1
|
Allogeneic transplantation of epidermal cell sheets followed by endoscopic submucosal dissection to prevent severe esophageal stricture in a porcine model. Regen Ther 2022; 21:157-165. [PMID: 35891710 PMCID: PMC9284451 DOI: 10.1016/j.reth.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Endoscopic submucosal dissection (ESD) is a minimally invasive treatment for early esophageal cancer. However, large mucosal defects after esophageal ESD result in refractory strictures. In the present study, we histologically evaluated the endoscopic transplantation of allogeneic epidermal cell sheets (ECSs) as a feasible therapy for preventing esophageal stricture after circumferential ESD in a porcine model. Methods Epidermal cells were isolated from the skin tissue of allogeneic pigs and cultured on temperature-responsive cell culture inserts for 2 weeks. Transplantable ECSs were harvested by reducing the temperature and endoscopically transplanting the sheets to ulcer sites immediately after esophageal ESD. The engraftment of transplanted ECSs was then evaluated in two pigs at 7 days after transplantation. Next, ten pigs were divided into two groups to evaluate the endoscopic transplantation of allogeneic ECSs for the prevention of esophageal strictures after ESD. Allogeneic ECSs were transplanted immediately after esophageal ESD in the transplantation group (n = 5), whereas the control group (n = 5) did not undergo transplantation. Results Most of the transplanted allogeneic ECSs were successfully engrafted at the ulcer sites in the early phase. Fluorescence in situ hybridization analysis revealed that several allogeneic cells were present in the transplanted area at 7 days after ESD. At 14 days after ESD, significant differences in body weight loss, dysphagia scores, and mucosal strictures were observed between the control and transplantation groups. Transplanting allogeneic ECSs after esophageal ESD promotes mucosal healing and angiogenesis and prevents excessive inflammation and granulation tissue formation. Conclusions Endoscopic and histological analyses revealed that allogeneic ECSs promoted artificial ulcer healing after ESD, preventing esophageal strictures after ESD. Large mucosal defects of the esophagus cause severe strictures. Allogeneic epidermal cell sheets promote esophageal mucosal healing. Allogeneic epidermal cell sheets induce angiogenesis in esophageal ulcers. Allogeneic epidermal cell sheets prevent excessive inflammation in esophageal ulcers.
Collapse
|
2
|
Bibliometrics of Functional Polymeric Biomaterials with Bioactive Properties Prepared by Radiation-Induced Graft Copolymerisation: A Review. Polymers (Basel) 2022; 14:polym14224831. [PMID: 36432958 PMCID: PMC9692568 DOI: 10.3390/polym14224831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Functional polymeric biomaterials (FPBMs) with bioactive characteristics obtained by radiation-induced graft copolymerisation (RIGC) have been subjected to intensive research and developed into many commercial products. Various studies have reported the development of a variety of radiation-grafted FPBMs. However, no reports dealing with the quantitative evaluations of these studies from a global bibliographic perspective have been published. Such bibliographic analysis can provide information to overcome the limitations of the databases and identify the main research trends, together with challenges and future directions. This review aims to provide an unprecedented bibliometric analysis of the published literature on the use of RIGC for the preparation of FPBMs and their applications in medical, biomedical, biotechnological, and health care fields. A total of 235 publications obtained from the Web of Science (WoS) in the period of 1985-2021 were retrieved, screened, and evaluated. The records were used to manifest the contributions to each field and underline not only the top authors, journals, citations, years of publication, and countries but also to highlight the core research topics and the hubs for research excellence on these materials. The obtained data overviews are likely to provide guides to early-career scientists and their research institutions and promote the development of new, timely needed radiation-grafted FPBMs, in addition to extending their applications.
Collapse
|
3
|
Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers (Basel) 2022; 14:polym14194245. [PMID: 36236192 PMCID: PMC9571834 DOI: 10.3390/polym14194245] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/15/2023] Open
Abstract
Modern biomedical technologies predict the application of materials and devices that not only can comply effectively with specific requirements, but also enable remote control of their functions. One of the most prospective materials for these advanced biomedical applications are materials based on temperature-responsive polymer brush coatings (TRPBCs). In this review, methods for the fabrication and characterization of TRPBCs are summarized, and possibilities for their application, as well as the advantages and disadvantages of the TRPBCs, are presented in detail. Special attention is paid to the mechanisms of thermo-responsibility of the TRPBCs. Applications of TRPBCs for temperature-switchable bacteria killing, temperature-controlled protein adsorption, cell culture, and temperature-controlled adhesion/detachment of cells and tissues are considered. The specific criteria required for the desired biomedical applications of TRPBCs are presented and discussed.
Collapse
|
4
|
Dabiri SMH, Samiei E, Shojaei S, Karperien L, Khun Jush B, Walsh T, Jahanshahi M, Hassanpour S, Hamdi D, Seyfoori A, Ahadian S, Khademhosseini A, Akbari M. Multifunctional Thermoresponsive Microcarriers for High-Throughput Cell Culture and Enzyme-Free Cell Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103192. [PMID: 34558181 DOI: 10.1002/smll.202103192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Indexed: 06/13/2023]
Abstract
An effective treatment of human diseases using regenerative medicine and cell therapy approaches requires a large number of cells. Cultivation of cells on microcarriers is a promising approach due to the high surface-to-volume ratios that these microcarriers offer. Here, multifunctional temperature-responsive microcarriers (cytoGel) made of an interpenetrating hydrogel network composed of poly(N-isopropylacrylamide) (PNIPAM), poly(ethylene glycol) diacrylate (PEGDA), and gelatin methacryloyl (GelMA) are developed. A flow-focusing microfluidic chip is used to produce microcarriers with diameters in the range of 100-300 μm and uniform size distribution (polydispersity index of ≈0.08). The mechanical properties and cells adhesion properties of cytoGel are adjusted by changing the composition hydrogel composition. Notably, GelMA regulates the temperature response and enhances microcarrier stiffness. Human-derived glioma cells (U87) are grown on cytoGel in static and dynamic culture conditions with cell viabilities greater than 90%. Enzyme-free cell detachment is achieved at room temperature with up to 70% detachment efficiency. Controlled release of bioactive molecules from cytoGel is accomplished for over a week to showcase the potential use of microcarriers for localized delivery of growth factors to cell surfaces. These microcarriers hold great promise for the efficient expansion of cells for the industrial-scale culture of therapeutic cells.
Collapse
Affiliation(s)
- Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Ehsan Samiei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Shahla Shojaei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Lucas Karperien
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Bardia Khun Jush
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
| | - Tavia Walsh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Maryam Jahanshahi
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Sadegh Hassanpour
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - David Hamdi
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
| |
Collapse
|
5
|
Nasef MM, Gupta B, Shameli K, Verma C, Ali RR, Ting TM. Engineered Bioactive Polymeric Surfaces by Radiation Induced Graft Copolymerization: Strategies and Applications. Polymers (Basel) 2021; 13:3102. [PMID: 34578003 PMCID: PMC8473120 DOI: 10.3390/polym13183102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022] Open
Abstract
The interest in developing antimicrobial surfaces is currently surging with the rise in global infectious disease events. Radiation-induced graft copolymerization (RIGC) is a powerful technique enabling permanent tunable and desired surface modifications imparting antimicrobial properties to polymer substrates to prevent disease transmission and provide safer biomaterials and healthcare products. This review aims to provide a broader perspective of the progress taking place in strategies for designing various antimicrobial polymeric surfaces using RIGC methods and their applications in medical devices, healthcare, textile, tissue engineering and food packing. Particularly, the use of UV, plasma, electron beam (EB) and γ-rays for biocides covalent immobilization to various polymers surfaces including nonwoven fabrics, films, nanofibers, nanocomposites, catheters, sutures, wound dressing patches and contact lenses is reviewed. The different strategies to enhance the grafted antimicrobial properties are discussed with an emphasis on the emerging approach of in-situ formation of metal nanoparticles (NPs) in radiation grafted substrates. The current applications of the polymers with antimicrobial surfaces are discussed together with their future research directions. It is expected that this review would attract attention of researchers and scientists to realize the merits of RIGC in developing timely, necessary antimicrobial materials to mitigate the fast-growing microbial activities and promote hygienic lifestyles.
Collapse
Affiliation(s)
- Mohamed Mahmoud Nasef
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Putra, Kuala Lumpur 54100, Malaysia;
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016, India; (B.G.); (C.V.)
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016, India; (B.G.); (C.V.)
| | - Roshafima Rasit Ali
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Putra, Kuala Lumpur 54100, Malaysia;
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Teo Ming Ting
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Kajang 43000, Malaysia;
| |
Collapse
|
6
|
Asadi M, Khalili M, Lotfi H, Vaghefi Moghaddam S, Zarghami N, André H, Alizadeh E. Liver bioengineering: Recent trends/advances in decellularization and cell sheet technologies towards translation into the clinic. Life Sci 2021; 276:119373. [PMID: 33744324 DOI: 10.1016/j.lfs.2021.119373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Development of novel technologies provides the best tissue constructs engineering and maximizes their therapeutic effects in regenerative therapy, especially for liver dysfunctions. Among the currently investigated approaches of tissue engineering, scaffold-based and scaffold-free tissues are widely suggested for liver regeneration. Analogs of liver acellular extracellular matrix (ECM) are utilized in native scaffolds to increase the self-repair and healing ability of organs. Native ECM analog could improve liver repairing through providing the supportive framework for cells and signaling molecules, exerting normal biomechanical, biochemical, and physiological signal complexes. Recently, innovative cell sheet technology is introduced as an alternative for conventional tissue engineering with the advantage of fewer scaffold restrictions and cell culture on a Thermo-Responsive Polymer Surface. These sheets release the layered cells through a temperature-controlled procedure without enzymatic digestion, while preserving the cell-ECM contacts and adhesive molecules on cell-cell junctions. In addition, several novelties have been introduced into the cell sheet and decellularization technologies to aid cell growth, instruct differentiation/angiogenesis, and promote cell migration. In this review, recent trends, advancements, and issues linked to translation into clinical practice are dissected and compared regarding the decellularization and cell sheet technologies for liver tissue engineering.
Collapse
Affiliation(s)
- Maryam Asadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institute, 11282 Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Gautam B, Yu HH. Self-Cleaning Cotton Obtained after Grafting Thermoresponsive Poly( N-vinylcaprolactam) through Surface-Initiated Atom Transfer Radical Polymerization. Polymers (Basel) 2020; 12:E2920. [PMID: 33291497 PMCID: PMC7762131 DOI: 10.3390/polym12122920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/03/2022] Open
Abstract
Although the performance of smart textiles would be enhanced if they could display self-cleaning ability toward various kinds of contamination, the procedures that have been used previously to impart the self-cleaning potential to these functional fabrics (solvent casting, dip coating, spin coating, surface crosslinking) have typically been expensive and/or limited by uncontrollable polymer thicknesses and morphologies. In this paper, we demonstrate the use of atomic transfer radical polymerization for the surface-initiated grafting of poly(N-vinylcaprolactam), a thermoresponsive polymer, onto cotton. We confirmed the thermoresponsiveness and reusability of the resulting fabric through water contact angle measurements and various surface characterization techniques (scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy). Finally, we validated the self-cleaning performance of the fabric by washing away an immobilized fluorescent protein in deionized water under thermal stimulus. Fluorescence micrographs revealed that, after the fifth wash cycle, the fabric surface had undergone efficient self-cleaning of the stain, making it an effective self-cleaning material. This approach appears to have potential for application in the fields of smart textiles, responsive substrates, and functional fabrics.
Collapse
Affiliation(s)
- Bhaskarchand Gautam
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, Nankang, 128 Academia Road, Sec. 2, Taipei 115, Taiwan;
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science and Technology (SCST), Academia Sinica, Taipei 115, Taiwan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Hsiao-hua Yu
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, Nankang, 128 Academia Road, Sec. 2, Taipei 115, Taiwan;
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science and Technology (SCST), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
8
|
Mokhtarinia K, Masaeli E. Transiently thermally responsive surfaces: Concepts for cell sheet engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Brunato S, Mastrotto F, Bellato F, Garofalo M, Göddenhenrich T, Mantovani G, Alexander C, Gross S, Salmaso S, Caliceti P. Thermosensitive "Smart" Surfaces for Biorecognition Based Cell Adhesion and Controlled Detachment. Macromol Biosci 2020; 21:e2000277. [PMID: 33146950 DOI: 10.1002/mabi.202000277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Indexed: 11/07/2022]
Abstract
The biorecognition-based control of attachment/detachment of MCF-7 cancer cells from polymer-coated surfaces is demonstrated. A glass surface is coated with a thermoresponsive statistical copolymer of poly(N-isopropylacrylamide-co-acrylamide) [p(NIPAm-co-Am)], which is end-capped with the Gly-Arg-Gly-Asp-Ser (GRGDS) peptide, and the hydrophilic polymer poly(ethylene glycol) (PEG). Below the lower critical solution temperature (LCST) of p(NIPAm-co-Am) (38 °C), the copolymers are in the extended conformation, allowing for accessibility of the GRGDS peptides to membrane-associated integrins thus enabling cell attachment. Above the LCST, the p(NIPAm-co-Am) polymers collapse into globular conformations, resulting in the shielding of the GRGDS peptides into the PEG brush with consequent inaccessibility to cell-surface integrins, causing cell detachment. The surface coating is carried out by a multi-step procedure that included: glass surface amination with 3-aminopropyltriethoxysilane; reaction of mPEG5kDa -N-hydroxysuccinimide (NHS) and p(NIPam-co-Am)15.1kDa -bis-NHS with the surface aminopropyl groups and conjugation of GRGDS to the carboxylic acid termini of p(NIPam-co-Am)15.1kDa -COOH. A range of spectrophotometric, surface, and microscopy assays confirmed the identity of the polymer-coated substrates. Competition studies prove that MCF-7 cancer cells are attached via peptide recognition at the coated surfaces according to the mPEG5kDa /p(NIPam-co-Am)15.1kDa -GRGDS molar ratio. These data suggest the system can be exploited to modulate cell integrin/GRGDS binding for controlled cell capture and release.
Collapse
Affiliation(s)
- Silvia Brunato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, Padova, 35131, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, Padova, 35131, Italy
| | - Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, Padova, 35131, Italy
| | - Mariangela Garofalo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, Padova, 35131, Italy
| | - Thomas Göddenhenrich
- Institute of Physics, Giessen University, Heinrich-Buff-Ring 16, Giessen, 35392, Germany
| | - Giuseppe Mantovani
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Cameron Alexander
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Silvia Gross
- Department of Chemical Sciences, University of Padova, via F. Marzolo 1, Padova, 35131, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, Padova, 35131, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, Padova, 35131, Italy
| |
Collapse
|
10
|
Yang L, Fan X, Zhang J, Ju J. Preparation and Characterization of Thermoresponsive Poly( N-Isopropylacrylamide) for Cell Culture Applications. Polymers (Basel) 2020; 12:E389. [PMID: 32050412 PMCID: PMC7077488 DOI: 10.3390/polym12020389] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) is a typical thermoresponsive polymer used widely and studied deeply in smart materials, which is attractive and valuable owing to its reversible and remote "on-off" behavior adjusted by temperature variation. PNIPAAm usually exhibits opposite solubility or wettability across lower critical solution temperature (LCST), and it is readily functionalized making it available in extensive applications. Cell culture is one of the most prospective and representative applications. Active attachment and spontaneous detachment of targeted cells are easily tunable by surface wettability changes and volume phase transitions of PNIPAAm modified substrates with respect to ambient temperature. The thermoresponsive culture platforms and matching thermal-liftoff method can effectively substitute for the traditional cell harvesting ways like enzymatic hydrolysis and mechanical scraping, and will improve the stable and high quality of recovered cells. Therefore, the establishment and detection on PNIPAAm based culture systems are of particular importance. This review covers the important developments and recommendations for future work of the preparation and characterization of temperature-responsive substrates based on PNIPAAm and analogues for cell culture applications.
Collapse
Affiliation(s)
- Lei Yang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| | - Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China
| | - Jing Zhang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| | - Jia Ju
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, China; (J.Z.); (J.J.)
| |
Collapse
|
11
|
Doberenz F, Zeng K, Willems C, Zhang K, Groth T. Thermoresponsive polymers and their biomedical application in tissue engineering - a review. J Mater Chem B 2020; 8:607-628. [PMID: 31939978 DOI: 10.1039/c9tb02052g] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thermoresponsive polymers hold great potential in the biomedical field, since they enable the fabrication of cell sheets, in situ drug delivery and 3D-printing under physiological conditions. In this review we provide an overview of several thermoresponsive polymers and their application, with focus on poly(N-isopropylacrylamide)-surfaces for cell sheet engineering. Basic knowledge of important processes like protein adsorption on surfaces and cell adhesion is provided. For different thermoresponsive polymers, namely PNIPAm, Pluronics, elastin-like polypeptides (ELP) and poly(N-vinylcaprolactam) (PNVCL), synthesis and basic chemical and physical properties have been described and the mechanism of their thermoresponsive behavior highlighted. Fabrication methods of thermoresponsive surfaces have been discussed, focusing on PNIPAm, and describing several methods in detail. The latter part of this review is dedicated to the application of the thermoresponsive polymers and with regard to cell sheet engineering, the process of temperature-dependent cell sheet detachment is explained. We provide insight into several applications of PNIPAm surfaces in cell sheet engineering. For Pluronics, ELP and PNVCL we show their application in the field of drug delivery and tissue engineering. We conclude, that research of thermoresponsive polymers has made big progress in recent years, especially for PNIPAm since the 1990s. However, manifold research possibilities, e.g. in surface fabrication and 3D-printing and further translational applications are conceivable in near future.
Collapse
Affiliation(s)
- Falko Doberenz
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany.
| | - Kui Zeng
- Wood Technology and Wood Chemistry, University of Goettingen, Büsgenweg 4, D-37077 Göttingen, Germany
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany.
| | - Kai Zhang
- Wood Technology and Wood Chemistry, University of Goettingen, Büsgenweg 4, D-37077 Göttingen, Germany
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany. and Interdisciplinary Center of Material Science, Martin Luther University, Halle-Wittenberg, 06099 Halle (Saale), Germany and Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, 1, 19991, Trubetskaya st. 8, Moscow, Russian Federation
| |
Collapse
|
12
|
Manufacturing of primed mesenchymal stromal cells for therapy. Nat Biomed Eng 2019; 3:90-104. [PMID: 30944433 DOI: 10.1038/s41551-018-0325-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) for basic research and clinical applications are manufactured and developed as unique cell products by many different manufacturers and laboratories, often under different conditions. The lack of standardization of MSC identity has limited consensus around which MSC properties are relevant for specific outcomes. In this Review, we examine how the choice of media, cell source, culture environment and storage affects the phenotype and clinical utility of MSC-based products, and discuss the techniques better suited to prime MSCs with specific phenotypes of interest and the need for the continued development of standardized assays that provide quality assurance for clinical-grade MSCs. Bioequivalence between cell products and batches must be investigated rather than assumed, so that the diversity of phenotypes between differing MSC products can be accounted for to identify products with the highest therapeutic potential and to preserve their safety in clinical treatments.
Collapse
|
13
|
Jiang S, Lyu B, Müller M, Wesner D, Schönherr H. Thickness-Encoded Micropatterns in One-Component Thermoresponsive Polymer Brushes for Culture and Triggered Release of Pancreatic Tumor Cell Monolayers and Spheroids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14670-14677. [PMID: 30474988 DOI: 10.1021/acs.langmuir.8b03040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fabrication, characterization, and application of micropatterned one-component poly(di(ethylene glycol)methyl ether methacrylate) (PDEGMA) brushes for monolayer cell and spheroid culture and temperature-triggered release are reported. Micropatterns of various shapes and sizes were designed to possess a unique functionality imparted by thermoresponsive thin PDEGMA patches, which are cell adhesive at 37 °C, embedded in a much thicker cell-resistant PDEGMA matrix that does not exhibit measurable thermoresponsive properties. Depending on the cell seeding density, PaTu 8988t human pancreatic tumor cells or spheroids were cultured area-selectively, confined by the 40 ± 4 nm thick passivating PDEGMA matrix, and could be released on demand by a mild thermally triggered brush swelling in the 5 ± 1 nm thin regions. As shown by surface plasmon resonance (SPR) measurements, in contrast to the thinner brushes, the thicker brushes exhibited virtually no fibronectin adhesive properties at 37 °C, whereas at 25 °C, both areas showed similar protein resistant behavior. The quasi-2D thickness-encoded micropatterns were shown to be useful templates for the growth of 3D multicellular aggregates. Thermally induced release after 5 days of incubation afforded 3D cell spheroids comprising up to 99% viable cells demonstrating that the system can be used as a 3D spheroid in vitro model for basic tumor research and anticancer drug screenings.
Collapse
Affiliation(s)
- Siyu Jiang
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| | - Beier Lyu
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| | - Mareike Müller
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| | - Daniel Wesner
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| | - Holger Schönherr
- Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), Physical Chemistry I , University of Siegen , Adolf-Reichwein-Street 2 , 57076 Siegen , Germany
| |
Collapse
|
14
|
Locke A, Means AK, Dong P, Nichols TJ, Coté GL, Grunlan MA. A Layer-by-Layer Approach To Retain a Fluorescent Glucose Sensing Assay within the Cavity of a Hydrogel Membrane. ACS APPLIED BIO MATERIALS 2018; 1:1319-1327. [PMID: 30474080 PMCID: PMC6247246 DOI: 10.1021/acsabm.8b00267] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/10/2018] [Indexed: 02/03/2023]
Abstract
A continuous glucose monitoring device that resides fully in the subcutaneous tissue has the potential to greatly improve the management of diabetes. Toward this goal, we have developed a competitive binding glucose sensing assay based on fluorescently labeled PEGylated concanavalin-A (PEGylated-TRITC-ConA) and mannotetraose (APTS-MT). In the present work, we sought to contain this assay within the hollow central cavity of a cylindrical hydrogel membrane, permitting eventual subcutaneous implantation and optical probing through the skin. A "self-cleaning" hydrogel was utilized because of its ability to cyclically deswell/reswell in vivo, which is expected to reduce biofouling and therefore extend the sensor lifetime. Thus, we prepared a hollow, cylindrical hydrogel based on a thermoresponsive electrostatic double network design composed of N-isopropylacrylamide and 2-acrylamido-2-methylpropanesulfonic acid. Next, a layer-by-layer (LbL) coating was applied to the inner wall of the central cavity of the cylindrical membrane. It consisted of 5, 10, 15, 30, or 40 alternating bilayers of positively charged poly(diallyldimethylammonium chloride) and negatively charged poly(sodium 4-styrenesulfonate). With 30 bilayers, the leaching of the smaller-sized component of the assay (APTS-MT) from the membrane cavity was substantially reduced. Moreover, this LbL coating maintained glucose diffusion across the hydrogel membrane. In terms of sensor functionality, the assay housed in the hydrogel membrane cavity tracked changes in glucose concentration (0 to 600 mg/dL) with a mean absolute relative difference of ∼11%.
Collapse
Affiliation(s)
- Andrea
K. Locke
- Department
of Biomedical Engineering, Department of Materials Science
and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Anna Kristen Means
- Department
of Biomedical Engineering, Department of Materials Science
and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Ping Dong
- Department
of Biomedical Engineering, Department of Materials Science
and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Tyler J. Nichols
- Department
of Biomedical Engineering, Department of Materials Science
and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Gerard L. Coté
- Department
of Biomedical Engineering, Department of Materials Science
and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States
| | - Melissa A. Grunlan
- Department
of Biomedical Engineering, Department of Materials Science
and Engineering, Department of Chemistry, and Center for Remote Healthcare Technologies, Texas A&M University, College Station, Texas 77843-3120, United States
| |
Collapse
|
15
|
Abraham AA, Means AK, Clubb FJ, Fei R, Locke AK, Gacasan EG, Coté GL, Grunlan MA. Foreign Body Reaction to a Subcutaneously Implanted Self-Cleaning, Thermoresponsive Hydrogel Membrane for Glucose Biosensors. ACS Biomater Sci Eng 2018; 4:4104-4111. [PMID: 31633011 DOI: 10.1021/acsbiomaterials.8b01061] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Towards achieveing a subcutaneously implanted glucose biosensor with long-term functionality, a thermoresponsive membrane previously shown to have potential to house a glucose sensing assay was evaluated herein for its ability to minimize the foriegn body reaction (FBR) and the resulting fibrous capsule. The severity of the FBR proportionally reduces diffusion of glucose to the sensor and hence sensor lifetime. However, efforts to reduce the FBR have largedly focused on anti-fouling materials that passively inhibit cellular attachment, particularly poly(ethylene glycol) (PEG). Herein, the extent of the FBR of a subcutaneously implanted "self-cleaning" cylindrical membrane was analyzed in rodents. This membrane represents an "actively anti-fouling" approach to reduce cellular adhesion. It is a thermoresponsive double network nanocomposite hydrogel (DNNC) comprised of poly(N-isopropylacrylamide) (PNIPAAm) and embedded polysiloxane nanoparticles. The membrane's cyclical deswelling/reswelling response to local body temperature fluctuations was anticipated to limit cellular accumulation. Indeed, after 30 days, the self-cleaning membrane exhibited a notably thin fibrous capsule (~30 µm) and increased microvascular density within 1 mm of the implant surface in comparison to a non-thermoresponsive, benchmark biocompatible control (PEG diacrylate, PEG-DA).
Collapse
Affiliation(s)
- Alexander A Abraham
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA)
| | - A Kristen Means
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843 (USA)
| | - Fred J Clubb
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA).,Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas 77843-4467 (USA)
| | - Ruochong Fei
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA)
| | - Andrea K Locke
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA)
| | - Erica G Gacasan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA)
| | - Gerard L Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA).,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843-3577 (USA)
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-2120 (USA).,Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843 (USA).,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843-3577 (USA)
| |
Collapse
|
16
|
Takahashi H, Shimizu T, Okano T. Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle Physiology. Sci Rep 2018; 8:13932. [PMID: 30224737 PMCID: PMC6141563 DOI: 10.1038/s41598-018-32163-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle physiology and the mechanisms of muscle diseases can be effectively studied by an in-vitro tissue model produced by muscle tissue engineering. Engineered human cell-based tissues are required more than ever because of the advantages they bring as tissue models in research studies. This study reports on a production method of a human skeletal myofiber sheet that demonstrates biomimetic properties including the aligned structure of myofibers, basement membrane-like structure of the extracellular matrix, and unidirectional contractile ability. The contractile ability and drug responsibility shown in this study indicate that this engineered muscle tissue has potential as a human cell-based tissue model for clinically relevant in-vitro studies in muscle physiology and drug discovery. Moreover, this engineered tissue can be used to better understand the relationships between mechanical stress and myogenesis, including muscle growth and regeneration. In this study, periodic exercise induced by continuous electrical pulse stimulation enhanced the contractile ability of the engineered myofibers and the secretion of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) from the exercising myofibers. Since the physiology of skeletal muscle is directly related to mechanical stress, these features point to application as a tissue model and platform for future biological studies of skeletal muscle including muscle metabolism, muscle atrophy and muscle regeneration.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
17
|
Sukho P, Boersema GSA, Kops N, Lange JF, Kirpensteijn J, Hesselink JW, Bastiaansen-Jenniskens YM, Verseijden F. Transplantation of Adipose Tissue-Derived Stem Cell Sheet to Reduce Leakage After Partial Colectomy in A Rat Model. J Vis Exp 2018. [PMID: 30148499 DOI: 10.3791/57213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anastomotic leakage is a disastrous complication after colorectal surgery. Although current methods for leakage prevention have different levels of clinical efficacy, they are until now imperfect solutions. Stem cell therapy using ASC sheets could provide a solution to this problem. ASCs are considered as promising candidates for promoting tissue healing because of their trophic and immunomodulatory properties. Here, we provide methods to produce high-density ASC sheets, that are transplanted onto a colorectal anastomosis in a rat model to reduce the leakage. ASCs formed cell sheets in thermo-responsive culture dishes that could be easily detached. On the day of the transplantation, a partial colectomy with a 5-suture colorectal anastomosis was performed. Animals were immediately transplanted with 1 ASC sheet per rat. ASC sheets adhered spontaneously to the anastomosis without any glue, suture, or any biomaterial. Animal groups were sacrificed 3 and 7 days postoperatively. Compared to transplanted animals, the incidence of anastomotic abscesses and leakage was higher in control animals. In our model, the transplantation of ASC sheets after colorectal anastomosis was successful and associated with a lower leakage rate.
Collapse
Affiliation(s)
- Panithi Sukho
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University; Department of Otorhinolaryngology, Erasmus MC University Medical Center; Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University
| | | | - Nicole Kops
- Department of Orthopaedics, Erasmus MC University Medical Center
| | - Johan F Lange
- Department of Surgery, Erasmus MC University Medical Center
| | - Jolle Kirpensteijn
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University; Hill's Pet Nutrition Inc
| | - Jan Willem Hesselink
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University
| | | | - Femke Verseijden
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University; Department of Orthopaedics, Erasmus MC University Medical Center;
| |
Collapse
|
18
|
Abstract
AbstractVery high energies of particulate (accelerated electrons, swift heavy ions) or electromagnetic wave (γ-, X-rays) radiation can be used to initiate free radical based reactions in solids, liquids or gases. Because of non-selectivity of absorption of X-rays, γ rays and accelerated electrons in matter free radicals are generated homogeneously in the bulk material. These free radicals on the polymers or monomers are used extensively in the synthesis and modification of polymeric materials. The unique properties of ionizing radiation make it a very useful tool in the top-down and bottom-up synthesis of nanomaterials. In this article the utilization of ionizing radiation in the form of swift heavy ions, accelerated electrons, X- and γ rays will be described for development of advanced materials by radiation-induced grafting in nanoscale, synthesis of polymeric nanoparticles, radiation-assisted synthesis of nanogels and nanocomposites. The properties difficult to be attained by other techniques will be described by giving examples for the cases of ion track-etched membranes, fuel cell membranes, sensors, detectors, cell culture media, polymer thin films embedded with metal nanoparticles, polymer/clay nanocomposites with a prospect for the future outlook.
Collapse
Affiliation(s)
- Olgun Güven
- 1Hacettepe University, Department of Chemistry, Beytepe, 06800, Ankara, Turkey, www.polymer.hacettepe.edu.tr
| |
Collapse
|
19
|
Fei R, Means AK, Abraham AA, Locke AK, Coté GL, Grunlan MA. Self-Cleaning, Thermoresponsive P (NIPAAm-co-AMPS) Double Network Membranes for Implanted Glucose Biosensors. MACROMOLECULAR MATERIALS AND ENGINEERING 2016; 301:935-943. [PMID: 28529447 PMCID: PMC5438207 DOI: 10.1002/mame.201600044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A self-cleaning membrane that periodically rids itself of attached cells to maintain glucose diffusion could extend the lifetime of implanted glucose biosensors. Herein, we evaluate the functionality of thermoresponsive double network (DN) hydrogel membranes based on poly(N-isopropylacrylamide) (PNIPAAm) and an electrostatic co-monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS). DN hydrogels are comprised of a tightly crosslinked, ionized first network [P(NIPAAm-co-AMPS)] containing variable levels of AMPS (100:0-25:75 wt% ratio of NIPAAm:AMPS) and a loosely crosslinked, interpenetrating second network [PNIPAAm]. To meet the specific requirements of a subcutaneously implanted glucose biosensor, the volume phase transition temperature is tuned and essential properties, such as glucose diffusion kinetics, thermosensitivity, and cytocompatibility are evaluated. In addition, the self-cleaning functionality is demonstrated through thermally driven cell detachment from the membranes in vitro.
Collapse
Affiliation(s)
- Ruochong Fei
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | - A Kristen Means
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Alexander A Abraham
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | - Andrea K Locke
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | - Gerard L Coté
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, USA
| |
Collapse
|
20
|
Becherer T, Heinen S, Wei Q, Haag R, Weinhart M. In-depth analysis of switchable glycerol based polymeric coatings for cell sheet engineering. Acta Biomater 2015; 25:43-55. [PMID: 26143602 DOI: 10.1016/j.actbio.2015.06.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 01/13/2023]
Abstract
Scaffold-free cell sheet engineering using thermoresponsive substrates provides a promising alternative to conventional tissue engineering which in general employs biodegradable scaffold materials. We have previously developed a thermoresponsive coating with glycerol based linear copolymers that enables gentle harvesting of entire cell sheets. In this article we present an in-depth analysis of these thermoresponsive linear polyglycidyl ethers and their performance as coating for substrates in cell culture in comparison with commercially available poly(N-isopropylacrylamide) (PNIPAM) coated culture dishes. A series of copolymers of glycidyl methyl ether (GME) and glycidyl ethyl ether (EGE) was prepared in order to study their thermoresponsive properties in solution and on the surface with respect to the comonomer ratio. In both cases, when grafted to planar surfaces or spherical nanoparticles, the applied thermoresponsive polyglycerol coatings render the respective surfaces switchable. Protein adsorption experiments on copolymer coated planar surfaces with surface plasmon resonance (SPR) spectroscopy reveal the ability of the tested thermoresponsive coatings to be switched between highly protein resistant and adsorptive states. Cell culture experiments demonstrate that these thermoresponsive coatings allow for adhesion and proliferation of NIH 3T3 fibroblasts comparable to TCPS and faster than on PNIPAM substrates. Temperature triggered detachment of complete cell sheets from copolymer coated substrates was accomplished within minutes while maintaining high viability of the harvested cells. Thus such glycerol based copolymers present a promising alternative to PNIPAM as a thermoresponsive coating of cell culture substrates.
Collapse
Affiliation(s)
- Tobias Becherer
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| | - Silke Heinen
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| | - Qiang Wei
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| | - Rainer Haag
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| | - Marie Weinhart
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| |
Collapse
|
21
|
Liu F, Agarwal S. Thermoresponsive Gold Nanoparticles with Positive UCST-Type Thermoresponsivity. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fangyao Liu
- Universität Bayreuth; Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces; Universitätsstraße 30 D-95440 Bayreuth Germany
| | - Seema Agarwal
- Universität Bayreuth; Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces; Universitätsstraße 30 D-95440 Bayreuth Germany
| |
Collapse
|
22
|
Fei R, Hou H, Munoz-Pinto D, Han A, Hahn MS, Grunlan MA. Thermoresponsive Double Network Micropillared Hydrogels for Controlled Cell Release. Macromol Biosci 2014; 14:1346-52. [DOI: 10.1002/mabi.201400172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/03/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Ruochong Fei
- Department of Biomedical Engineering; Texas A&M University, 5030 Emerging Technologies Building; College Station TX 77843 USA
| | - Huijie Hou
- Department of Electrical Engineering; Texas A&M University; College Station TX 77843 USA
| | - Dany Munoz-Pinto
- Department of Chemical Engineering; Texas A&M University; College Station TX 77843 USA
| | - Arum Han
- Department of Biomedical Engineering; Texas A&M University, 5030 Emerging Technologies Building; College Station TX 77843 USA
- Department of Electrical Engineering; Texas A&M University; College Station TX 77843 USA
| | - Mariah S. Hahn
- Department of Chemical Engineering; Texas A&M University; College Station TX 77843 USA
| | - Melissa A. Grunlan
- Department of Biomedical Engineering; Texas A&M University, 5030 Emerging Technologies Building; College Station TX 77843 USA
- Department of Materials Science and Engineerin; Texas A&M University; College Station TX 77843 USA
| |
Collapse
|
23
|
Carias V, Wang J, Toomey R. Poly(N-isopropylacrylamide) cross-linked coatings with phototunable swelling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4105-4110. [PMID: 24635203 DOI: 10.1021/la500462q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A series of terpolymers were synthesized comprising the following monomers: N-isopropylacrylamide (NIPAAm), a stimuli-responsive structural unit that swells and collapses in response to temperature; methacryloxybenzophenone (MaBP), a photo-cross-linking unit that is activated at a wavelength of 365 nm; and phenacyl methacrylate (PHEm), a photolabile protected carboxyl group that can be deprotected at a wavelength of 254 nm. It is shown that the terpolymers can be photo-cross-linked at long UV wavelength light (λ = 365 nm) to establish surface-attached, cross-linked coatings and subsequently photochemically cleaved at short UV wavelength light (λ = 254 nm), which is found to be consistent with first-order kinetics. The photocleavage reaction produces free carboxylic groups, which can be used to locally tune the swelling characteristics and transition temperature of the coating, which depends on both the irradiation exposure and the overall PHEm content. For instance, for a terpolymer with 7.1 mol % PHEm, the transition temperature between the swollen and collapsed states increased from 20 to 50 °C at a pH of 8.5 with an exposure dose of 0.52 J/cm(2) at 254 nm. Finally, photocleavage can be used to create chemically patterned regions to provide a basis by which to conjugate cationic markers, proteins, or nanoparticles to the terpolymer coating.
Collapse
Affiliation(s)
- Vinicio Carias
- Department of Chemical and Biomedical Engineering, University of South Florida , Tampa, Florida 33620, United States
| | | | | |
Collapse
|
24
|
Abraham AA, Fei R, Coté GL, Grunlan MA. Self-cleaning membrane to extend the lifetime of an implanted glucose biosensor. ACS APPLIED MATERIALS & INTERFACES 2013; 5:12832-8. [PMID: 24304009 PMCID: PMC3927323 DOI: 10.1021/am4040653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The lifetime and efficacy of a subcutaneously implanted glucose biosensor could be greatly improved by a self-cleaning membrane capable of periodic physical removal of adhered cells associated with the foreign body reaction. Previously, we reported a thermoresponsive double network nanocomposite (DNNC) membrane composed of poly(N-isopropylacrylamide) (PNIPAAm) and embedded polysiloxane nanoparticles. When the membrane was thermally cycled above and below its volume phase transition temperature (VPTT, ~33-35 °C), the associated deswelling and reswelling, respectively, led to in vitro cell release. Herein, this membrane design was tailored to meet the specific demands of a subcutaneously implanted glucose biosensor, and critical functional properties were assessed. First, N-vinylpyrrolidone (NVP) comonomer increased the VPTT to ~38 °C so that the membrane would be swollen and thus more permeable to glucose in the "off-state" (i.e., no heating) while residing in the subcutaneous tissue (~35 °C). Second, glucose diffusion kinetics though the DNNC membrane was experimentally measured in its deswollen and reswollen states. A cylindrical DNNC membrane with dimensions considered suitable for implantation (1.5 × 5 mm, diameter × length) was used to model the glucose diffusion lag time. In addition, the DNNC cylinder was used to observe dimensional changes associated with deswelling and reswelling. Noncytotoxicity was confirmed and self-cleaning was assessed in vitro in terms of thermally driven cell release to confirm the potential of the DNNC membrane to control biofouling.
Collapse
Affiliation(s)
- Alexander A Abraham
- Department of Biomedical Engineering, Texas A&M University , College Station, Texas 77843-3120, United States
| | | | | | | |
Collapse
|
25
|
Teichmann J, Valtink M, Nitschke M, Gramm S, Funk RHW, Engelmann K, Werner C. Tissue engineering of the corneal endothelium: a review of carrier materials. J Funct Biomater 2013; 4:178-208. [PMID: 24956190 PMCID: PMC4030930 DOI: 10.3390/jfb4040178] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/13/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022] Open
Abstract
Functional impairment of the human corneal endothelium can lead to corneal blindness. In order to meet the high demand for transplants with an appropriate human corneal endothelial cell density as a prerequisite for corneal function, several tissue engineering techniques have been developed to generate transplantable endothelial cell sheets. These approaches range from the use of natural membranes, biological polymers and biosynthetic material compositions, to completely synthetic materials as matrices for corneal endothelial cell sheet generation. This review gives an overview about currently used materials for the generation of transplantable corneal endothelial cell sheets with a special focus on thermo-responsive polymer coatings.
Collapse
Affiliation(s)
- Juliane Teichmann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Institute of Biofunctional Polymer Materials, Hohe Straße 6, Dresden 01069, Germany.
| | - Monika Valtink
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Mirko Nitschke
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Institute of Biofunctional Polymer Materials, Hohe Straße 6, Dresden 01069, Germany.
| | - Stefan Gramm
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Institute of Biofunctional Polymer Materials, Hohe Straße 6, Dresden 01069, Germany.
| | - Richard H W Funk
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Katrin Engelmann
- CRTD/DFG-Center for Regenerative Therapies Dresden-Cluster of Excellence, Fetscherstraße 105, Dresden 01307, Germany.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Institute of Biofunctional Polymer Materials, Hohe Straße 6, Dresden 01069, Germany.
| |
Collapse
|
26
|
Fan X, Nosov M, Carroll W, Gorelov A, Elvira C, Rochev Y. Macrophages behavior on different NIPAm-based thermoresponsive substrates. J Biomed Mater Res A 2013; 102:2901-10. [DOI: 10.1002/jbm.a.34940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/08/2013] [Accepted: 09/05/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Xingliang Fan
- National Centre for Biomedical Engineering Science; National University of Ireland; Galway Ireland
| | - Mikhail Nosov
- Regenerative Medicine Institute; National University of Ireland; Galway Ireland
- FarmLab Diagnostics, Emlagh, Elphin, co; Roscommon Ireland
| | - William Carroll
- School of Chemistry; National University of Ireland; Galway Ireland
| | - Alexander Gorelov
- School of Chemistry and Chemical Biology; University College Dublin; Dublin Ireland
| | - Carlos Elvira
- 1-Instituto de Ciencía y tecnologia de Polímeros; ICTP-CSIC.; Juan de la Cierva 3 20006 Madrid Spain
| | - Yury Rochev
- National Centre for Biomedical Engineering Science; National University of Ireland; Galway Ireland
- School of Chemistry; National University of Ireland; Galway Ireland
| |
Collapse
|
27
|
Kobayashi J, Nishi M, Akiyama Y, Yamato M, Yajima H, Okano T. Selective Cell Adhesion and Detachment on Antibody-Immobilized Thermoresponsive Surfaces by Temperature Changes. JOURNAL OF ROBOTICS AND MECHATRONICS 2013. [DOI: 10.20965/jrm.2013.p0637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anti-CD90 antibody-immobilized thermoresponsive (AIT) surfaces were prepared for obtaining temperature-triggered switching of the selective adhesion and detachment of CD90-expressed cells. Thymic carcinoma cells (Ty-82) expressing CD90 molecules on the cellular surface were unable to adhere to isotype AIT surfaces and aggregated. In contrast, Ty-82 cells selectively adhered to anti-CD90 AIT surfaces at 37°C. These results indicate that Ty-82 cells adhered to CD90 antibody-immobilized surfaces through affinity interaction, not through nonspecific interactions when grafted thermoresponsive polymer chains shrunk at 37°C. Adhered cells were detached from surfaces by lowering temperature to 20°C with pipetting. Although affinity interaction between cells and immobilized antibodies was decreased by the dynamic swelling of grafted thermoresponsive polymer chains by lowering temperature to 20°C, the application of additional force such as pipetting was required to completely detach adhered cells. Through temperature-induced changes in affinity interaction, the condensation of CD90-positive Ty-82 cells was carried out by using anti-CD90 AIT surfaces. AIT surfaces for regulating selective cell adhesion and detachment were then successfully prepared. A novel bioassembler technology using AIT surfaces could thus be useful for temperature-dependent selective cell adhesion/detachment such as cell separation.
Collapse
|
28
|
Chan A, Orme RP, Fricker RA, Roach P. Remote and local control of stimuli responsive materials for therapeutic applications. Adv Drug Deliv Rev 2013; 65:497-514. [PMID: 22820529 DOI: 10.1016/j.addr.2012.07.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/28/2012] [Accepted: 07/06/2012] [Indexed: 12/25/2022]
Abstract
Materials offering the ability to change their characteristics in response to presented stimuli have demonstrated application in the biomedical arena, allowing control over drug delivery, protein adsorption and cell attachment to materials. Many of these smart systems are reversible, giving rise to finer control over material properties and biological interaction, useful for various therapeutic treatment strategies. Many smart materials intended for biological interaction are based around pH or thermo-responsive materials, although the use of magnetic materials, particularly in neural regeneration, has increased over the past decade. This review draws together a background of literature describing the design principles and mechanisms of smart materials. Discussion centres on recent literature regarding pH-, thermo-, magnetic and dual responsive materials, and their current applications for the treatment of neural tissue.
Collapse
|
29
|
Fei R, George JT, Park J, Means AK, Grunlan MA. Ultra-strong thermoresponsive double network hydrogels. SOFT MATTER 2013; 9:2912-2919. [PMID: 33335560 PMCID: PMC7740108 DOI: 10.1039/c3sm27226e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogels are widely studied smart materials, particularly for biomedical applications, but are limited by their mechanical strength. In this study, double network (DN) hydrogels were prepared with an asymmetric crosslink design and inclusion of an electrostatic co-monomer, 2-acrylamido-2-methylpropane sulfonic acid (AMPS). These P(NIPAAm-co-AMPS)/PNIPAAm DN hydrogels were sequentially formed with a tightly crosslinked 1st network comprised of variable levels of AMPS (100 : 0 to 25 : 75 wt% ratio of NIPAAm:AMPS) and a loosely crosslinked 2nd network comprised of PNIPAAm. The impact of AMPS content in the 1st network on the volume phase transition temperature (VPTT), morphology, deswelling-reswelling kinetics and mechanical properties was evaluated. Without substantially altering the VPTT of conventional PNIPAAm hydrogels but with improving thermosensitivity, the DN hydrogel formed with 25 : 75 wt% of NIPAAm:AMPS achieved exceptional strength, high modulus and high %strain at break.
Collapse
Affiliation(s)
- Ruochong Fei
- Department of Biomedical Engineering, Materials Science & Engineering Program, Texas A&M University, 3120 TAMU, College Station, TX, USA
| | - Jason T George
- Department of Biomedical Engineering, Materials Science & Engineering Program, Texas A&M University, 3120 TAMU, College Station, TX, USA
| | - Jeehyun Park
- Department of Biomedical Engineering, Materials Science & Engineering Program, Texas A&M University, 3120 TAMU, College Station, TX, USA
| | - A Kristen Means
- Department of Biomedical Engineering, Materials Science & Engineering Program, Texas A&M University, 3120 TAMU, College Station, TX, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Materials Science & Engineering Program, Texas A&M University, 3120 TAMU, College Station, TX, USA
| |
Collapse
|
30
|
Mondal C, Ganguly M, Pal J, Sahoo R, Sinha AK, Pal T. Pure inorganic gel: a new host with tremendous sorption capability. Chem Commun (Camb) 2013; 49:9428-30. [DOI: 10.1039/c3cc45555f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Interruption of hydration state of thermoresponsive polymer, poly(N-isopropylacrylamide) in guanidinium hydrochloride. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Seuring J, Agarwal S. Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun 2012; 33:1898-920. [PMID: 22961764 DOI: 10.1002/marc.201200433] [Citation(s) in RCA: 396] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/27/2012] [Indexed: 01/29/2023]
Abstract
This review focuses on polymers with upper critical solution temperature (UCST) in water or electrolyte solution and provides a detailed survey of the yet few existing examples. A guide for synthetic chemists for the design of novel UCST polymers is presented and possible handles to tune the phase transition temperature, sharpness of transition, hysteresis, and effectiveness of phase separation are discussed. This review tries to answer the question why polymers with UCST remained largely underrepresented in academic as well as applied research and what requirements have to be fulfilled to make these polymers suitable for the development of smart materials with a positive thermoresponse.
Collapse
Affiliation(s)
- Jan Seuring
- Philipps-Universität Marburg, Department of Chemistry and Scientific Center for Materials Science, Hans-Meerwein Straße, 35032 Marburg, Germany
| | | |
Collapse
|
33
|
Mendes LF, Pirraco RP, Szymczyk W, Frias AM, Santos TC, Reis RL, Marques AP. Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs. PLoS One 2012; 7:e41051. [PMID: 22829909 PMCID: PMC3400580 DOI: 10.1371/journal.pone.0041051] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/16/2012] [Indexed: 12/11/2022] Open
Abstract
In recent years several studies have been supporting the existence of a close relationship in terms of function and progeny between Mesenchymal Stem Cells (MSCs) and Pericytes. This concept has opened new perspectives for the application of MSCs in Tissue Engineering (TE), with special interest for the pre-vascularization of cell dense constructs. In this work, cell sheet technology was used to create a scaffold-free construct composed of osteogenic, endothelial and perivascular-like (CD146+) cells for improved in vivo vessel formation, maturation and stability. The CD146 pericyte-associated phenotype was induced from human bone marrow mesenchymal stem cells (hBMSCs) by the supplementation of standard culture medium with TGF-β1. Co-cultured cell sheets were obtained by culturing perivascular-like (CD146+) cells and human umbilical vein endothelial cells (HUVECs) on an hBMSCs monolayer maintained in osteogenic medium for 7 days. The perivascular-like (CD146+) cells and the HUVECs migrated and organized over the collagen-rich osteogenic cell sheet, suggesting the existence of cross-talk involving the co-cultured cell types. Furthermore the presence of that particular ECM produced by the osteoblastic cells was shown to be the key regulator for the singular observed organization. The osteogenic and angiogenic character of the proposed constructs was assessed in vivo. Immunohistochemistry analysis of the explants revealed the integration of HUVECs with the host vasculature as well as the osteogenic potential of the created construct, by the expression of osteocalcin. Additionally, the analysis of the diameter of human CD146 positive blood vessels showed a higher mean vessel diameter for the co-cultured cell sheet condition, reinforcing the advantage of the proposed model regarding blood vessels maturation and stability and for the in vitro pre-vascularization of TE constructs.
Collapse
Affiliation(s)
- Luís F. Mendes
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Wojciech Szymczyk
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Ana M. Frias
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Tírcia C. Santos
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Alexandra P. Marques
- 3B’s Research Group–Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
34
|
Rayatpisheh S, Li P, Chan-Park MB. Argon-Plasma-Induced Ultrathin Thermal Grafting of Thermoresponsive pNIPAm Coating for Contractile Patterned Human SMC Sheet Engineering. Macromol Biosci 2012; 12:937-45. [DOI: 10.1002/mabi.201100477] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/02/2012] [Indexed: 01/07/2023]
|
35
|
Fei R, George JT, Park J, Grunlan MA. Thermoresponsive nanocomposite double network hydrogels. SOFT MATTER 2012; 8:481-487. [PMID: 23293658 PMCID: PMC3535461 DOI: 10.1039/c1sm06105d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The utility and efficacy of thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogels as smart materials is limited by their physical properties. In this study, we sought to design PNIPAAm nanocomposite hydrogels which displayed enhanced mechanical properties as well as deswelling-reswelling kinetics but without reducing equilibrium swelling or altering the convenient volume phase transition temperature (VPTT) of PNIPAAm. PNIPAAm hydrogels were formed as double networks (DN) comprised of a tightly crosslinked 1st network and a loosely crosslinked 2nd network. In addition, polysiloxane nanoparticles of two different average diameters (~50 nm and ~200 nm) were incorporated during formation of the 1st or 2nd network. The influence of the hydrogel composition on VPTT, morphology, equilibrium swelling, deswelling-reswelling kinetics and mechanical properties was evaluated. We observed that DN hydrogels formed with ~200 nm polysiloxane nanoparticles introduced during formation of the 1st network achieved the best combination of the desired properties.
Collapse
Affiliation(s)
- Ruochong Fei
- Department of Biomedical Engineering, Materials Science & Engineering Program, Texas A&M University, 3120 TAMU, College Station, TX, USA
| | - Jason Thomas George
- Department of Biomedical Engineering, Materials Science & Engineering Program, Texas A&M University, 3120 TAMU, College Station, TX, USA
| | - Jeehyun Park
- Department of Biomedical Engineering, Materials Science & Engineering Program, Texas A&M University, 3120 TAMU, College Station, TX, USA
| | - Melissa Ann Grunlan
- Department of Biomedical Engineering, Materials Science & Engineering Program, Texas A&M University, 3120 TAMU, College Station, TX, USA
| |
Collapse
|
36
|
Nash ME, Healy D, Carroll WM, Elvira C, Rochev YA. Cell and cell sheet recovery from pNIPAm coatings; motivation and history to present day approaches. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31748f] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Seuring J, Bayer FM, Huber K, Agarwal S. Upper Critical Solution Temperature of Poly(N-acryloyl glycinamide) in Water: A Concealed Property. Macromolecules 2011. [DOI: 10.1021/ma202059t] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jan Seuring
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße, D-35032 Marburg, Germany
| | - Frank M. Bayer
- Department Chemie−Physikalische Chemie,Universität Paderborn,Warburger Straße 100, D-33098 Paderborn, Germany
| | - Klaus Huber
- Department Chemie−Physikalische Chemie,Universität Paderborn,Warburger Straße 100, D-33098 Paderborn, Germany
| | - Seema Agarwal
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße, D-35032 Marburg, Germany
| |
Collapse
|
38
|
Hou Y, Fei R, Burkes JC, Lee SD, Munoz-Pinto D, Hahn MS, Grunlan MA. Thermoresponsive Nanocomposite Hydrogels: Transparency, Rapid Deswelling and Cell Release. J BIOMATER TISS ENG 2011; 1. [PMID: 24377059 DOI: 10.1166/jbt.2011.1005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thermal modulation reversibly switches poly(N-isopropylacrylamide) (PNIPAAm) hydrogels between a water-swollen and a deswollen state which is useful for a variety of biomedical applications. The utility and efficiency of PNIPAAm hydrogels requires tailoring their rate of deswelling/reswelling, mechanical properties and/or optical clarity. In the current work, we prepared novel thermoresponsive nanocomposite hydrogels comprised of a PNIPAAm hydrogel matrix and polysiloxane colloidal nanoparticles (~54 nm ave. diameter) via in situ photopolymerization of aqueous solutions of NIPAAm monomer, N,N'-methylenebisacrylamide (BIS, crosslinker), photoinitiator and 0.5-4.0 wt% polysiloxane nanoparticles (wt% solids of nanoparticles with respect to NIPAAm weight) at ~7 °C. At these nanoparticle concentrations, the nanocomposite hydrogels were more optically transparent versus those prepared with analogous larger nanoparticles (~219 nm ave. diameter). The volume phase transition temperature (VPTT) of the nanocomposite hydrogels was conveniently unaltered versus that of the pure PNIPAAm hydrogel. Incorporation of nanoparticles caused enhancement in modulus as well as the extent and rate of deswelling. When cooled from 37 °C to 25 °C, mouse smooth muscle precursor cells (10T1/2) were effectively detached from nanocomposite hydrogel surfaces due to hydrogel swelling.
Collapse
Affiliation(s)
- Yaping Hou
- Department of Biomedical Engineering, Materials Science and Engineering Program, Texas A&M University, College Station, 77843 TX, USA
| | - Ruochong Fei
- Department of Biomedical Engineering, Materials Science and Engineering Program, Texas A&M University, College Station, 77843 TX, USA
| | - Jonathan C Burkes
- Department of Biomedical Engineering, Materials Science and Engineering Program, Texas A&M University, College Station, 77843 TX, USA
| | - Shin Duk Lee
- Department of Biomedical Engineering, Materials Science and Engineering Program, Texas A&M University, College Station, 77843 TX, USA
| | - Dany Munoz-Pinto
- Department of Chemical Engineering, Texas A&M University, College Station, 77843 TX, USA
| | - Mariah S Hahn
- Department of Chemical Engineering, Texas A&M University, College Station, 77843 TX, USA
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Materials Science and Engineering Program, Texas A&M University, College Station, 77843 TX, USA
| |
Collapse
|
39
|
Nash ME, Carroll WM, Nikoloskya N, Yang R, O'Connell C, Gorelov AV, Dockery P, Liptrot C, Lyng FM, Garcia A, Rochev YA. Straightforward, one-step fabrication of ultrathin thermoresponsive films from commercially available pNIPAm for cell culture and recovery. ACS APPLIED MATERIALS & INTERFACES 2011; 3:1980-90. [PMID: 21534571 DOI: 10.1021/am200204j] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The use of thermoresponsive surfaces as platforms for cell culture and cell regeneration has been explored over the last couple of decades. Poly-N-isopropylacrylamide (pNIPAm) is a well characterized thermoresponsive polymer which has an aqueous lower critical solution temperature (LCST) in a physiologically useful range, which allows it to reversibly attract (T < 32 °C) and repel water (T > 32 °C). It is this phenomenon that is exploited in temperature-controlled cell harvesting. pNIPAm coatings are generally poorly cell compatible and a number of complex or expensive techniques have been developed in order to overcome this issue. This study seeks to design a simple one-step system whereby commercially sourced pNIPAm is used to achieve similar results. Films were deposited using the operationally simple but rheologically complex spin coating technique. Reversible temperature modulated cell adhesion was achieved using a variety of different cell lines. This system offers a simplistic and cheaper alternative to methods used elsewhere.
Collapse
Affiliation(s)
- Maria E Nash
- School of Chemistry, National University of Ireland Galway, Galway, Ireland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|