4 Gy, a slight saturation of survival is observed while the increase of RBE (2 Gy, γ) remains unaffected. With the increase of LET the increase of γ-H2AX foci is revealed at 0.5 h after irradiation. There is no significant difference in the number of foci between the cell lines for the same LET. From 0.5 to 24 h, the number of foci drops reaching its residual level. For each time point, there are small differences in DNA DSB among the three cell lines. CONCLUSION Analyses of data acquired for the three cell lines irradiated by helium ions, having different LET, reveal high elimination capacity and creation of a large number of DNA DSB with respect to γ-rays, and are between those reported for protons and carbon ions.
Collapse
Affiliation(s)
| | - Otilija D Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Miloš Đorđević
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Giada Petringa
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | - Serena Fattori
- Istituto Nazionale di Fisica Nucleare, LNS, Catania, Italy
| | | | | | | | | | - Ngoc Hoang Tran
- University of Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | | | - Sebastien Incerti
- University of Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | - Ivan M Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Ekinci F, Acici K, Asuroglu T. Enhancing Tissue Equivalence in 7Li Heavy Ion Therapy with MC Algorithm Optimized Polymer-Based Bioinks. J Funct Biomater 2023; 14:559. [PMID: 38132813 PMCID: PMC10743991 DOI: 10.3390/jfb14120559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The unique physical properties of heavy ion beams, particularly their distinctive depth-dose distribution and sharp lateral dose reduction profiles, have led to their widespread adoption in tumor therapy worldwide. However, the physical properties of heavy ion beams must be investigated to deliver a sufficient dose to tumors without damaging organs at risk. These studies should be performed on phantoms made of biomaterials that closely mimic human tissue. Polymers can serve as soft tissue substitutes and are suitable materials for building radiological phantoms due to their physical, mechanical, biological, and chemical properties. Extensive research, development, and applications of polymeric biomaterials have been encouraged due to these properties. In this study, we investigated the ionization, recoils, phonon release, collision events, and lateral straggle properties of polymeric biomaterials that closely resemble soft tissue using lithium-ion beams and Monte Carlo Transport of Ions in Matter simulation. The results indicated that the Bragg peak position closest to soft tissue was achieved with a 7.3% difference in polymethylmethacrylate, with an average recoils value of 10.5%. Additionally, average values of 33% were observed in collision events and 22.6% in lateral straggle. A significant contribution of this study to the existing literature lies in the exploration of secondary interactions alongside the assessment of linear energy transfer induced by the 7Li beam used for treatment. Furthermore, we analyzed the tissue-equivalent properties of polymer biomaterials using heavy ion beams, taking into account phonon release resulting from ionization, recoils, lateral straggle, and all other interactions. This approach allows for the evaluation of the most suitable polymeric biomaterials for heavy ion therapy while considering the full range of interactions involved.
Collapse
Affiliation(s)
- Fatih Ekinci
- Institute of Nuclear Sciences, Ankara University, 06100 Ankara, Turkey;
| | - Koray Acici
- Artificial Intelligence and Data Engineering, Ankara University, 06100 Ankara, Turkey;
| | - Tunc Asuroglu
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
3
|
Boscolo D, Kostyleva D, Schuy C, Weber U, Haettner E, Purushothaman S, Dendooven P, Dickel T, Drozd V, Franczack B, Geissel H, Hornung C, Horst F, Kazantseva E, Kuzminchuk-Feuerstein N, Lovatti G, Mukha I, Nociforo C, Pietri S, Pinto M, Reidel CA, Roesch H, Sokol O, Tanaka YK, Weick H, Zhao J, Scheidenberger C, Parodi K, Durante M. Depth dose measurements in water for 11C and 10C beams with therapy relevant energies. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 2022; 1043:167464. [PMID: 36345417 PMCID: PMC7613790 DOI: 10.1016/j.nima.2022.167464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Owing to the favorable depth-dose distribution and the radiobiological properties of heavy ion radiation, ion beam therapy shows an improved success/toxicity ratio compared to conventional radiotherapy. The sharp dose gradients and very high doses in the Bragg peak region, which represent the larger physical advantage of ion beam therapy, make it also extremely sensitive to range uncertainties. The use of β +-radioactive ion beams would be ideal for simultaneous treatment and accurate online range monitoring through PET imaging. Since all the unfragmented primary ions are potentially contributing to the PET signal, these beams offer an improved image quality while preserving the physical and radiobiological advantages of the stable counterparts. The challenging production of radioactive ion beams and the difficulties in reaching high intensities, have discouraged their clinical application. In this context, the project Biomedical Applications of Radioactive ion Beams (BARB) started at GSI (Helmholtzzentrum für Schwerionenforschung GmbH) with the main goal to assess the technical feasibility and investigate possible advantages of radioactive ion beams on the pre-clinical level. During the first experimental campaign 11C and 10C beams were produced and isotopically separated with the FRagment Separator (FRS) at GSI. The β +-radioactive ion beams were produced with a beam purity of 99% for all the beam investigated (except one case where it was 94%) and intensities potentially sufficient to treat a small animal tumors within few minutes of irradiation time, ∼ 106 particle per spill for the 10C and ∼ 107 particle per spill for the 11C beam, respectively. The impact of different ion optical parameters on the depth dose distribution was studied with a precision water column system. In this work, the measured depth dose distributions are presented together with results from Monte Carlo simulations using the FLUKA software.
Collapse
Affiliation(s)
- Daria Boscolo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Daria Kostyleva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Emma Haettner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - Timo Dickel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Vasyl Drozd
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- University of Groningen, Groningen, Netherlands
| | | | - Hans Geissel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Christine Hornung
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Erika Kazantseva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - Ivan Mukha
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Chiara Nociforo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Stephane Pietri
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marco Pinto
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Heidi Roesch
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Olga Sokol
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Helmut Weick
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Jianwei Zhao
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Peking University, Beijing, China
| | - Christoph Scheidenberger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Justus-Liebig-Universität Gieβen, Gieβen, Germany
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
4
|
Track Structure-Based Simulations on DNA Damage Induced by Diverse Isotopes. Int J Mol Sci 2022; 23:ijms232213693. [PMID: 36430172 PMCID: PMC9690858 DOI: 10.3390/ijms232213693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Diverse isotopes such as 2H, 3He, 10Be, 11C and 14C occur in nuclear reactions in ion beam radiotherapy, in cosmic ray shielding, or are intentionally accelerated in dating techniques. However, only a few studies have specifically addressed the biological effects of diverse isotopes and were limited to energies of several MeV/u. A database of simulations with the PARTRAC biophysical tool is presented for H, He, Li, Be, B and C isotopes at energies from 0.5 GeV/u down to stopping. The doses deposited to a cell nucleus and also the yields per unit dose of single- and double-strand breaks and their clusters induced in cellular DNA are predicted to vary among diverse isotopes of the same element at energies < 1 MeV/u, especially for isotopes of H and He. The results may affect the risk estimates for astronauts in deep space missions or the models of biological effectiveness of ion beams and indicate that radiation protection in 14C or 10Be dating techniques may be based on knowledge gathered with 12C or 9Be.
Collapse
|
5
|
Mairani A, Mein S, Blakely E, Debus J, Durante M, Ferrari A, Fuchs H, Georg D, Grosshans DR, Guan F, Haberer T, Harrabi S, Horst F, Inaniwa T, Karger CP, Mohan R, Paganetti H, Parodi K, Sala P, Schuy C, Tessonnier T, Titt U, Weber U. Roadmap: helium ion therapy. Phys Med Biol 2022; 67. [PMID: 35395649 DOI: 10.1088/1361-6560/ac65d3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVμm-1to ∼40 keVμm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVμm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.
Collapse
Affiliation(s)
- Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - David R Grosshans
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Fada Guan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhe Mohan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America.,Harvard Medical School, Boston, United States of America
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Paola Sala
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Titt
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Ulrich Weber
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| |
Collapse
|
6
|
Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. NATURE REVIEWS. PHYSICS 2021; 3:777-790. [PMID: 34870097 PMCID: PMC7612063 DOI: 10.1038/s42254-021-00368-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 05/05/2023]
Abstract
Radiotherapy should have low toxicity in the entrance channel (normal tissue) and be very effective in cell killing in the target region (tumour). In this regard, ions heavier than protons have both physical and radiobiological advantages over conventional X-rays. Carbon ions represent an excellent combination of physical and biological advantages. There are a dozen carbon-ion clinical centres in Europe and Asia, and more under construction or at the planning stage, including the first in the USA. Clinical results from Japan and Germany are promising, but a heated debate on the cost-effectiveness is ongoing in the clinical community, owing to the larger footprint and greater expense of heavy ion facilities compared with proton therapy centres. We review here the physical basis and the clinical data with carbon ions and the use of different ions, such as helium and oxygen. Research towards smaller and cheaper machines with more effective beam delivery is necessary to make particle therapy affordable. The potential of heavy ions has not been fully exploited in clinics and, rather than there being a single 'silver bullet', different particles and their combination can provide a breakthrough in radiotherapy treatments in specific cases.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jay S. Loeffler
- Departments of Radiation Oncology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Carante MP, Embriaco A, Aricò G, Ferrari A, Mairani A, Mein S, Ramos R, Sala P, Ballarini F. Biological effectiveness of He-3 and He-4 ion beams for cancer hadrontherapy: a study based on the BIANCA biophysical model. Phys Med Biol 2021; 66. [PMID: 34507306 DOI: 10.1088/1361-6560/ac25d4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022]
Abstract
While cancer therapy with protons and C-ions is continuously spreading, in the near future patients will be also treated with He-ions which, in comparison to photons, combine the higher precision of protons with the higher relative biological effectiveness (RBE) of C-ions. Similarly to C-ions, also for He-ions the RBE variation along the beam must be known as precisely as possible, especially for active beam delivery systems. In this framework the BIANCA biophysical model, which has already been applied to calculate the RBE along proton and C-ion beams, was extended to4He-ions and, following interface with the FLUKA code, was benchmarked against cell survival data on CHO normal cells and Renca tumour cells irradiated at different positions along therapeutic-like4He-ion beams at the Heidelberg Ion-beam Therapy centre, where the first He-ion patient will be treated soon. Very good agreement between simulations and data was obtained, showing that BIANCA can now be used to predict RBE following irradiation with all ion types that are currently used, or will be used soon, for hadrontherapy. Thanks to the development of a reference simulation database describing V79 cell survival for ion and photon irradiation, these predictions can be cell-type specific because analogous databases can be produced, in principle, for any cell line. Furthermore, survival data on CHO cells irradiated by a He-3 beam were reproduced to compare the biophysical properties of He-4 and He-3 beams, which is currently an open question. This comparison showed that, at the same depth, He-4 beams tend to have a higher RBE with respect to He-3 beams, and that this difference is also modulated by the considered physical dose, as well as the cell radiosensitivity. However, at least for the considered cases, no significant difference was found for the ratio between the RBE-weighted dose in the SOBP and that in the entrance plateau.
Collapse
Affiliation(s)
- M P Carante
- INFN (Italian National Institute for Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy.,University of Pavia, Physics Department, via Bassi 6, I-27100 Pavia, Italy
| | - A Embriaco
- INFN (Italian National Institute for Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - G Aricò
- CERN-European Organization for Nuclear Research, Geneva, Switzerland
| | - A Ferrari
- University Hospital Heidelberg, Germany.,Gangneung-Wonju National University-Gangneung, Republic of Korea
| | - A Mairani
- HIT (Heidelberg Ion-beam Therapy center), Heidelberg, Germany
| | - S Mein
- HIT (Heidelberg Ion-beam Therapy center), Heidelberg, Germany
| | - R Ramos
- INFN (Italian National Institute for Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
| | - P Sala
- INFN (Italian National Institute for Nuclear Physics), Sezione di Milano, via Celoria 16, I-20133 Milano, Italy
| | - F Ballarini
- INFN (Italian National Institute for Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy.,University of Pavia, Physics Department, via Bassi 6, I-27100 Pavia, Italy
| |
Collapse
|
8
|
Kim JW, Yoo SH, Kong YB, Cho SO, Lee EJ. Wetting Property Modification of Al 2O 3 by Helium Ion Irradiation: Effects of Beam Energy and Fluence on Contact Angle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11301-11308. [PMID: 34519211 DOI: 10.1021/acs.langmuir.1c01859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In imparting wetting properties, a fabrication process without the addition of new compounds and deposition of coating layers would be the most desirable because it does not introduce additional complexities. Hence, the ion beam irradiation technique is used as it enables the chemistry of materials to be modified through simple adjustments of irradiation parameters such as the type of accelerated particles, beam energy, and fluence. In this study, the hydrophilicity of alumina surfaces was weakened by irradiating He ion beams of different energy levels (200 keV and 20 MeV). These transitions become more pronounced as the total beam fluence increases. In low-energy irradiation, the effect of irradiation is predominant near the surface, and hydrophilicity is weakened by the increase in carbon adsorption and suppression of dissociative adsorption of water molecules owing to the introduction of oxygen vacancies. In contrast, nuclear transmutations are induced by irradiation with high-energy beams. Consequently, fluorine is generated, and hydrophobic functional groups are formed on the surface. By varying the beam conditions, the wetting properties of the target ceramic can be controlled to the desired level, which is required in various industries, via appropriate adjustments of the beam parameters. In addition, the beam irradiation technique may be applicable to all ceramic materials, including lattice oxygen and alumina.
Collapse
Affiliation(s)
- Jung Woo Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seung Hwa Yoo
- Department of Quantum System Engineering, College of Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Young Bae Kong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Sung Oh Cho
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eun Je Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| |
Collapse
|
9
|
Boscolo D, Kostyleva D, Safari MJ, Anagnostatou V, Äystö J, Bagchi S, Binder T, Dedes G, Dendooven P, Dickel T, Drozd V, Franczack B, Geissel H, Gianoli C, Graeff C, Grahn T, Greiner F, Haettner E, Haghani R, Harakeh MN, Horst F, Hornung C, Hucka JP, Kalantar-Nayestanaki N, Kazantseva E, Kindler B, Knöbel R, Kuzminchuk-Feuerstein N, Lommel B, Mukha I, Nociforo C, Ishikawa S, Lovatti G, Nitta M, Ozoemelam I, Pietri S, Plaß WR, Prochazka A, Purushothaman S, Reidel CA, Roesch H, Schirru F, Schuy C, Sokol O, Steinsberger T, Tanaka YK, Tanihata I, Thirolf P, Tinganelli W, Voss B, Weber U, Weick H, Winfield JS, Winkler M, Zhao J, Scheidenberger C, Parodi K, Durante M. Radioactive Beams for Image-Guided Particle Therapy: The BARB Experiment at GSI. Front Oncol 2021; 11:737050. [PMID: 34504803 PMCID: PMC8422860 DOI: 10.3389/fonc.2021.737050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separation with the fragment separator FRS in the FAIR-phase-0 in Darmstadt, it is now possible to reach radioactive ion beams with sufficient intensity to treat a tumor in small animals. This was the motivation of the BARB (Biomedical Applications of Radioactive ion Beams) experiment that is ongoing at GSI in Darmstadt. This paper will present the plans and instruments developed by the BARB collaboration for testing the use of radioactive beams in cancer therapy.
Collapse
Affiliation(s)
- Daria Boscolo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Daria Kostyleva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - Juha Äystö
- University of Jyväskylä, Jyväskylä, Finland.,Helsinki Institute of Physics, Helsinki, Finland
| | | | - Tim Binder
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Timo Dickel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Vasyl Drozd
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,University of Groningen, Groningen, Netherlands
| | | | - Hans Geissel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tuomas Grahn
- University of Jyväskylä, Jyväskylä, Finland.,Helsinki Institute of Physics, Helsinki, Finland
| | - Florian Greiner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Emma Haettner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Christine Hornung
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | - Jan-Paul Hucka
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Erika Kazantseva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Birgit Kindler
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ronja Knöbel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Bettina Lommel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ivan Mukha
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Chiara Nociforo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | | | | | - Stephane Pietri
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Wolfgang R Plaß
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | | | | | - Heidi Roesch
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | - Fabio Schirru
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Olga Sokol
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Timo Steinsberger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Isao Tanihata
- Research Center for Nuclear Physics, Osaka University, Osaka, Japan.,Peking University, Beijing, China.,Institute of Modern Physics, Lanzhou, China
| | - Peter Thirolf
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Bernd Voss
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Helmut Weick
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - John S Winfield
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Martin Winkler
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Jianwei Zhao
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Peking University, Beijing, China
| | - Christoph Scheidenberger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | | |
Collapse
|