1
|
Pavuluri K, Huston J, Ehman RL, Manduca A, Vemuri P, Jack CR, Senjem ML, Murphy MC. Brain mechanical properties predict longitudinal cognitive change in aging and Alzheimer's disease. Neurobiol Aging 2025; 147:203-212. [PMID: 39813771 DOI: 10.1016/j.neurobiolaging.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Age-related cognitive decline is a complex phenomenon that is influenced by various neurobiological processes at the molecular, cellular, and tissue levels. The extent of this decline varies between individuals and the underlying determinants of these differences are not fully understood. Two of the most prominent signs of cognitive decline in aging are the deterioration of episodic memory, which is a hallmark of Alzheimer's disease (AD), and the nearly always accompanying atrophy of the medial temporal lobe. Both cross-sectional and longitudinal studies have consistently demonstrated the strong relationship between these two, however, recent advanced imaging techniques have shown promise for predicting cognitive decline earlier than atrophy measures. In this study, we investigate the value of brain biomechanical properties, specifically in the medial temporal lobe, for predicting global cognitive decline along the normal aging and AD spectrum. Our results indicate that the medial temporal stiffness significantly predicts future cognitive decline beyond that achieved by measures of atrophy and amyloidosis. Measures of brain biomechanical properties may provide valuable prognostic information to enable more efficient study design and evaluation of potential interventions.
Collapse
Affiliation(s)
| | - John Huston
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Armando Manduca
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
2
|
McIlvain G. The contributions of relative brain viscosity to brain function and health. Brain Commun 2024; 6:fcae424. [PMID: 39713240 PMCID: PMC11660954 DOI: 10.1093/braincomms/fcae424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/22/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
Magnetic resonance elastography has emerged over the last two decades as a non-invasive method for quantitatively measuring the mechanical properties of the brain. Since the inception of the technology, brain stiffness has been the primary metric used to describe brain microstructural mechanics. However, more recently, a secondary measure has emerged as both theoretical and experimental significance, which is the ratio of tissue viscosity relative to tissue elasticity. This viscous-to-elastic ratio describes different but complementary aspects of brain microstructural health and is theorized to relate to microstructural organization, as opposed to stiffness, which is related to tissue composition. The relative viscosity of brain tissue changes regionally during maturation, aging and neurodegenerative disease. It also exhibits unique characteristics in brain tumours and hydrocephalus, and is of interest for characterizing traumatic head impacts. Most notably, regional measures of relative brain tissue viscosity appear to hold a unique role in describing cognitive function. For instance, in young adults, relatively lower hippocampal viscosity compared to elasticity repeatedly and sensitively relates to spatial, declarative and verbal memory performance. Importantly, these same trends are not found with hippocampal stiffness, or hippocampal volume, highlighting a potential sensitivity of relative viscosity to underlying cellularity that contributions to normal healthy brain function. Likewise in young adults, in the orbitofrontal cortex, lower relative viscosity relates to better performance on fluid intelligence tasks, and in the Broca's area of children ages 5-7, lower relative viscosity is indicative of better language performance. In these instances, this ratio shows heightened sensitivity over other structural MRI metrics, and importantly, provides a quantitative and intrinsic alternative to measuring structure-function relationships with task-based fMRI. There are ongoing efforts to improve the accuracy and repeatability of the relative viscosity measurement, and much work is needed to reveal the cellular underpinning of changes to tissue viscosity. But it appears clear that regionally measuring the viscous-to-elastic ratio holds the potential to noninvasively reveal an aspect of tissue microstructure that is clinically, cognitively and functionally relevant to our understanding of brain function and health.
Collapse
Affiliation(s)
- Grace McIlvain
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Columbia University, New York, NY 10027, USA
- Department of Radiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Williams LT, Cao Z, Lateef AH, McGarry MDJ, Corbin EA, Johnson CL. Viscoelastic polyacrylamide MR elastography phantoms with tunable damping ratio independent of shear stiffness. J Mech Behav Biomed Mater 2024; 154:106522. [PMID: 38537609 PMCID: PMC11023745 DOI: 10.1016/j.jmbbm.2024.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
Physiologically modeled test samples with known properties and characteristics, or phantoms, are essential for developing sensitive, repeatable, and accurate quantitative MRI techniques. Magnetic resonance elastography (MRE) is one such technique used to estimate tissue mechanical properties, and it is advantageous to use phantoms with independently tunable mechanical properties to benchmark the accuracy of MRE methods. Phantoms with tunable shear stiffness are commonly used for MRE, but tuning the viscosity or damping ratio has proven to be difficult. A promising candidate for MRE phantoms with tunable damping ratio is polyacrylamide (PAA). While pure PAA has very low attenuation, viscoelastic hydrogels have been made by entrapping linear polyacrylamide strands (LPAA) within the PAA network. In this study, we evaluate the use of LPAA/PAA gels as physiologically accurate phantoms with tunable damping ratio, independent of shear stiffness, via MRE. Phantoms were made with 15.3 wt% PAA while the LPAA concentration ranged from 4.5 wt% to 8.0 wt%. MRE was performed at 9.4 T with 400 Hz vibration on all phantoms revealing a strong, positive correlation between damping ratio and LPAA content (p < 0.001). There was no significant correlation between shear stiffness and LPAA content, confirming a constant PAA concentration yielded constant shear stiffness. Rheometry at 10 Hz was performed to verify the damping ratio of the phantoms. Nearly identical slopes for damping ratio versus LPAA content were found from both MRE and rheometry (0.0073 and 0.0075 respectively). Ultimately, this study validates the adaptation of polyacrylamide gels into physiologically-relevant MRE phantoms to enable testing of MRE estimates of damping ratio.
Collapse
Affiliation(s)
- L Tyler Williams
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Zheng Cao
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Ali H Lateef
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | | | - Elise A Corbin
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
4
|
Pavuluri K, Scott JM, Huston Iii J, Ehman RL, Manduca A, Jack CR, Savica R, Boeve BF, Kantarci K, Petersen RC, Knopman DS, Murphy MC. Differential effect of dementia etiology on cortical stiffness as assessed by MR elastography. Neuroimage Clin 2023; 37:103328. [PMID: 36696808 PMCID: PMC9879983 DOI: 10.1016/j.nicl.2023.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/31/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Aging and dementia involve the disruption of brain molecular pathways leading to the alterations in tissue composition and gross morphology of the brain. Phenotypic and biomarker overlap between various etiologies of dementia supports a need for new modes of information to more accurately distinguish these disorders. Brain mechanical properties, which can be measured noninvasively by MR elastography, represent one understudied feature that are sensitive to neurodegenerative processes. In this study, we used two stiffness estimation schemes to test the hypothesis that different etiologies of dementia are associated with unique patterns of mechanical alterations across the cerebral cortex. METHODS MR elastography data were acquired for six clinical groups including amyloid-negative cognitively unimpaired (CU), amyloid-positive cognitively unimpaired (A + CU), amyloid-positive participants with mild cognitive impairment (A + MCI), amyloid-positive participants with Alzheimer's clinical syndrome (A + ACS), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). Stiffness maps were computed using two neural network inversions with the objective to at least partially separate the parenchyma-specific and morphological effects of neurodegeneration on mechanical property estimates. A tissue-confined inversion algorithm was designed to obtain the best estimate of stiffness in the brain parenchyma itself, while a regionally-aware inversion algorithm was used to measure the tissue stiffness along with the surroundings. Mean stiffness of 15 bilateral gray matter cortical regions were considered for statistical analysis. First, we tested the hypothesis that cortical stiffness changes in the aging brain. Next, we tested the overall study hypothesis by first comparing stiffness in each clinical group to the CU group, and then comparing the clinical groups against one another. Finally, we assessed the spatial and statistical overlap between atrophy and stiffness changes for both inversions. RESULTS Cortical brain regions become softer with age for both inversions with larger effects observed using regionally-aware stiffness. Stiffness decreases in the range 0.010-0.027 kPa per year were observed. Pairwise comparisons of each clinical group with cognitively unimpaired participants demonstrated 5 statistically significant differences in stiffness for tissue-confined measurements and 19 statistically different stiffness changes for the regionally-aware stiffness measurements. Pairwise comparisons between clinical groups further demonstrated unique patterns of stiffness differences. Analysis of the atrophy-versus-stiffness relationship showed that regionally-aware stiffness measurements exhibit higher sensitivity to neurodegeneration with findings that are not fully explained by partial volume effects or atrophy. CONCLUSIONS Both tissue-confined and regionally-aware stiffness estimates exhibited unique and complementary stiffness differences in various etiologies of dementia. Our results suggest that mechanical alterations measured by MRE reflect both tissue-specific differences as well as environmental effects. Multi-inversion schemes in MRE may provide new insights into the relationships between neuropathology and brain biomechanics.
Collapse
Affiliation(s)
| | - Jonathan M Scott
- Mayo Clinic Medical Scientist Training Program, 200 First Street SW, Rochester, MN, USA
| | | | | | - Armando Manduca
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Rodolfo Savica
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
5
|
McIlvain G, Schneider JM, Matyi MA, McGarry MD, Qi Z, Spielberg JM, Johnson CL. Mapping brain mechanical property maturation from childhood to adulthood. Neuroimage 2022; 263:119590. [PMID: 36030061 PMCID: PMC9950297 DOI: 10.1016/j.neuroimage.2022.119590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 02/07/2023] Open
Abstract
Magnetic resonance elastography (MRE) is a phase contrast MRI technique which uses external palpation to create maps of brain mechanical properties noninvasively and in vivo. These mechanical properties are sensitive to tissue microstructure and reflect tissue integrity. MRE has been used extensively to study aging and neurodegeneration, and to assess individual cognitive differences in adults, but little is known about mechanical properties of the pediatric brain. Here we use high-resolution MRE imaging in participants of ages ranging from childhood to adulthood to understand brain mechanical properties across brain maturation. We find that brain mechanical properties differ considerably between childhood and adulthood, and that neuroanatomical subregions have differing maturational trajectories. Overall, we observe lower brain stiffness and greater brain damping ratio with increasing age from 5 to 35 years. Gray and white matter change differently during maturation, with larger changes occurring in gray matter for both stiffness and damping ratio. We also found that subregions of cortical and subcortical gray matter change differently, with the caudate and thalamus changing the most with age in both stiffness and damping ratio, while cortical subregions have different relationships with age, even between neighboring regions. Understanding how brain mechanical properties mature using high-resolution MRE will allow for a deeper understanding of the neural substrates supporting brain function at this age and can inform future studies of atypical maturation.
Collapse
Affiliation(s)
- Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Julie M Schneider
- Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, United States
| | - Melanie A Matyi
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Matthew Dj McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Zhenghan Qi
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, United States
| | - Jeffrey M Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States; Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
6
|
McIlvain G, Cerjanic A, Christodoulou AG, McGarry MDJ, Johnson CL. OSCILLATE: A low-rank approach for accelerated magnetic resonance elastography. Magn Reson Med 2022; 88:1659-1672. [PMID: 35649188 PMCID: PMC9339522 DOI: 10.1002/mrm.29308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/29/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE MR elastography (MRE) is a technique to characterize brain mechanical properties in vivo. Due to the need to capture tissue deformation in multiple directions over time, MRE is an inherently long acquisition, which limits achievable resolution and use in challenging populations. The purpose of this work is to develop a method for accelerating MRE acquisition by using low-rank image reconstruction to exploit inherent spatiotemporal correlations in MRE data. THEORY AND METHODS The proposed MRE sampling and reconstruction method, OSCILLATE (Observing Spatiotemporal Correlations for Imaging with Low-rank Leveraged Acceleration in Turbo Elastography), involves alternating which k-space points are sampled between each repetition by a reduction factor, ROSC. Using a predetermined temporal basis from a low-resolution navigator in a joint low-rank image reconstruction, all images can be accurately reconstructed from a reduced amount of k-space data. RESULTS Decomposition of MRE displacement data demonstrated that, on average, 96.1% of all energy from an MRE dataset is captured at rank L = 12 (reduced from a full rank of 24). Retrospectively undersampling data with ROSC = 2 and reconstructing at low-rank (L = 12) yields highly accurate stiffness maps with voxel-wise error of 5.8% ± 0.7%. Prospectively undersampled data at ROSC = 2 were successfully reconstructed without loss of material property map fidelity, with average global stiffness error of 1.0% ± 0.7% compared to fully sampled data. CONCLUSIONS OSCILLATE produces whole-brain MRE data at 2 mm isotropic resolution in 1 min 48 s.
Collapse
Affiliation(s)
- Grace McIlvain
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Alex Cerjanic
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- University of Illinois College of Medicine, Urbana, IL, United States
| | - Anthony G Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Matthew DJ McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
7
|
Xue B, Wen X, Kuwar R, Sun D, Zhang N. Age-dependent viscoelastic characterization of rat brain cortex. BRAIN MULTIPHYSICS 2022; 3. [DOI: 10.1016/j.brain.2022.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|