1
|
Lu J, Alenezi F, Bier E, Leewiwatwong S, Mummy D, Kabir S, Rajagopal S, Robertson S, Niedbalski PJ, Driehuys B. Optimized quantitative mapping of cardiopulmonary oscillations using hyperpolarized 129 Xe gas exchange MRI: Digital phantoms and clinical evaluation in CTEPH. Magn Reson Med 2024; 91:1541-1555. [PMID: 38084439 PMCID: PMC10872359 DOI: 10.1002/mrm.29965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE The interaction between 129 Xe atoms and pulmonary capillary red blood cells provides cardiogenic signal oscillations that display sensitivity to precapillary and postcapillary pulmonary hypertension. Recently, such oscillations have been spatially mapped, but little is known about optimal reconstruction or sensitivity to artifacts. In this study, we use digital phantom simulations to specifically optimize keyhole reconstruction for oscillation imaging. We then use this optimized method to re-establish healthy reference values and quantitatively evaluate microvascular flow changes in patients with chronic thromboembolic pulmonary hypertension (CTEPH) before and after pulmonary thromboendarterectomy (PTE). METHODS A six-zone digital lung phantom was designed to investigate the effects of radial views, key radius, and SNR. One-point Dixon 129 Xe gas exchange MRI images were acquired in a healthy cohort (n = 17) to generate a reference distribution and thresholds for mapping red blood cell oscillations. These thresholds were applied to 10 CTEPH participants, with 6 rescanned following PTE. RESULTS For undersampled acquisitions, a key radius of0.14 k max $$ 0.14{k}_{\mathrm{max}} $$ was found to optimally resolve oscillation defects while minimizing excessive heterogeneity. CTEPH participants at baseline showed higher oscillation defect + low (32 ± 14%) compared with healthy volunteers (18 ± 12%, p < 0.001). For those scanned both before and after PTE, oscillation defect + low decreased from 37 ± 13% to 23 ± 14% (p = 0.03). CONCLUSIONS Digital phantom simulations have informed an optimized keyhole reconstruction technique for gas exchange images acquired with standard 1-point Dixon parameters. Our proposed methodology enables more robust quantitative mapping of cardiogenic oscillations, potentially facilitating effective regional quantification of microvascular flow impairment in patients with pulmonary vascular diseases such as CTEPH.
Collapse
Affiliation(s)
- Junlan Lu
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
| | - Fawaz Alenezi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Elianna Bier
- Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | - David Mummy
- Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sakib Kabir
- Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Scott Robertson
- Clinical Imaging Physics Group, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter J. Niedbalski
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Bastiaan Driehuys
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA
- Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Pawlik MT, Dendl LM, Achajew LA, Zeman F, Blecha S, Jung M, Schleder S, Schreyer AG. Clinical Value and Operational Risks of MRI in ICU patients - A Retrospective Analysis Performed at a University Medical Center. ROFO-FORTSCHR RONTG 2024; 196:371-380. [PMID: 37967821 DOI: 10.1055/a-2193-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
PURPOSE Intensive care unit (ICU) patients have a high risk of developing complications when leaving the ICU for diagnostic procedures or therapeutic interventions. Our study examined the frequency of adverse events associated with magnetic resonance imaging (MRI) of intensive care patients and the extent of changes in therapy due to the MRI scan to weigh the risks associated with the scan against the potential benefits of an MR scan, using a change in therapy as an indicator of benefit. MATERIALS AND METHODS 4434 ICU patients (January to December 2015) were identified by Hospital Information System (SAP-R/3 IS-H, Walldorf, Germany), ICU patient data management system Metavision (iMDsoft, Israel), and Radiology Information System (Nexus.medRIS, Version 8.42, Nexus, Germany). All intensive care and medical records (HIS) and MRI reports (RIS) were matched and further evaluated in a retrospective case-to-case analysis for biometric data, mechanical ventilation, ICU requirements, planned postoperative vs. emergency diagnostic requirements, complications and impact on further diagnosis or therapy. RESULTS Out of 4434 ICU patients, 322 ICU patients (7.3 %) underwent a total of 385 MRI examinations. 167 patients needed a total of 215 emergency scans, while 155 patients underwent 170 planned postoperative MRI exams. 158 (94.6 %) out of 167 emergency scan patients were ventilated under continuous intravenous medication and monitoring. In the planned postoperative group, only 6 (3.9 %) out of 155 were ventilated, but a total of 38 (24.5 %) were under continuous medication. 111 patients were accompanied by nurses only during MRI. Only one severe adverse event (0.3 %) was noted and was attributed to study preparation (n = 385). In 8 MRI examinations (2.1 %), the examination was interrupted or cancelled due to the patients' condition. While all MRI examinations in the planned group were completed (n = 170, 100 %) (e. g., postoperative controls), only 207 out of 215 (96.3 %) could be performed for emergency diagnostic reasons. MRI influenced the clinical course with a change in diagnosis or therapy in 74 (19.2 %) of all 385 MRI examinations performed, and in the emergency diagnostic group it was 31.2 % (n = 67/215). CONCLUSION Nearly 20 % of MRI examinations of ICU patients resulted in a change of therapy. With only one potentially life-threatening adverse event (0.3 %) during transport and the MRI examination, the risk seems to be outweighed by the diagnostic benefit. KEY POINTS · The risk of adverse events associated with MRI scans in ICU patients is low.. · The rate of premature termination of ICU patients' MRI scans is low.. · Almost 20 % of ICU patients' MRI scans lead to a change of therapy..
Collapse
Affiliation(s)
- Michael T Pawlik
- Anaesthesiology and Intensive Care Medicine, Caritas-Krankenhaus Sankt Josef Regensburg, Germany
| | - Lena M Dendl
- Institute for Diagnostic and Interventional Radiology, Brandenburg Medical School Theodor Fontane, Brandenburg a.d. Havel, Germany
| | - Lom-Ali Achajew
- Anaesthesiology and Intensive Care Medicine, Caritas-Krankenhaus Sankt Josef Regensburg, Germany
| | - Florian Zeman
- Center for Clinical Studies, University of Regensburg, Germany
| | | | - Michael Jung
- Radiology, University Hospital Regensburg, Germany
| | - Stephan Schleder
- Department of Diagnostic and Interventional Radiology, Barmherzige Brüder Klinikum Sankt Elisabeth Straubing GmbH, Straubing, Germany
| | - Andreas G Schreyer
- Institute for Diagnostic and Interventional Radiology, Brandenburg Medical School Theodor Fontane, Brandenburg a.d. Havel, Germany
| |
Collapse
|
3
|
Kolandaivelu A, Bruce CG, Seemann F, Yildirim DK, Campbell-Washburn AE, Lederman RJ, Herzka DA. Evaluation of 12-lead electrocardiogram at 0.55T for improved cardiac monitoring in magnetic resonance imaging. J Cardiovasc Magn Reson 2024; 26:101009. [PMID: 38342406 PMCID: PMC10940178 DOI: 10.1016/j.jocmr.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND The 12-lead electrocardiogram (ECG) is a standard diagnostic tool for monitoring cardiac ischemia and heart rhythm during cardiac interventional procedures and stress testing. These procedures can benefit from magnetic resonance imaging (MRI) information; however, the MRI scanner magnetic field leads to ECG distortion that limits ECG interpretation. This study evaluated the potential for improved ECG interpretation in a "low field" 0.55T MRI scanner. METHODS The 12-lead ECGs were recorded inside 0.55T, 1.5T, and 3T MRI scanners, as well as at scanner table "home" position in the fringe field and outside the scanner room (seven pigs). To assess interpretation of ischemic ECG changes in a 0.55T MRI scanner, ECGs were recorded before and after coronary artery occlusion (seven pigs). ECGs was also recorded for five healthy human volunteers in the 0.55T scanner. ECG error and variation were assessed over 2-minute recordings for ECG features relevant to clinical interpretation: the PR interval, QRS interval, J point, and ST segment. RESULTS ECG error was lower at 0.55T compared to higher field scanners. Only at 0.55T table home position, did the error approach the guideline recommended 0.025 mV ceiling for ECG distortion (median 0.03 mV). At scanner isocenter, only in the 0.55T scanner did J point error fall within the 0.1 mV threshold for detecting myocardial ischemia (median 0.03 mV in pigs and 0.06 mV in healthy volunteers). Correlation of J point deviation inside versus outside the 0.55T scanner following coronary artery occlusion was excellent at scanner table home position (r2 = 0.97), and strong at scanner isocenter (r2 = 0.92). CONCLUSION ECG distortion is improved in 0.55T compared to 1.5T and 3T MRI scanners. At scanner home position, ECG distortion at 0.55T is low enough that clinical interpretation appears feasible without need for more cumbersome patient repositioning. At 0.55T scanner isocenter, ST segment changes during coronary artery occlusion appear detectable but distortion is enough to obscure subtle ST segment changes that could be clinically relevant. Reduced ECG distortion in 0.55T scanners may simplify the problem of suppressing residual distortion by ECG cable positioning, averaging, and filtering and could reduce current restrictions on ECG monitoring during interventional MRI procedures.
Collapse
Affiliation(s)
- Aravindan Kolandaivelu
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher G Bruce
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Felicia Seemann
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dursun Korel Yildirim
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Daniel A Herzka
- Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Radiology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Li N, Tous C, Dimov IP, Fei P, Zhang Q, Lessard S, Tang A, Martel S, Soulez G. Design of a Low-Cost, Self-Adaptive and MRI-Compatible Cardiac Gating System. IEEE Trans Biomed Eng 2023; 70:3126-3136. [PMID: 37276095 DOI: 10.1109/tbme.2023.3280348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OBJECTIVE Cardiac gating, synchronizing medical scans with cardiac activity, is widely used to make quantitative measurements of physiological events and to obtain high-quality scans free of pulsatile artefacts. This can provide important information for disease diagnosis, targeted control of medical microrobots, etc. The current work proposes a low-cost, self-adaptive, MRI-compatible cardiac gating system. METHOD The system and its processing algorithm, based on the monitoring and analysis of blood pressure waveforms, are proposed. The system is tested in an in vitro experiment and two living pigs using four-dimensional (4D) flow magnetic resonance imaging (MRI) and two-dimensional phase-contrast (2D-PC) sequences. RESULTS in vitro and in vivo experiments reveal that the proposed system can provide stable cardiac synchronicity, has good MRI compatibility, and can cope with the fringe magnetic field of the MRI scanner, radiofrequency signals during image acquisition, and heart rate changes. High-resolution 4D flow imaging is successfully acquired both in vivo and in vitro. The difference between the 2D and 4D measurements is ≤ 21%. The incidence of false triggers is 0% in all tests, which is unattainable for other known cardiac gating methods. CONCLUSION The system has good MRI compatibility and can provide a stable and accurate trigger signal based on pressure waveform. It opens the door to applications where the previous gating methods were difficult to implement or not applicable.
Collapse
|
5
|
Mehri M, Calmon G, Odille F, Oster J, Lalande A. A Generative Adversarial Network to Synthesize 3D Magnetohydrodynamic Distortions for Electrocardiogram Analyses Applied to Cardiac Magnetic Resonance Imaging. SENSORS (BASEL, SWITZERLAND) 2023; 23:8691. [PMID: 37960391 PMCID: PMC10649946 DOI: 10.3390/s23218691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Recently, deep learning (DL) models have been increasingly adopted for automatic analyses of medical data, including electrocardiograms (ECGs). Large, available ECG datasets, generally of high quality, often lack specific distortions, which could be helpful for enhancing DL-based algorithms. Synthetic ECG datasets could overcome this limitation. A generative adversarial network (GAN) was used to synthesize realistic 3D magnetohydrodynamic (MHD) distortion templates, as observed during magnetic resonance imaging (MRI), and then added to available ECG recordings to produce an augmented dataset. Similarity metrics, as well as the accuracy of a DL-based R-peak detector trained with and without data augmentation, were used to evaluate the effectiveness of the synthesized data. Three-dimensional MHD distortions produced by the proposed GAN were similar to the measured ones used as input. The precision of a DL-based R-peak detector, tested on actual unseen data, was significantly enhanced by data augmentation; its recall was higher when trained with augmented data. Using synthesized MHD-distorted ECGs significantly improves the accuracy of a DL-based R-peak detector, with a good generalization capacity. This provides a simple and effective alternative to collecting new patient data. DL-based algorithms for ECG analyses can suffer from bias or gaps in training datasets. Using a GAN to synthesize new data, as well as metrics to evaluate its performance, can overcome the scarcity issue of data availability.
Collapse
Affiliation(s)
- Maroua Mehri
- Epsidy, 54000 Nancy, France; (M.M.); (G.C.)
- Ecole Nationale d’Ingénieurs de Sousse, LATIS-Laboratory of Advanced Technology and Intelligent Systems, Université de Sousse, 4023 Sousse, Tunisia
| | | | - Freddy Odille
- Epsidy, 54000 Nancy, France; (M.M.); (G.C.)
- IADI-Imagerie Adaptative Diagnostique et Interventionnelle, Inserm U1254, Université de Lorraine, 54000 Nancy, France;
- CIC-IT 1433, Inserm, CHRU de Nancy, Université de Lorraine, 54000 Nancy, France
| | - Julien Oster
- IADI-Imagerie Adaptative Diagnostique et Interventionnelle, Inserm U1254, Université de Lorraine, 54000 Nancy, France;
- CIC-IT 1433, Inserm, CHRU de Nancy, Université de Lorraine, 54000 Nancy, France
| | - Alain Lalande
- ICMUB Laboratory, CNRS 6302, University of Burgundy, 21000 Dijon, France;
- Department of Medical Imaging, University Hospital of Dijon, 21079 Dijon, France
| |
Collapse
|
6
|
Führes T, Saake M, Szczepankiewicz F, Bickelhaupt S, Uder M, Laun FB. Impact of velocity- and acceleration-compensated encodings on signal dropout and black-blood state in diffusion-weighted magnetic resonance liver imaging at clinical TEs. PLoS One 2023; 18:e0291273. [PMID: 37796773 PMCID: PMC10553293 DOI: 10.1371/journal.pone.0291273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE The study aims to develop easy-to-implement concomitant field-compensated gradient waveforms with varying velocity-weighting (M1) and acceleration-weighting (M2) levels and to evaluate their efficacy in correcting signal dropouts and preserving the black-blood state in liver diffusion-weighted imaging. Additionally, we seek to determine an optimal degree of compensation that minimizes signal dropouts while maintaining blood signal suppression. METHODS Numerically optimized gradient waveforms were adapted using a novel method that allows for the simultaneous tuning of M1- and M2-weighting by changing only one timing variable. Seven healthy volunteers underwent diffusion-weighted magnetic resonance imaging (DWI) with five diffusion encoding schemes (monopolar, velocity-compensated (M1 = 0), acceleration-compensated (M1 = M2 = 0), 84%-M1-M2-compensated, 67%-M1-M2-compensated) at b-values of 50 and 800 s/mm2 at a constant echo time of 70 ms. Signal dropout correction and apparent diffusion coefficients (ADCs) were quantified using regions of interest in the left and right liver lobe. The blood appearance was evaluated using two five-point Likert scales. RESULTS Signal dropout was more pronounced in the left lobe (19%-42% less signal than in the right lobe with monopolar scheme) and best corrected by acceleration-compensation (8%-10% less signal than in the right lobe). The black-blood state was best with monopolar encodings and decreased significantly (p < 0.001) with velocity- and/or acceleration-compensation. The partially M1-M2-compensated encoding schemes could restore the black-blood state again. Strongest ADC bias occurred for monopolar encodings (difference between left/right lobe of 0.41 μm2/ms for monopolar vs. < 0.12 μm2/ms for the other encodings). CONCLUSION All of the diffusion encodings used in this study demonstrated suitability for routine DWI application. The results indicate that a perfect value for the level of M1-M2-compensation does not exist. However, among the examined encodings, the 84%-M1-M2-compensated encodings provided a suitable tradeoff.
Collapse
Affiliation(s)
- Tobit Führes
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marc Saake
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Sebastian Bickelhaupt
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
7
|
Canada JM, McCarty J, Jordan JH, Trankle CR, DeCamp K, West JD, Reynolds MA, Myers R, Sweat K, McGhee V, Arena R, Abbate A, Hundley WG. Simultaneous exercise stress cardiac magnetic resonance and cardiopulmonary exercise testing to elucidate the Fick components of aerobic exercise capacity: a feasibility and reproducibility study and pilot study in hematologic cancer survivors. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:31. [PMID: 37430330 PMCID: PMC10331991 DOI: 10.1186/s40959-023-00182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Patients treated for hematologic malignancy often experience reduced exercise capacity and increased fatigue; however whether this reduction is related to cardiac dysfunction or impairment of skeletal muscle oxygen extraction during activity is unknown. Cardiopulmonary exercise testing (CPET) coupled with stress cardiac magnetic resonance (ExeCMR), may provide a noninvasive method to identify the abnormalities of cardiac function or skeletal muscle oxygen extraction. This study was performed to determine the feasibility and reproducibility of a ExeCMR + CPET technique to measure the Fick components of peak oxygen consumption (VO2) and pilot its discriminatory potential in hematologic cancer patients experiencing fatigue. METHODS We studied 16 individuals undergoing ExeCMR to determine exercise cardiac reserve with simultaneous measures of VO2. The arteriovenous oxygen content difference (a-vO2diff) was calculated as the quotient of VO2/cardiac index (CI). Repeatability in measurements of peak VO2, CI, and a-vO2diff was assessed in seven healthy controls. Finally, we measured the Fick determinants of peak VO2 in hematologic cancer survivors with fatigue (n = 6) and compared them to age/gender-matched healthy controls (n = 6). RESULTS Study procedures were successfully completed without any adverse events in all subjects (N = 16, 100%). The protocol demonstrated good-excellent test-retest reproducibility for peak VO2 (intraclass correlation coefficient [ICC] = 0.992 [95%CI:0.955-0.999]; P < 0.001), peak CI (ICC = 0.970 [95%CI:0.838-0.995]; P < 0.001), and a-vO2diff (ICC = 0.953 [95%CI:0.744-0.992]; P < 0.001). Hematologic cancer survivors with fatigue demonstrated a significantly lower peak VO2 (17.1 [13.5-23.5] vs. 26.0 [19.7-29.5] mL·kg-1·min-1, P = 0.026) and lower peak CI (5.0 [4.7-6.3] vs. 7.4 [7.0-8.8] L·min-1/m2, P = 0.004) without a significant difference in a-vO2diff (14.4 [11.8-16.9] vs. 13.6 [10.9-15.4] mLO2/dL, P = 0.589). CONCLUSIONS Noninvasive measurement of peak VO2 Fick determinants is feasible and reliable with an ExeCMR + CPET protocol in those treated for a hematologic malignancy and may offer insight into the mechanisms of exercise intolerance in those experiencing fatigue.
Collapse
Affiliation(s)
- Justin M Canada
- VCU Pauley Heart Center, Virginia Commonwealth University, 1200 E. Broad Street, P.O. Box 980335, Richmond, VA, 23298, USA.
| | - John McCarty
- Division of Hematology, Oncology & Palliative Care, VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer H Jordan
- VCU Pauley Heart Center, Virginia Commonwealth University, 1200 E. Broad Street, P.O. Box 980335, Richmond, VA, 23298, USA
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Cory R Trankle
- VCU Pauley Heart Center, Virginia Commonwealth University, 1200 E. Broad Street, P.O. Box 980335, Richmond, VA, 23298, USA
| | - Kevin DeCamp
- Department of Radiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Josh D West
- VCU Pauley Heart Center, Virginia Commonwealth University, 1200 E. Broad Street, P.O. Box 980335, Richmond, VA, 23298, USA
| | - Mary Ann Reynolds
- VCU Pauley Heart Center, Virginia Commonwealth University, 1200 E. Broad Street, P.O. Box 980335, Richmond, VA, 23298, USA
| | - Rachel Myers
- VCU Pauley Heart Center, Virginia Commonwealth University, 1200 E. Broad Street, P.O. Box 980335, Richmond, VA, 23298, USA
| | - Katey Sweat
- VCU Pauley Heart Center, Virginia Commonwealth University, 1200 E. Broad Street, P.O. Box 980335, Richmond, VA, 23298, USA
| | - Virginia McGhee
- VCU Pauley Heart Center, Virginia Commonwealth University, 1200 E. Broad Street, P.O. Box 980335, Richmond, VA, 23298, USA
| | - Ross Arena
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, 1200 E. Broad Street, P.O. Box 980335, Richmond, VA, 23298, USA
- Berne Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - W Gregory Hundley
- VCU Pauley Heart Center, Virginia Commonwealth University, 1200 E. Broad Street, P.O. Box 980335, Richmond, VA, 23298, USA
| |
Collapse
|
8
|
Richter M, Buhiyan T, Bramsløw L, Innes-Brown H, Fiedler L, Hadley LV, Naylor G, Saunders GH, Wendt D, Whitmer WM, Zekveld AA, Kramer SE. Combining Multiple Psychophysiological Measures of Listening Effort: Challenges and Recommendations. Semin Hear 2023; 44:95-105. [PMID: 37122882 PMCID: PMC10147512 DOI: 10.1055/s-0043-1767669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
About one-third of all recently published studies on listening effort have used at least one physiological measure, providing evidence of the popularity of such measures in listening effort research. However, the specific measures employed, as well as the rationales used to justify their inclusion, vary greatly between studies, leading to a literature that is fragmented and difficult to integrate. A unified approach that assesses multiple psychophysiological measures justified by a single rationale would be preferable because it would advance our understanding of listening effort. However, such an approach comes with a number of challenges, including the need to develop a clear definition of listening effort that links to specific physiological measures, customized equipment that enables the simultaneous assessment of multiple measures, awareness of problems caused by the different timescales on which the measures operate, and statistical approaches that minimize the risk of type-I error inflation. This article discusses in detail the various obstacles for combining multiple physiological measures in listening effort research and provides recommendations on how to overcome them.
Collapse
Affiliation(s)
- Michael Richter
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Lars Bramsløw
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
| | - Hamish Innes-Brown
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lorenz Fiedler
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
| | - Lauren V. Hadley
- Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Graham Naylor
- Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Gabrielle H. Saunders
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, United Kingdom
| | - Dorothea Wendt
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - William M. Whitmer
- Hearing Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Adriana A. Zekveld
- Section of Ear and Hearing, Department of Otolaryngology – Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Sophia E. Kramer
- Section of Ear and Hearing, Department of Otolaryngology – Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Mehri M, Calmon G, Odille F, Oster J. A Deep Learning Architecture Using 3D Vectorcardiogram to Detect R-Peaks in ECG with Enhanced Precision. SENSORS (BASEL, SWITZERLAND) 2023; 23:2288. [PMID: 36850889 PMCID: PMC9963088 DOI: 10.3390/s23042288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Providing reliable detection of QRS complexes is key in automated analyses of electrocardiograms (ECG). Accurate and timely R-peak detections provide a basis for ECG-based diagnoses and to synchronize radiologic, electrophysiologic, or other medical devices. Compared with classical algorithms, deep learning (DL) architectures have demonstrated superior accuracy and high generalization capacity. Furthermore, they can be embedded on edge devices for real-time inference. 3D vectorcardiograms (VCG) provide a unifying framework for detecting R-peaks regardless of the acquisition strategy or number of ECG leads. In this article, a DL architecture was demonstrated to provide enhanced precision when trained and applied on 3D VCG, with no pre-processing nor post-processing steps. Experiments were conducted on four different public databases. Using the proposed approach, high F1-scores of 99.80% and 99.64% were achieved in leave-one-out cross-validation and cross-database validation protocols, respectively. False detections, measured by a precision of 99.88% or more, were significantly reduced compared with recent state-of-the-art methods tested on the same databases, without penalty in the number of missed peaks, measured by a recall of 99.39% or more. This approach can provide new applications for devices where precision, or positive predictive value, is essential, for instance cardiac magnetic resonance imaging.
Collapse
Affiliation(s)
- Maroua Mehri
- Epsidy, 54000 Nancy, France
- Ecole Nationale d’Ingénieurs de Sousse, LATIS-Laboratory of Advanced Technology and Intelligent Systems, Université de Sousse, Sousse 4023, Tunisia
| | | | - Freddy Odille
- Epsidy, 54000 Nancy, France
- IADI-Imagerie Adaptative Diagnostique et Interventionnelle, Inserm U1254, Université de Lorraine, 54000 Nancy, France
- CIC-IT 1433, Inserm, CHRU de Nancy, Université de Lorraine, 54000 Nancy, France
| | - Julien Oster
- IADI-Imagerie Adaptative Diagnostique et Interventionnelle, Inserm U1254, Université de Lorraine, 54000 Nancy, France
- CIC-IT 1433, Inserm, CHRU de Nancy, Université de Lorraine, 54000 Nancy, France
| |
Collapse
|
10
|
Wang W, Weiss S, den Brinker AC, Wuelbern JH, Tormo AGI, Pappous I, Senegas J. Fundamentals of Camera-PPG based Magnetic Resonance Imaging. IEEE J Biomed Health Inform 2021; 26:4378-4389. [PMID: 34928810 DOI: 10.1109/jbhi.2021.3136603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In Magnetic Resonance Imaging (MRI), cardiac triggering that synchronizes data acquisition with cardiac contractions is an essential technique for acquiring high-quality images. Triggering is typically based on the Electrocardiogram (ECG) signal (e.g. R-peak). Since ECG acquisition involves extra workflow steps like electrode placement and ECG signals are usually disturbed by magnetic fields in high Magnetic Resonance (MR) systems, we explored camera-based photoplethysmography (PPG) as an alternative. We used the in-bore camera of a clinical MR system to investigate the feasibility and challenges of camera-based cardiac triggering. Data from ECG, finger oximeter and camera were synchronously collected. We found that that camera-PPG provides a higher availability of signal (and trigger) measurement, and the PPG signals measured from the forehead show considerably less delay w.r.t. the coupled ECG R-peak than the finger PPG signals in terms of trigger detection. The insights obtained in this study provide a basis for an envisioned system design phase.
Collapse
|
11
|
Zienkiewicz A, Favre M, Ferdinando H, Iring S, Serrador J, Myllylä T. Blood pressure wave propagation - a multisensor setup for cerebral autoregulation studies. Physiol Meas 2021; 42. [PMID: 34731844 DOI: 10.1088/1361-6579/ac3629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Cerebral autoregulation is critically important to maintain proper brain perfusion and supply the brain with oxygenated blood. Non-invasive measures of blood pressure (BP) are critical in assessing cerebral autoregulation. Wave propogation velocity may be a useful technique to estimate BP but the effect of the location of the sensors on the readings has not been thoroughly examined. In this paper, we were interested to study if propagation velocity of the pressure wave in the direction from the heart to the brain may differ compared with propagation from the heart to the periphery, as well as across different physiological tasks and/or health conditions. Using non-invasive sensors simultaneously placed on different locations of the human body allow for the study of how propagation velocity of the pressure wave, based on pulse transit time (PTT), varies across different directions. APPROACH We present multi-sensor BP wave propagation measurement setup aimed for cerebral autoregulation studies. The presented sensor setup consists of three sensors, one each placed on the neck, chest and finger, allowing simultaneous measurement of changes in BP propagation velocity towards the brain and to the periphery. We show how commonly tested physiological tasks affect the relative changes of PTT and correlations with BP. MAIN RESULTS We observed that during maximal blow, valsalva and breath hold breathing tasks, the relative changes of PTT were higher when PTT was measured in the direction from the heart to the brain than from the heart to the peripherals. In contrast, during a deep breathing task, the relative change in PTT from the heart to the brain was lower. In addition, we present a short literature review of PTT methods used in brain research. SIGNIFICANCE These preliminary data suggest that physiological task and direction of PTT measurement may affect relative PTT changes. Presented three-sensor setup provides an easy and neuroimaging compatible method for cerebral autoregulation studies by allowing to measure BP wave propagation velocity towards the brain vs. towards the periphery.
Collapse
Affiliation(s)
- Aleksandra Zienkiewicz
- Optoelectronics and Measurement Techniques Research Unit, University of Oulu, Oulu, FINLAND
| | - Michelle Favre
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, New Jersey, UNITED STATES
| | - Hany Ferdinando
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Pohjois-Pohjanmaa, FINLAND
| | - Stephanie Iring
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, New Jersey, UNITED STATES
| | - Jorge Serrador
- Department of Pharmacology, Physiology & Neuroscience, Rutgers The State University of New Jersey, Newark, New Jersey, UNITED STATES
| | - Teemu Myllylä
- Optoelectronics and Measurement Techniques Research Unit, University of Oulu, Oulu, FINLAND
| |
Collapse
|
12
|
A simple, open and extensible gating Control unit for cardiac and respiratory synchronisation control in small animal MRI and demonstration of its robust performance in steady-state maintained CINE-MRI. Magn Reson Imaging 2021; 81:1-9. [PMID: 33905831 PMCID: PMC8274699 DOI: 10.1016/j.mri.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/22/2021] [Indexed: 11/22/2022]
Abstract
Prospective cardiac gating during MRI is hampered by electromagnetic induction from the rapidly switched imaging gradients into the ECG detection circuit. This is particularly challenging in small animal MRI, as higher heart rates combined with a smaller myocardial mass render routine ECG detection challenging. We have developed an open-hardware system that enables continuously running MRI scans to be performed in conjunction with cardio-respiratory gating such that the relaxation-weighted steady state magnetisation is maintained throughout the scan. This requires that the R-wave must be detected reliably even in the presence of rapidly switching gradients, and that data previously acquired that were corrupted by respiratory motion re-acquired. The accurately maintained steady-state magnetisation leads to an improvement in image quality and removes alterations in intensity that may otherwise occur throughout the cardiac cycle and impact upon automated image analysis. We describe the hardware required to enable this and demonstrate its application and robust performance using prospectively cardio-respiratory gated CINE imaging that is operated at a single, constant TR. Schematics, technical drawings, component listing and assembly instructions are made publicly available.
Collapse
|
13
|
Markenroth Bloch K, Kording F, Töger J. Doppler ultrasound cardiac gating of intracranial flow at 7T. BMC Med Imaging 2020; 20:128. [PMID: 33297985 PMCID: PMC7724705 DOI: 10.1186/s12880-020-00523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ultra-high field magnetic resonance imaging (MR) may be used to improve intracranial blood flow measurements. However, standard cardiac synchronization methods tend to fail at ultra-high field MR. Therefore, this study aims to investigate an alternative synchronization technique using Doppler ultrasound. METHODS Healthy subjects (n = 9) were examined with 7T MR. Flow was measured in the M1-branch of the middle cerebral artery (MCA) and in the cerebral aqueduct (CA) using through-plane phase contrast (2D flow). Flow in the circle of Willis was measured with three-dimensional, three-directional phase contrast (4D flow). Scans were gated with Doppler ultrasound (DUS) and electrocardiogram (ECG), and pulse oximetry data (POX) was collected simultaneously. False negative and false positive trigger events were counted for ECG, DUS and POX, and quantitative flow measures were compared. RESULTS There were fewer false positive triggers for DUS compared to ECG (5.3 ± 11 vs. 25 ± 31, p = 0.031), while no other measured parameters differed significantly. Net blood flow in M1 was similar between DUS and ECG for 2D flow (1.5 ± 0.39 vs. 1.6 ± 0.41, bias ± 1.96SD: - 0.021 ± 0.36) and 4D flow (1.8 ± 0.48 vs. 9 ± 0.59, bias ± 1.96SD: - 0.086 ± 0.57 ml). Net CSF flow per heart beat in the CA was also similar for DUS and ECG (3.6 ± 2.1 vs. 3.0 ± 5.8, bias ± 1.96SD: 0.61 ± 13.6 μl). CONCLUSION Gating with DUS produced fewer false trigger events than using ECG, with similar quantitative flow values. DUS gating is a promising technique for cardiac synchronization at 7T.
Collapse
Affiliation(s)
- Karin Markenroth Bloch
- The Swedish National 7T Facility, Lund University Bioimaging Center, Lund University, Klinikgatan 32, BMC D11, 22242, Lund, Sweden.
| | - Fabian Kording
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany.,Northh Medical GmbH, Röntgenstraße 24, 22335, Hamburg, Germany
| | - Johannes Töger
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University and Skane University Hospital Lund, Lund, Sweden
| |
Collapse
|
14
|
Dos Reis JE, Odille F, Petitmangin G, Guillou A, Vuissoz PA, Felblinger J, Oster J. Broadband electrocardiogram acquisition for improved suppression of MRI gradient artifacts. Physiol Meas 2020; 41:045004. [PMID: 32120353 DOI: 10.1088/1361-6579/ab7b8e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Despite being routinely acquired during MRI examinations for triggering or monitoring purposes, electrocardiogram (ECG) signal recording and analysis remain challenging due to the inherent magnetic environment of an MRI scanner. The ECG signals are particularly distorted by the induction of electrical fields in the body by the MRI gradients. In this study, we propose a new hardware and software solution for the acquisition of ECG signal during MRI up to 3 T. APPROACH Instead of restricting the sensor bandwidth to limit these gradient artifacts, the new sensor architecture has a higher bandwidth, higher sampling frequency and larger input dynamics, in order to acquire the ECG signals and the gradient artifacts more precisely. Signal processing based on a novel detection algorithm and blanking are then applied for improved artifact suppression. MAIN RESULTS The proposed sensor allows the gradient artifacts to be acquired more precisely, and these artifacts are recorded with peak-to-peak amplitudes two orders of magnitude larger than for QRS complexes. The proposed method outperforms a state-of-the-art approach both in terms of signal quality (+9% 'SNR') and accuracy of QRS detection (+11%). SIGNIFICANCE The proposed hardware and software solutions open the way for the acquisition of high-quality of ECG gating in MRI, and improved diagnostic quality of ECG signals in MRI.
Collapse
|
15
|
Mulcahy JS, Larsson DEO, Garfinkel SN, Critchley HD. Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies. Neuroimage 2019; 202:116072. [PMID: 31386920 DOI: 10.1016/j.neuroimage.2019.116072] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/30/2022] Open
Abstract
The dynamic embodiment of psychological processes is evident in the association of health outcomes, behavioural traits and psychological functioning with Heart Rate Variability (HRV). The dominant high-frequency component of HRV is an index of the central neural control of heart rhythm, mediated via the parasympathetic vagus nerve. HRV provides a potential objective measure of action policies for the adaptive and predictive allostatic regulation of homeostasis within the cardiovascular system. In its support, a network of brain regions (referred to as the 'central autonomic network') maps internal state, and controls autonomic responses. This network includes regions of prefrontal cortex, anterior cingulate cortex, insula, amygdala, periaqueductal grey, pons and medulla. Human neuroimaging studies of neural activation and functional connectivity broadly endorse this architecture, and its link with cardiac regulation at rest and dysregulation in clinical states that include affective disorders. In this review, we appraise neuroimaging research and related evidence for HRV as an informative marker of autonomic integration with affect and cognition, taking a perspective on function and organisation. We consider evidence for the utility of HRV as a metric to inform targeted interventions to improve autonomic and affective dysregulation, and suggest research questions for further investigation.
Collapse
Affiliation(s)
- James S Mulcahy
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, BN1 9RY, UK.
| | | | - Sarah N Garfinkel
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, BN1 9RY, UK; Sackler Centre for Consciousness Science, University of Sussex, Falmer, BN1 9RR, UK; Sussex Partnership NHS Foundation Trust, Brighton, BN2 3EW, UK
| | - Hugo D Critchley
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer, BN1 9RY, UK; Sackler Centre for Consciousness Science, University of Sussex, Falmer, BN1 9RR, UK; Sussex Partnership NHS Foundation Trust, Brighton, BN2 3EW, UK
| |
Collapse
|
16
|
Li J, Wang Y, Lian Z, Liu R, Liang Z, Song C, Song Q, Wei Z. The Value of Three-Dimensional Brain Volume Combined with Time-of-Flight MRA in Microvascular Decompression. Stereotact Funct Neurosurg 2019; 97:120-126. [PMID: 31288239 DOI: 10.1159/000500995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/08/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To explore the guidance value of preoperative 3-dimensional brain volume (3D-BRAVO) and 3-dimensional time-of-flight (3D-TOF) MRA scanning for microvascular decompression. METHODS One hundred thirteen patients treated with microvascular decompression from February 2016 to February 2018 in the First Affiliated Hospital of Dalian Medical University were retrospectively analyzed. All patients received 3D-BRAVO combined with 3D-TOF MRA sequence reconstruction before the operation. The anatomical relationship of neurovascular tissues was analyzed and compared with the results of intraoperative exploration. RESULTS The results of MVD showed that the number of positive cases was 108 (95.6%) on the diseased side. 3D-BRAVO combined with 3D-TOF sequence reconstruction resulted in 106 positive cases (93.8%), with a 98.1% positive coincidence rate and a 13.2% false positive rate (p < 0.05). 3D-BRAVO-TOF sequence reconstruction of trigeminal neuralgia showed a positive coincidence in 78 cases (92.8%) and for hemifacial spasm a positive coincidence was found in 27 cases (93.1%). CONCLUSION 3D-BRAVO combined with 3D-TOF sequence reconstruction before microvascular decompression can fully evaluate the morphology, location, and anatomical relationship of lesions, which is of guidance value for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jun Li
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Wang
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhigang Lian
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Rongyao Liu
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhanhua Liang
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chunli Song
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhenqing Wei
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, China,
| |
Collapse
|
17
|
Dos Reis JE, Soullié P, Oster J, Palmero Soler E, Petitmangin G, Felblinger J, Odille F. Reconstruction of the 12-lead ECG using a novel MR-compatible ECG sensor network. Magn Reson Med 2019; 82:1929-1945. [PMID: 31199011 DOI: 10.1002/mrm.27854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 11/05/2022]
Abstract
PURPOSE Current electrocardiography (ECG) devices in MRI use non-conventional electrode placement, have a narrow bandwidth, and suffer from signal distortions including magnetohydrodynamic (MHD) effects and gradient-induced artifacts. In this work a system is proposed to obtain a high-quality 12-lead ECG. METHODS A network of N electrically independent MR-compatible ECG sensors was developed (N = 4 in this study). Each sensor uses a safe technology - short cables, preamplification/digitization close to the patient, and optical transmission - and provides three bipolar voltage leads. A matrix combination is applied to reconstruct a 12-lead ECG from the raw network signals. A subject-specific calibration is performed to identify the matrix coefficients, maximizing the similarity with a true 12-lead ECG, acquired with a conventional 12-lead device outside the scan room. The sensor network was subjected to radiofrequency heating phantom tests at 3T. It was then tested in four subjects, both at 1.5T and 3T. RESULTS Radiofrequency heating at 3T was within the MR-compatibility standards. The reconstructed 12-lead ECG showed minimal MHD artifacts and its morphology compared well with that of the true 12-lead ECG, as measured by correlation coefficients above 93% (respectively, 84%) for the QRS complex shape during steady-state free precession (SSFP) imaging at 1.5T (respectively, 3T). CONCLUSION High-quality 12-lead ECG can be reconstructed by the proposed sensor network at 1.5T and 3T with reduced MHD artifacts compared to previous systems. The system might help improve patient monitoring and triggering and might also be of interest for interventional MRI and advanced cardiac MR applications.
Collapse
Affiliation(s)
- Jesús E Dos Reis
- IADI, INSERM and Université de Lorraine, Nancy, France.,Schiller Medical SAS, Wissembourg, France
| | - Paul Soullié
- IADI, INSERM and Université de Lorraine, Nancy, France
| | - Julien Oster
- IADI, INSERM and Université de Lorraine, Nancy, France
| | | | | | - Jacques Felblinger
- IADI, INSERM and Université de Lorraine, Nancy, France.,CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| | - Freddy Odille
- IADI, INSERM and Université de Lorraine, Nancy, France.,CIC-IT 1433, INSERM, Université de Lorraine and CHRU Nancy, Nancy, France
| |
Collapse
|
18
|
Adaptive step size LMS improves ECG detection during MRI at 1.5 and 3 T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017. [PMID: 28631204 DOI: 10.1007/s10334-017-0638-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE We describe a new real-time filter to reduce artefacts on electrocardiogram (ECG) due to magnetic field gradients during MRI. The proposed filter is a least mean square (LMS) filter able to continuously adapt its step size according to the gradient signal of the ongoing MRI acquisition. MATERIALS AND METHODS We implemented this filter and compared it, within two databases (at 1.5 and 3 T) with over 6000 QRS complexes, to five real-time filtering strategies (no filter, low pass filter, standard LMS, and two other filters optimized within the databases: optimized LMS, and optimized Kalman filter). RESULTS The energy of the remaining noise was significantly reduced (26 vs. 68%, p < 0.001) with the new filter vs. standard LMS. The detection error of our ventricular complex (QRS) detector was: 11% with our method vs. 25% with raw ECG, 35% with low pass filter, 17% with standard LMS, 12% with optimized Kalman filter, and 11% with optimized LMS filter. CONCLUSION The adaptive step size LMS improves ECG denoising during MRI. QRS detection has the same F1 score with this filter than with filters optimized within the database.
Collapse
|