1
|
Shen X, Lu Q, Peng T, Zhang Y, Tan W, Yang Y, Tan J, Yuan Q. Bionic Potassium Ion Channel in Live Cells Repairs Cardiomyocyte Function. J Am Chem Soc 2024; 146:19896-19908. [PMID: 38982560 DOI: 10.1021/jacs.4c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The disturbance of potassium current in cardiac myocytes caused by potassium channel dysfunction can lead to cardiac electrophysiological disorders, resulting in associated cardiovascular diseases. The emergence of artificial potassium ion channels opens up a way to replace dysfunctional natural ion channels and cure related diseases. However, bionic potassium ion channels have not been introduced into living cells to regulate cell function. One of the biggest challenges is that when the bionic channel fuses with the cell, it is difficult to control the inserting angle of the bionic potassium channel to ensure its penetration of the entire cell membrane. In nature, the extracellular vesicles can fuse with living cells with a completely preserved structure of vesicle protein. Inspired by this, we developed a vesicle fusion-based bionic porin (VFBP), which integrates bionic potassium ion channels into cardiomyocytes to replace damaged potassium ion channels. Theoretical and experimental results show that the inserted bionic ion channels have a potassium ion transport rate comparable to that of natural ion channels, which can restore the potassium ion outflow in cardiomyocytes and repair the abnormal action potential and excitation-contraction coupling of cardiomyocytes. Therefore, the bionic potassium ion channel system based on membrane fusion is expected to become the research object in many fields such as ultrafast ion transport, transmembrane delivery, and channelopathies treatment.
Collapse
Affiliation(s)
- Xuejie Shen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Lu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Tianhuan Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
2
|
Ruhoff V, Arastoo MR, Moreno-Pescador G, Bendix PM. Biological Applications of Thermoplasmonics. NANO LETTERS 2024; 24:777-789. [PMID: 38183300 PMCID: PMC10811673 DOI: 10.1021/acs.nanolett.3c03548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Thermoplasmonics has emerged as an extraordinarily versatile tool with profound applications across various biological domains ranging from medical science to cell biology and biophysics. The key feature of nanoscale plasmonic heating involves remote activation of heating by applying laser irradiation to plasmonic nanostructures that are designed to optimally convert light into heat. This unique capability paves the way for a diverse array of applications, facilitating the exploration of critical biological processes such as cell differentiation, repair, signaling, and protein functionality, and the advancement of biosensing techniques. Of particular significance is the rapid heat cycling that can be achieved through thermoplasmonics, which has ushered in remarkable technical innovations such as accelerated amplification of DNA through quantitative reverse transcription polymerase chain reaction. Finally, medical applications of photothermal therapy have recently completed clinical trials with remarkable results in prostate cancer, which will inevitably lead to the implementation of photothermal therapy for a number of diseases in the future. Within this review, we offer a survey of the latest advancements in the burgeoning field of thermoplasmonics, with a keen emphasis on its transformative applications within the realm of biosciences.
Collapse
Affiliation(s)
| | - Mohammad Reza Arastoo
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Guillermo Moreno-Pescador
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
- Copenhagen
Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Poul Martin Bendix
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| |
Collapse
|
3
|
Moreno-Pescador G, Arastoo MR, Ruhoff VT, Chiantia S, Daniels R, Bendix PM. Thermoplasmonic Vesicle Fusion Reveals Membrane Phase Segregation of Influenza Spike Proteins. NANO LETTERS 2023; 23:3377-3384. [PMID: 37040311 PMCID: PMC10141563 DOI: 10.1021/acs.nanolett.3c00371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Many cellular processes involve the lateral organization of integral and peripheral membrane proteins into nanoscale domains. Despite the biological significance, the mechanisms that facilitate membrane protein clustering into nanoscale lipid domains remain enigmatic. In cells, the analysis of membrane protein phase affinity is complicated by the size and temporal nature of ordered and disordered lipid domains. To overcome these limitations, we developed a method for delivering membrane proteins from transfected cells into phase-separated model membranes that combines optical trapping with thermoplasmonic-mediated membrane fusion and confocal imaging. Using this approach, we observed clear phase partitioning into the liquid disordered phase following the transfer of GFP-tagged influenza hemagglutinin and neuraminidase from transfected cell membranes to giant unilamellar vesicles. The generic platform presented here allows investigation of the phase affinity of any plasma membrane protein which can be labeled or tagged with a fluorescent marker.
Collapse
Affiliation(s)
| | - Mohammad Reza Arastoo
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | | | - Salvatore Chiantia
- Institute
of Biochemistry and Biology, University
of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Robert Daniels
- Division
of Viral Products, Center for Biologics
Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Poul Martin Bendix
- Niels
Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
- Email
| |
Collapse
|
4
|
Moreno-Pescador GS, Aswad DS, Florentsen CD, Bahadori A, Arastoo MR, Danielsen HMD, Heitmann ASB, Boye TL, Nylandsted J, Oddershede LB, Bendix PM. Thermoplasmonic nano-rupture of cells reveals annexin V function in plasma membrane repair. NANOSCALE 2022; 14:7778-7787. [PMID: 35510386 DOI: 10.1039/d1nr08274d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Maintaining the integrity of the cell plasma membrane (PM) is critical for the survival of cells. While an efficient PM repair machinery can aid survival of healthy cells by preventing influx of extracellular calcium, it can also constitute an obstacle in drug delivery and photothermal therapy. We show how nanoscopic holes can be created in a controlled fashion to the cell's plasma membrane, thus allowing identification of molecular components which have a pivotal role in PM repair. Cells are punctured by laser induced local heating of gold nanostructures at the cell surface which causes nano-ruptures in cellular PMs. Recruitment of annexin V near the hole is found to locally reshape the ruptured plasma membrane. Experiments using model membranes, containing recombinant annexin V, provide further biophysical insight into the ability of annexin V to reshape edges surrounding a membrane hole. The thermoplasmonic method provides a general strategy to monitor the response to nanoscopic injuries to the cell surface which offer new insight into how cells respond to photothermal treatment.
Collapse
Affiliation(s)
| | - Dunya S Aswad
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark.
| | | | - Azra Bahadori
- Center for Chromosome Stability, University of Copenhagen, Blegdamsvej 3B, 2200 København N, Denmark
| | - Mohammad R Arastoo
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark.
| | | | - Anne Sofie B Heitmann
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Theresa L Boye
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Jesper Nylandsted
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Lene B Oddershede
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark.
| | - Poul Martin Bendix
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark.
| |
Collapse
|
5
|
Filippi M, Garello F, Yasa O, Kasamkattil J, Scherberich A, Katzschmann RK. Engineered Magnetic Nanocomposites to Modulate Cellular Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104079. [PMID: 34741417 DOI: 10.1002/smll.202104079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Magnetic nanoparticles (MNPs) have various applications in biomedicine, including imaging, drug delivery and release, genetic modification, cell guidance, and patterning. By combining MNPs with polymers, magnetic nanocomposites (MNCs) with diverse morphologies (core-shell particles, matrix-dispersed particles, microspheres, etc.) can be generated. These MNCs retain the ability of MNPs to be controlled remotely using external magnetic fields. While the effects of these biomaterials on the cell biology are still poorly understood, such information can help the biophysical modulation of various cellular functions, including proliferation, adhesion, and differentiation. After recalling the basic properties of MNPs and polymers, and describing their coassembly into nanocomposites, this review focuses on how polymeric MNCs can be used in several ways to affect cell behavior. A special emphasis is given to 3D cell culture models and transplantable grafts, which are used for regenerative medicine, underlining the impact of MNCs in regulating stem cell differentiation and engineering living tissues. Recent advances in the use of MNCs for tissue regeneration are critically discussed, particularly with regard to their prospective involvement in human therapy and in the construction of advanced functional materials such as magnetically operated biomedical robots.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino, 10126, Italy
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Jesil Kasamkattil
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, Basel, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, Allschwil, 4123, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
6
|
Araki T, Gomez-Solano JR, Maciołek A. Relaxation to steady states of a binary liquid mixture around an optically heated colloid. Phys Rev E 2022; 105:014123. [PMID: 35193287 DOI: 10.1103/physreve.105.014123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
We study the relaxation dynamics of a binary liquid mixture near a light-absorbing Janus particle after switching on and off illumination using experiments and theoretical models. The dynamics is controlled by the temperature gradient formed around the heated particle. Our results show that the relaxation is asymmetric: The approach to a nonequilibrium steady state is much slower than the return to thermal equilibrium. Approaching a nonequilibrium steady state after a sudden temperature change is a two-step process that overshoots the response of spatial variance of the concentration field. The initial growth of concentration fluctuations after switching on illumination follows a power law in agreement with the hydrodynamic and purely diffusive model. The energy outflow from the system after switching off illumination is well described by a stretched exponential function of time with characteristic time proportional to the ratio of the energy stored in the steady state to the total energy flux in this state.
Collapse
Affiliation(s)
- Takeaki Araki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Juan Ruben Gomez-Solano
- Instituto de Física, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Código Postal 04510, Mexico
| | - Anna Maciołek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
- Max-Planck-Institut für Intelligente Systeme Stuttgart, Heisenbergstraße 3, D-70569 Stuttgart, Germany
| |
Collapse
|
7
|
Xin H, Li Y, Liu YC, Zhang Y, Xiao YF, Li B. Optical Forces: From Fundamental to Biological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001994. [PMID: 32715536 DOI: 10.1002/adma.202001994] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Indexed: 05/06/2023]
Abstract
Optical forces, generally arising from changes of field gradients or linear momentum carried by photons, form the basis for optical trapping and manipulation. Advances in optical forces help to reveal the nature of light-matter interactions, giving answers to a wide range of questions and solving problems across various disciplines, and are still yielding new insights in many exciting sciences, particularly in the fields of biological technology, material applications, and quantum sciences. This review focuses on recent advances in optical forces, ranging from fundamentals to applications for biological exploration. First, the basics of different types of optical forces with new light-matter interaction mechanisms and near-field techniques for optical force generation beyond the diffraction limit with nanometer accuracy are described. Optical forces for biological applications from in vitro to in vivo are then reviewed. Applications from individual manipulation to multiple assembly into functional biophotonic probes and soft-matter superstructures are discussed. At the end future directions for application of optical forces for biological exploration are provided.
Collapse
Affiliation(s)
- Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yong-Chun Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
8
|
Nobeyama T, Shigyou K, Nakatsuji H, Sugiyama H, Komura N, Ando H, Hamada T, Murakami T. Control of Lipid Bilayer Phases of Cell-Sized Liposomes by Surface-Engineered Plasmonic Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7741-7746. [PMID: 32502354 DOI: 10.1021/acs.langmuir.0c00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid-ordered (Lo)-phase domains, a cholesterol-rich area on lipid bilayers, have attracted significant attention recently because of their relevance to lipid rafts, the formation/collapse of which is associated with various kinds of information exchange through the plasma membrane. Here, we demonstrate that the formation/collapse of Lo-phase domains in cell-sized liposomes, that is, giant unilamellar vesicles (GUVs), can be controlled with bioactive plasmonic nanoparticles and light. The nanoparticles were prepared by surface modification of gold nanorods (AuNRs) using a cationized mutant of high-density lipoprotein (HDL), which is a natural cholesterol transporter. Upon the addition of surface-engineered AuNRs to GUVs with the mixed domains of Lo and liquid-disorder (Ld) phases, the Lo domains collapsed and solid-ordered (So)-phase domains were formed. The reverse phase transition was achieved photothermally, with the AuNRs loaded with cholesterol. During these transitions, the AuNRs appeared to be selectively localized on the less fluidic domain (Lo or So) in the phase-mixed GUVs. These results indicate that the phase transitions occur through the membrane binding of the AuNRs followed by spontaneous/photothermal transfer of cholesterol between the AuNRs and GUVs. Our strategy to develop bioactive AuNRs potentially enables spatiotemporal control of the formation/collapse of lipid rafts in living cells.
Collapse
Affiliation(s)
- Tomohiro Nobeyama
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kazuki Shigyou
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirotaka Nakatsuji
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Osaka 565-0871, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute of Advanced Study (KUIAS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Tokai National Higher Education and Research System, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tsutomu Hamada
- School of Material Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tatsuya Murakami
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute of Advanced Study (KUIAS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0393, Japan
| |
Collapse
|
9
|
Bendix PM, Simonsen AC, Florentsen CD, Häger SC, Mularski A, Zanjani AAH, Moreno-Pescador G, Klenow MB, Sønder SL, Danielsen HM, Arastoo MR, Heitmann AS, Pandey MP, Lund FW, Dias C, Khandelia H, Nylandsted J. Interdisciplinary Synergy to Reveal Mechanisms of Annexin-Mediated Plasma Membrane Shaping and Repair. Cells 2020; 9:E1029. [PMID: 32326222 PMCID: PMC7226303 DOI: 10.3390/cells9041029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/22/2022] Open
Abstract
The plasma membrane surrounds every single cell and essentially shapes cell life by separating the interior from the external environment. Thus, maintenance of cell membrane integrity is essential to prevent death caused by disruption of the plasma membrane. To counteract plasma membrane injuries, eukaryotic cells have developed efficient repair tools that depend on Ca2+- and phospholipid-binding annexin proteins. Upon membrane damage, annexin family members are activated by a Ca2+ influx, enabling them to quickly bind at the damaged membrane and facilitate wound healing. Our recent studies, based on interdisciplinary research synergy across molecular cell biology, experimental membrane physics, and computational simulations show that annexins have additional biophysical functions in the repair response besides enabling membrane fusion. Annexins possess different membrane-shaping properties, allowing for a tailored response that involves rapid bending, constriction, and fusion of membrane edges for resealing. Moreover, some annexins have high affinity for highly curved membranes that appear at free edges near rupture sites, a property that might accelerate their recruitment for rapid repair. Here, we discuss the mechanisms of annexin-mediated membrane shaping and curvature sensing in the light of our interdisciplinary approach to study plasma membrane repair.
Collapse
Affiliation(s)
- Poul Martin Bendix
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark; (C.D.F.); (G.M.-P.); (H.M.D.); (M.R.A.)
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Christoffer D. Florentsen
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark; (C.D.F.); (G.M.-P.); (H.M.D.); (M.R.A.)
| | - Swantje Christin Häger
- Membrane Integrity, Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (S.C.H.); (S.L.S.); (A.S.H.); (C.D.)
| | - Anna Mularski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Ali Asghar Hakami Zanjani
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Guillermo Moreno-Pescador
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark; (C.D.F.); (G.M.-P.); (H.M.D.); (M.R.A.)
| | - Martin Berg Klenow
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Stine Lauritzen Sønder
- Membrane Integrity, Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (S.C.H.); (S.L.S.); (A.S.H.); (C.D.)
| | - Helena M. Danielsen
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark; (C.D.F.); (G.M.-P.); (H.M.D.); (M.R.A.)
| | - Mohammad Reza Arastoo
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark; (C.D.F.); (G.M.-P.); (H.M.D.); (M.R.A.)
| | - Anne Sofie Heitmann
- Membrane Integrity, Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (S.C.H.); (S.L.S.); (A.S.H.); (C.D.)
| | - Mayank Prakash Pandey
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Frederik Wendelboe Lund
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Catarina Dias
- Membrane Integrity, Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (S.C.H.); (S.L.S.); (A.S.H.); (C.D.)
| | - Himanshu Khandelia
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense, Denmark; (A.M.); (A.A.H.Z.); (M.B.K.); (M.P.P.); (F.W.L.)
| | - Jesper Nylandsted
- Membrane Integrity, Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; (S.C.H.); (S.L.S.); (A.S.H.); (C.D.)
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Tan H, Hu H, Huang L, Qian K. Plasmonic tweezers for optical manipulation and biomedical applications. Analyst 2020; 145:5699-5712. [DOI: 10.1039/d0an00577k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This comprehensive minireview highlights the recent research on the subtypes, optical manipulation, and biomedical applications of plasmonic tweezers.
Collapse
Affiliation(s)
- Hongtao Tan
- Department of Pancreatobiliary Surgery
- The First Affiliated Hospital of Harbin Medical University
- Harbin
- P. R. China
| | - Huiqian Hu
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Lin Huang
- Stem Cell Research Center
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
11
|
Jauffred L, Samadi A, Klingberg H, Bendix PM, Oddershede LB. Plasmonic Heating of Nanostructures. Chem Rev 2019; 119:8087-8130. [PMID: 31125213 DOI: 10.1021/acs.chemrev.8b00738] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The absorption of light by plasmonic nanostructures and their associated temperature increase are exquisitely sensitive to the shape and composition of the structure and to the wavelength of light. Therefore, much effort is put into synthesizing novel nanostructures for optimized interaction with the incident light. The successful synthesis and characterization of high quality and biocompatible plasmonic colloidal nanoparticles has fostered numerous and expanding applications, especially in biomedical contexts, where such particles are highly promising for general drug delivery and for tomorrow's cancer treatment. We review the thermoplasmonic properties of the most commonly used plasmonic nanoparticles, including solid or composite metallic nanoparticles of various dimensions and geometries. Common methods for synthesizing plasmonic particles are presented with the overall goal of providing the reader with a guide for designing or choosing nanostructures with optimal thermoplasmonic properties for a given application. Finally, the biocompatibility and biological tolerance of structures are critically discussed along with novel applications of plasmonic nanoparticles in the life sciences.
Collapse
Affiliation(s)
| | - Akbar Samadi
- Niels Bohr Institute , University of Copenhagen , Copenhagen , Denmark
| | - Henrik Klingberg
- Niels Bohr Institute , University of Copenhagen , Copenhagen , Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
12
|
Lira RB, Robinson T, Dimova R, Riske KA. Highly Efficient Protein-free Membrane Fusion: A Giant Vesicle Study. Biophys J 2019; 116:79-91. [PMID: 30579564 PMCID: PMC6342729 DOI: 10.1016/j.bpj.2018.11.3128] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Membrane fusion is a ubiquitous process in biology and is a prerequisite for many intracellular delivery protocols relying on the use of liposomes as drug carriers. Here, we investigate in detail the process of membrane fusion and the role of opposite charges in a protein-free lipid system based on cationic liposomes (LUVs, large unilamellar vesicles) and anionic giant unilamellar vesicles (GUVs) composed of different palmitoyloleoylphosphatidylcholine (POPC)/palmitoyloleoylphosphatidylglycerol (POPG) molar ratios. By using a set of optical-microscopy- and microfluidics-based methods, we show that liposomes strongly dock to GUVs of pure POPC or low POPG fraction (up to 10 mol%) in a process mainly associated with hemifusion and membrane tension increase, commonly leading to GUV rupture. On the other hand, docked LUVs quickly and very efficiently fuse with negative GUVs of POPG fractions at or above 20 mol%, resulting in dramatic GUV area increase in a charge-dependent manner; the vesicle area increase is deduced from GUV electrodeformation. Importantly, both hemifusion and full fusion are leakage-free. Fusion efficiency is quantified by the lipid transfer from liposomes to GUVs using fluorescence resonance energy transfer (FRET), which leads to consistent results when compared to fluorescence-lifetime-based FRET. We develop an approach to deduce the final composition of single GUVs after fusion based on the FRET efficiency. The results suggest that fusion is driven by membrane charge and appears to proceed up to charge neutralization of the acceptor GUV.
Collapse
Affiliation(s)
- Rafael B Lira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Tom Robinson
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Fusion assays for model membranes: a critical review. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2019. [DOI: 10.1016/bs.abl.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
14
|
Hill EH, Li J, Lin L, Liu Y, Zheng Y. Opto-Thermophoretic Attraction, Trapping, and Dynamic Manipulation of Lipid Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13252-13262. [PMID: 30350700 PMCID: PMC6246038 DOI: 10.1021/acs.langmuir.8b01979] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lipid vesicles are important biological assemblies, which are critical to biological transport processes, and vesicles prepared in the lab are a workhorse for studies of drug delivery, protein unfolding, biomolecular interactions, compartmentalized chemistry, and stimuli-responsive sensing. The current method of using optical tweezers for holding lipid vesicles in place for single-vesicle studies suffers from limitations such as high optical power, rigorous optics, and small difference in the refractive indices of vesicles and water. Herein, we report the use of plasmonic heating to trap vesicles in a temperature gradient, allowing long-range attraction, parallel trapping, and dynamic manipulation. The capabilities and limitations with respect to thermal effects on vesicle structure and optical spectroscopy are discussed. This simple approach allows vesicle manipulation using down to 3 orders of magnitude lower optical power and at least an order of magnitude higher trapping stiffness per unit power than traditional optical tweezers while using a simple optical setup. In addition to the benefit provided by the relaxation of these technical constraints, this technique can complement optical tweezers to allow detailed studies on thermophoresis of optically trapped vesicles and effects of locally generated thermal gradients on the physical properties of lipid vesicles. Finally, the technique itself and the large-scale collection of vesicles have huge potential for future studies of vesicles relevant to detection of exosomes, lipid-raft formation, and other areas relevant to the life sciences.
Collapse
Affiliation(s)
- Eric H. Hill
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Institute of Advanced Ceramics, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Jingang Li
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Linhan Lin
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yaoran Liu
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Texas Materials Institute; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|