1
|
Ganesh SS, Anushikaa R, Swetha Victoria VS, Lavanya K, Shanmugavadivu A, Selvamurugan N. Recent Advancements in Electrospun Chitin and Chitosan Nanofibers for Bone Tissue Engineering Applications. J Funct Biomater 2023; 14:jfb14050288. [PMID: 37233398 DOI: 10.3390/jfb14050288] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Treatment of large segmental bone loss caused by fractures, osteomyelitis, and non-union results in expenses of around USD 300,000 per case. Moreover, the worst-case scenario results in amputation in 10% to 14.5% of cases. Biomaterials, cells, and regulatory elements are employed in bone tissue engineering (BTE) to create biosynthetic bone grafts with effective functionalization that can aid in the restoration of such fractured bones, preventing amputation and alleviating expenses. Chitin (CT) and chitosan (CS) are two of the most prevalent natural biopolymers utilized in the fields of biomaterials and BTE. To offer the structural and biochemical cues for augmenting bone formation, CT and CS can be employed alone or in combination with other biomaterials in the form of nanofibers (NFs). When compared with several fabrication methods available to produce scaffolds, electrospinning is regarded as superior since it enables the development of nanostructured scaffolds utilizing biopolymers. Electrospun nanofibers (ENFs) offer unique characteristics, including morphological resemblance to the extracellular matrix, high surface-area-to-volume ratio, permeability, porosity, and stability. This review elaborates on the recent strategies employed utilizing CT and CS ENFs and their biocomposites in BTE. We also summarize their implementation in supporting and delivering an osteogenic response to treat critical bone defects and their perspectives on rejuvenation. The CT- and CS-based ENF composite biomaterials show promise as potential constructions for bone tissue creation.
Collapse
Affiliation(s)
- S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Ramprasad Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Venkadesan Sri Swetha Victoria
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Krishnaraj Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
2
|
Poly (L-Lactic Acid) Cell-Laden Scaffolds Applied on Swine Model of Tracheal Fistula. J Surg Res 2022; 277:319-334. [PMID: 35552075 DOI: 10.1016/j.jss.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Tracheal fistula (TF) treatments may involve temporary orthosis and further ablative procedures, which can lead to infection. Thus, TF requires other therapy alternatives development. The hypothesis of this work was to demonstrate the feasibility of a tissue-engineered alternative for small TF in a preclinical model. Also, its association with suture filaments enriched with adipose tissue-derived mesenchymal stromal stem cells (AT-MSCs) was assessed to determine whether it could optimize the regenerative process. METHODS Poly (L-Lactic acid) (PLLA) membranes were manufactured by electrospinning and had morphology analyzed by scanning electron microscopy. AT-MSCs were cultured in these scaffolds and in vitro assays were performed (cytotoxicity, cellular adhesion, and viability). Subsequently, these cellular constructs were implanted in an animal small TF model. The association with suture filaments containing attached AT-MSCs was present in one animal group. After 30 d, animals were sacrificed and regenerative potential was evaluated, mainly related to the extracellular matrix remodeling, by performing histopathological (Hematoxylin-Eosin and trichrome Masson) and immunohistochemistry (Collagen I/II/III, matrix metalloproteinases-2, matrix metalloproteinases-9, vascular endothelial growth factor, and interleukin-10) analyses. RESULTS PLLA membranes presented porous fibers, randomly oriented. In vitro assays results showed that AT-MSCs attached were viable and maintained an active metabolism. Swine implanted with AT-MSCs attached to membranes and suture filaments showed aligned collagen fibers and a better regenerative progress in 30 d. CONCLUSIONS PLLA membranes with AT-MSCs attached were useful to the extracellular matrix restoration and have a high potential for small TF treatment. Also, their association with suture filaments enriched with AT-MSCs was advantageous.
Collapse
|
3
|
Vo Le TV, Tran NQ, Le Hang D, Nguyen TT, Bui QA, Dinh Trung N, Dat Thinh N, Thi Hien D, Kim Ngan TT, Nguyen NH, Nguyen BT, Hiep Nguyen T. Impacting different structures of injectable pluronic-conjugated alginate (chitosan) hydrogels on their physicochemical characteristics and morphological fibroblast behavior. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2022. [DOI: 10.1080/1023666x.2022.2043537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tuong Van Vo Le
- Institute of Applied Materials Science, VAST, Ho Chi Minh, Vietnam
| | - Ngoc Quyen Tran
- Institute of Applied Materials Science, VAST, Ho Chi Minh, Vietnam
- Graduate University of Science and Technology, VAST, Ho Chi Minh, Vietnam
| | - Dang Le Hang
- Institute of Applied Materials Science, VAST, Ho Chi Minh, Vietnam
- Graduate University of Science and Technology, VAST, Ho Chi Minh, Vietnam
| | | | - Quynh Anh Bui
- Institute of Applied Materials Science, VAST, Ho Chi Minh, Vietnam
| | - Nguyen Dinh Trung
- Institute of Applied Materials Science, VAST, Ho Chi Minh, Vietnam
- Graduate University of Science and Technology, VAST, Ho Chi Minh, Vietnam
| | - Nguyen Dat Thinh
- Institute of Applied Materials Science, VAST, Ho Chi Minh, Vietnam
- Graduate University of Science and Technology, VAST, Ho Chi Minh, Vietnam
| | - Dang Thi Hien
- Institute of Applied Materials Science, VAST, Ho Chi Minh, Vietnam
| | - Tran Thi Kim Ngan
- Institute of Applied Materials Science, VAST, Ho Chi Minh, Vietnam
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| | - Ngoc Hoa Nguyen
- German Vietnamese Technology Center, HCMC University of Food Industry, VAST, Ho Chi Minh, Vietnam
| | - Bich Tram Nguyen
- Department of Natural Science, Thu Dau Mot University, Thu Dau Mot City, Vietnam
| | - Thi Hiep Nguyen
- School of Biomedical Engineering- International University, Vietnam National University HCM, Ho Chi Minh, Vietnam
| |
Collapse
|
4
|
Mokhtari N, Zargar Kharazi A. Blood compatibility and cell response improvement of poly glycerol sebacate/poly lactic acid scaffold for vascular graft applications. J Biomed Mater Res A 2021; 109:2673-2684. [PMID: 34228399 DOI: 10.1002/jbm.a.37259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/10/2022]
Abstract
Plasma surface modification is one of the new methods for improving the surface properties of the scaffold and accelerating tissue regeneration. The aim of this study was to create poly glycerol sebacate/poly lactic acid (PGS/PLA) composite scaffold by electrospun method and modified the scaffold by oxygen plasma for use as a vascular graft. Plasma surface modified PGS/PLA scaffold morphology study showed relatively uniform fibers with an average diameter of 637 ± 149.4 nm and porosity of 82%. The mechanical evaluation of the PGS/PLA scaffold showed properties close to the natural vessels. Atomic force microscopy images exhibited an increase in the roughness of the scaffold after plasma surface modification; however, hemocompatibility studies revealed that it had no adverse effect on blood compatibility. Wettability studies revealed the superhydrophilic property of the modified scaffold (contact angle near to zero). Besides, the human umbilical vein endothelial cells proliferation and adhesion were improved significantly. Obtaining mechanical properties near to the natural vessels due to the suitable composition and significant improvement in blood compatibility and cell growth make the modified PGS/PLA composite a suitable candidate for vascular tissue regeneration.
Collapse
Affiliation(s)
- Niloofar Mokhtari
- Tissue Engineering Group, Department of Materials Engineering, Islamic Azad University Najafabad Branch, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Biomaterials Nanotechnology and Tissue Engineering faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran.,Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Alvarado-Hidalgo F, Ramírez-Sánchez K, Starbird-Perez R. Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering. Molecules 2020; 25:E5286. [PMID: 33202707 PMCID: PMC7697121 DOI: 10.3390/molecules25225286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Recently, tissue engineering and regenerative medicine studies have evaluated smart biomaterials as implantable scaffolds and their interaction with cells for biomedical applications. Porous materials have been used in tissue engineering as synthetic extracellular matrices, promoting the attachment and migration of host cells to induce the in vitro regeneration of different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues, modulating the extracellular environment through mechanical, electrical, and biochemical stimulation of cells, driving their molecular reprogramming. In this review, first we outline the main advantages of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing pathways to obtain the adequate textural properties, allowing the integration and attachment of cells. The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing the effect of their mechanical properties and the modification with conducting polymers in the cell response. The use and influence of polysaccharide-based porous materials as drug delivery systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are proposed as an effective strategy to improve in vitro tissue regeneration and future research directions of modified polysaccharide-based materials in the biomedical field are suggested.
Collapse
Affiliation(s)
- Fernando Alvarado-Hidalgo
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Master Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Karla Ramírez-Sánchez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, CIET, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Ricardo Starbird-Perez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| |
Collapse
|
6
|
The journey of multifunctional bone scaffolds fabricated from traditional toward modern techniques. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00094-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Ranjan VD, Zeng P, Li B, Zhang Y. In vitro cell culture in hollow microfibers with porous structures. Biomater Sci 2020; 8:2175-2188. [DOI: 10.1039/c9bm01986c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hollow and porous cell-encapsulated microfibers have been fabricated via simultaneously electrospinning two different biomaterial-based polymer solutions using a coaxial spinneret.
Collapse
Affiliation(s)
- Vivek Damodar Ranjan
- NTU Institute for Health Technologies
- Interdisciplinary Graduate School
- Nanyang Technological University
- Singapore 639798
| | - Peiqin Zeng
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
| | - Boyuan Li
- School of Mechanical & Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
| | - Yilei Zhang
- Department of Mechanical Engineering
- University of Canterbury
- New Zealand, 8041
| |
Collapse
|
8
|
De Paula MMM, Bassous NJ, Afewerki S, Harb SV, Ghannadian P, Marciano FR, Viana BC, Tim CR, Webster TJ, Lobo AO. Understanding the impact of crosslinked PCL/PEG/GelMA electrospun nanofibers on bactericidal activity. PLoS One 2018; 13:e0209386. [PMID: 30571704 PMCID: PMC6301679 DOI: 10.1371/journal.pone.0209386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
Herein, we report the design of electrospun ultrathin fibers based on the combination of three different polymers polycaprolactone (PCL), polyethylene glycol (PEG), and gelatin methacryloyl (GelMA), and their potential bactericidal activity against three different bacteria Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Methicillin-resistant Staphylococcus aureus (MRSA). We evaluated the morphology, chemical structure and wettability before and after UV photocrosslinking of the produced scaffolds. Results showed that the developed scaffolds presented hydrophilic properties after PEG and GelMA incorporation. Moreover, they were able to significantly reduce gram-positive, negative, and MRSA bacteria mainly after UV photocrosslinking (PCL:PEG:GelMa-UV). Furthermore, we performed a series of study for gaining a better mechanistic understanding of the scaffolds bactericidal activity through protein adsorption study and analysis of the reactive oxygen species (ROS) levels. Furthermore, the in vivo subcutaneous implantation performed in rats confirmed the biocompatibility of our designed scaffolds.
Collapse
Affiliation(s)
- Mirian Michelle Machado De Paula
- Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Nicole Joy Bassous
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Samson Afewerki
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Division of Gastroenterology, Brigham and Women´s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samarah Vargas Harb
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Institute of Chemistry, UNESP-São Paulo State University, Araraquara, São Paulo, Brazil
| | - Paria Ghannadian
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Fernanda Roberta Marciano
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Institute of Science and Technology, Brasil University, São Paulo, SP, Brazil
| | - Bartolomeu Cruz Viana
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, PPGCM-Materials Science and Engineering graduate program, UFPI-Federal University of Piauí, Teresina, PI, Brazil
- Department of Physics, UFPI-Federal University of Piauí, Teresina, PI, Brazil
| | - Carla Roberta Tim
- Institute of Science and Technology, Brasil University, São Paulo, SP, Brazil
| | - Thomas Jay Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Anderson Oliveira Lobo
- Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
- Institute of Science and Technology, Brasil University, São Paulo, SP, Brazil
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, PPGCM-Materials Science and Engineering graduate program, UFPI-Federal University of Piauí, Teresina, PI, Brazil
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: ,
| |
Collapse
|
9
|
Lobo AO, Afewerki S, de Paula MMM, Ghannadian P, Marciano FR, Zhang YS, Webster TJ, Khademhosseini A. Electrospun nanofiber blend with improved mechanical and biological performance. Int J Nanomedicine 2018; 13:7891-7903. [PMID: 30538466 PMCID: PMC6255114 DOI: 10.2147/ijn.s175619] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Here, electrospun fibers based on a blend of polycaprolactone (PCL), poly(ethylene glycol) (PEG), and gelatin methacryloyl (GelMA) were developed. The careful choice of this polymer combination allowed for the preparation of a biomaterial that preserved the mechanical strength of PCL, while at the same time improving the hydrophilicity of the blended material and human osteoblast maturation. Methods The morphology, chemical structure, wettability, and mechanical properties before and after UV photocrosslinking were evaluated. Furthermore, human osteoblasts (hFOB) were cultivated for up to 21 days on the scaffolds, and their potential to upregulate cell proliferation, alkaline phosphatase (ALP) activity, and calcium deposition were investigated. Results Contact angle measurement results showed that the developed scaffolds presented hydrophilic properties after PEG and GelMA incorporation before (25°) and after UV photocross-linking (69°) compared to pure PCL (149°). PCL:PEG:GelMA-UV displayed a slight increase in mechanical strength (elastic modulus ~37 MPa) over PCL alone (~33 MPa). Normally, an increase in strength of fibers leads to a decrease in elongation at break, due to the material becoming less deformable and stiffer, thus leading to breaks at low strain. This behavior was observed by comparing PCL (elongation at break ~106%) and PCL:PEG:GelMA-UV (~50%). Moreover, increases in ALP activity (10-fold at day 14) and calcium deposition (1.3-fold at day 21) by hFOBs were detected after PEG and GelMA incorporation after UV photocross-linking compared to pure PCL. Ultrathin and hydrophilic fibers were obtained after PEG and GelMA incorporation after UV photocrosslinking, but the strength of PCL was maintained. Interestingly, those ultrathin fiber characteristics improved hFOB functions. Conclusion These findings appear promising for the use of these electrospun scaffolds, based on the combination of polymers used here for numerous orthopedic applications.
Collapse
Affiliation(s)
- Anderson Oliveira Lobo
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, PPGCM-Materials Science and Engineering Graduate Program, UFPI-Federal University of Piauí, Teresina, Piauí, CEP 64049-550, Brazil,.,Institute of Science and Technology, Brasil University, São Paulo, CEP 08230-030, Brazil, .,Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA, , .,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, ,
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA, , .,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, ,
| | | | - Paria Ghannadian
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Fernanda Roberta Marciano
- Institute of Science and Technology, Brasil University, São Paulo, CEP 08230-030, Brazil, .,Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA, , .,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, ,
| | - Thomas Jay Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA, , .,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA, , .,Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Bioindustrial Technologies, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
10
|
Dias JR, Baptista-Silva S, Sousa A, Oliveira AL, Bártolo PJ, Granja PL. Biomechanical performance of hybrid electrospun structures for skin regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:816-827. [PMID: 30274117 DOI: 10.1016/j.msec.2018.08.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/03/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022]
Affiliation(s)
- J R Dias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Centre for Rapid and Sustainable Product Development (CDRsp), Polytechnic Institute of Leiria, Leiria, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - S Baptista-Silva
- CBQF - Center for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, Porto, Portugal
| | - A Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - A L Oliveira
- CBQF - Center for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, Porto, Portugal
| | - P J Bártolo
- School of Mechanical, Aerospace and Civil Engineering & Manchester Institute of Biotechnology, University of Manchester, UK
| | - P L Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), Porto, Portugal
| |
Collapse
|
11
|
Mohammadi M, Alibolandi M, Abnous K, Salmasi Z, Jaafari MR, Ramezani M. Fabrication of hybrid scaffold based on hydroxyapatite-biodegradable nanofibers incorporated with liposomal formulation of BMP-2 peptide for bone tissue engineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1987-1997. [PMID: 29933024 DOI: 10.1016/j.nano.2018.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
Abstract
In the present study, we fabricated an efficient, simple biomimetic scaffold to stimulate osteogenic differentiation of mesenchymal stem cells (MSCs). Electrospun poly L-lactic acid nanofibers were employed to mimic the nanofibrillar structure of bone proteins and coated with hydroxyapatite nanoparticles to simulate bone minerals. Thereafter, we regulated the release pattern of BMP-2 peptide through covalent attachment of an optimized liposomal formulation to the scaffold. The fabricated platform provided a sustained release profile of BMP-2 peptide up to 21 days while supporting cellular attachment and proliferation without cytotoxicity. In-vitro results confirmed the superiority of the scaffold containing liposomes through enhancement of growth and differentiation of MSCs. Ectopic bone formation model exhibited significant localized initiation of bone formation of liposome incorporated scaffold. Consequently, these findings demonstrated that our designed platform with modified release properties of BMP-2 peptide considerably promoted osteogenic differentiation of MSCs making it a unique candidate for bone regeneration therapeutics.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Khoshraftar A, Noorani B, Yazdian F, Rashedi H, Vaez Ghaemi R, Alihemmati Z, Shahmoradi S. Fabrication and evaluation of nanofibrous polyhydroxybutyrate valerate scaffolds containing hydroxyapatite particles for bone tissue engineering. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1417283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Alireza Khoshraftar
- Department of Biomedical Engineering, Islamic Azad University, Science and Research Branch, Yazd, Iran
| | - Behnam Noorani
- Department of Life Science Engineering, Faculty of Interdisciplinary New Science and Technologies, University of Tehran (UT), Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of Interdisciplinary New Science and Technologies, University of Tehran (UT), Tehran, Iran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Iran
| | - Roza Vaez Ghaemi
- Chemical and Biological Engineering Department, The University of British Columbia, Vancouver, Canada
| | - Zakie Alihemmati
- Department of Life Science Engineering, Faculty of Interdisciplinary New Science and Technologies, University of Tehran (UT), Tehran, Iran
| | - Saleheh Shahmoradi
- Department of Life Science Engineering, Faculty of Interdisciplinary New Science and Technologies, University of Tehran (UT), Tehran, Iran
| |
Collapse
|
13
|
Radtke A, Jędrzejewski T, Kozak W, Sadowska B, Więckowska-Szakiel M, Talik E, Mäkelä M, Leskelä M, Piszczek P. Optimization of the Silver Nanoparticles PEALD Process on the Surface of 1-D Titania Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E193. [PMID: 28737725 PMCID: PMC5535259 DOI: 10.3390/nano7070193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 01/04/2023]
Abstract
Plasma enhanced atomic layer deposition (PEALD) of silver nanoparticles on the surface of 1-D titania coatings, such as nanotubes (TNT) and nanoneedles (TNN), has been carried out. The formation of TNT and TNN layers enriched with dispersed silver particles of strictly defined sizes and the estimation of their bioactivity was the aim of our investigations. The structure and the morphology of produced materials were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron miscroscopy (SEM). Their bioactivity and potential usefulness in the modification of implants surface have been estimated on the basis of the fibroblasts adhesion and proliferation assays, and on the basis of the determination of their antibacterial activity. The cumulative silver release profiles have been checked with the use of inductively coupled plasma-mass spectrometry (ICPMS), in order to exclude potential cytotoxicity of silver decorated systems. Among the studied nanocomposite samples, TNT coatings, prepared at 3, 10, 12 V and enriched with silver nanoparticles produced during 25 cycles of PEALD, revealed suitable biointegration properties and may actively counteract the formation of bacterial biofilm.
Collapse
Affiliation(s)
- Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
- Nano-Implant Ltd., Gagarina 5, 87-100 Toruń, Poland.
| | - Tomasz Jędrzejewski
- Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Wiesław Kozak
- Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Beata Sadowska
- Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| | - Marzena Więckowska-Szakiel
- Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| | - Ewa Talik
- A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland.
| | - Maarit Mäkelä
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland.
| | - Markku Leskelä
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland.
| | - Piotr Piszczek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
- Nano-Implant Ltd., Gagarina 5, 87-100 Toruń, Poland.
| |
Collapse
|
14
|
Radtke A, Topolski A, Jędrzejewski T, Kozak W, Sadowska B, Więckowska-Szakiel M, Piszczek P. Bioactivity Studies on Titania Coatings and the Estimation of Their Usefulness in the Modification of Implant Surfaces. NANOMATERIALS 2017; 7:nano7040090. [PMID: 28441733 PMCID: PMC5408182 DOI: 10.3390/nano7040090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/18/2022]
Abstract
Morphologically different titania coatings (nanofibers (TNFs), nanoneedles (TNNs), and nanowires (TNWs)) were studied as potential biomedical materials. The abovementioned systems were produced in situ on Ti6Al4V substrates via direct oxidation processes using H2O2 and H2O2/CaCl2 agents, and via thermal oxidation in the presence of Ar and Ar/H2O2. X-ray diffraction and Raman spectroscopy have been used to structurally characterize the produced materials. The morphology changes on the titanium alloy surface were investigated using scanning electron microscopy. The bioactivity of the samples has been estimated by the analysis of the produced titania coatings’ biocompatibility, and by the determination of their ability to reduce bacterial biofilm formation. The photoactivity of the produced nanocoatings was also analyzed, in order to determine the possibility of using titania coated implant surfaces in the sterilization process of implants. Photocatalytic activity was estimated using the methylene blue photodegradation kinetics, in the presence of UV light.
Collapse
Affiliation(s)
- Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
- Nano-Implant Ltd. Gagarina 5, 87-100 Toruń, Poland.
| | - Adrian Topolski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Tomasz Jędrzejewski
- Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Wiesław Kozak
- Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Beata Sadowska
- Laboratory of Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| | - Marzena Więckowska-Szakiel
- Laboratory of Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland.
| | - Piotr Piszczek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
- Nano-Implant Ltd. Gagarina 5, 87-100 Toruń, Poland.
| |
Collapse
|
15
|
De Sá KD, Figueira DR, Miguel SP, Correia TR, Silva AP, Correia IJ. 3D scaffolds coated with nanofibers displaying bactericidal activity for bone tissue applications. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1236338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kevin D. De Sá
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Daniela R. Figueira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sónia P. Miguel
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago R. Correia
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Abílio P. Silva
- Centro de Ciência e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilhã, Portugal
| | - Ilídio J. Correia
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
16
|
Santos FG, Bonkovoski LC, Garcia FP, Cellet TSP, Witt MA, Nakamura CV, Rubira AF, Muniz EC. Antibacterial Performance of a PCL-PDMAEMA Blend Nanofiber-Based Scaffold Enhanced with Immobilized Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9304-9314. [PMID: 28230345 DOI: 10.1021/acsami.6b14411] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the present study, nanofiber meshes (NFs), composed of polycaprolactone and poly[(2-dimethylamino)ethyl methacrylate] at 80/20 and 50/50 PCL/PDMAEMA blend ratios, were obtained through electrospinning. Silver nanoparticles (AgNPs) formed in situ were then immobilized on NF surfaces through adsorption processes at different pHs. It was possible to observe that the amount of NF-AgNPs can be tuned by changing the pH of AgNPs immobilization and the PCL/PDMAEMA ratio in the blend. The neat NF and NF-AgNPs were characterized with respect to their morphology and mechanical properties. The effects of AgNPs on the antibacterial activities and cytotoxicity of meshes were also evaluated. The antibacterial performance of such NF was improved by the presence of AgNPs. The NF-AgNPs presented good antibacterial effect against S. aureus and partial toxicity against E. coli and P. aeruginosa. Also, compared with neat PCL/PDMAEMA the NF-AgNPs presented lower cytotoxicity against VERO cells, showing their potential for applications in tissue engineering for different types of cell growth.
Collapse
Affiliation(s)
| | | | | | | | - Maria A Witt
- Pontifícia Universidade Católica do Paraná (PUCPR), 80215-901 Curitiba, PR, Brazil
| | | | | | - Edvani C Muniz
- Universidade Tecnológica Federal do Paraná (UTFPR-LD), PPGCEM, 86036-370 Londrina, PR, Brazil
- Programa de Pós-graduação em Biotecnologia Aplicada a Agricultura, Universidade Paranaense (UNIPAR) , 87502-210, Umuarama, PR, Brazil
| |
Collapse
|
17
|
Borrotti M, Lanzarone E, Manganini F, Ortelli S, Pievatolo A, Tonetti C. Defect minimization and feature control in electrospinning through design of experiments. J Appl Polym Sci 2017. [DOI: 10.1002/app.44740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Passive Mixing Capabilities of Micro- and Nanofibres When Used in Microfluidic Systems. SENSORS 2016; 16:s16081238. [PMID: 27527184 PMCID: PMC5017403 DOI: 10.3390/s16081238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 11/17/2022]
Abstract
Nanofibres are increasingly being used in the field of bioanalytics due to their large surface-area-to-volume ratios and easy-to-functionalize surfaces. To date, nanofibres have been studied as effective filters, concentrators, and immobilization matrices within microfluidic devices. In addition, they are frequently used as optical and electrochemical transduction materials. In this work, we demonstrate that electrospun nanofibre mats cause appreciable passive mixing and therefore provide dual functionality when incorporated within microfluidic systems. Specifically, electrospun nanofibre mats were integrated into Y-shaped poly(methyl methacrylate) microchannels and the degree of mixing was quantified using fluorescence microscopy and ImageJ analysis. The degree of mixing afforded in relationship to fibre diameter, mat height, and mat length was studied. We observed that the most mixing was caused by small diameter PVA nanofibres (450–550 nm in diameter), producing up to 71% mixing at the microchannel outlet, compared to up to 51% with polystyrene microfibres (0.8–2.7 μm in diameter) and 29% mixing in control channels containing no fibres. The mixing afforded by the PVA nanofibres is caused by significant inhomogeneity in pore size and distribution leading to percolation. As expected, within all the studies, fluid mixing increased with fibre mat height, which corresponds to the vertical space of the microchannel occupied by the fibre mats. Doubling the height of the fibre mat led to an average increase in mixing of 14% for the PVA nanofibres and 8% for the PS microfibres. Overall, mixing was independent of the length of the fibre mat used (3–10 mm), suggesting that most mixing occurs as fluid enters and exits the fibre mat. The mixing effects observed within the fibre mats were comparable to or better than many passive mixers reported in literature. Since the nanofibre mats can be further functionalized to couple analyte concentration, immobilization, and detection with enhanced fluid mixing, they are a promising nanomaterial providing dual-functionality within lab-on-a-chip devices.
Collapse
|
19
|
Manna A, Pramanik S, Tripathy A, Radzi Z, Moradi A, Pingguan-Murphy B, Abu Osman NA. Design and development of an in situ synthesized layered double hydroxide structure of Fe-induced hydroxyapatite for drug carriers. RSC Adv 2016. [DOI: 10.1039/c6ra03093a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Possible mechanisms: (i) formation of LDH structure of Fe-induced hydroxyapatite (HA), (ii) intercalation of Aceclofenac (AF) drug in LDH structure of FH carriers and (iii) releasing of drug via hydrolysis and/or reaction with other biomolecules.
Collapse
Affiliation(s)
- Ayan Manna
- Centre for Applied Biomechanics
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur – 50603
| | - Sumit Pramanik
- Centre for Applied Biomechanics
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur – 50603
| | - Ashis Tripathy
- Centre for Applied Biomechanics
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur – 50603
| | - Zamri Radzi
- Department of Paediatric Dentistry & Orthodontics
- Faculty of Dentistry
- University of Malaya
- Kuala Lumpur – 50603
- Malaysia
| | - Ali Moradi
- Centre for Applied Biomechanics
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur – 50603
| | - Belinda Pingguan-Murphy
- Centre for Applied Biomechanics
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur – 50603
| | - Noor Azuan Abu Osman
- Centre for Applied Biomechanics
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur – 50603
| |
Collapse
|
20
|
Cell Attachment and Viability Study of PCL Nano-fiber Modified by Cold Atmospheric Plasma. Cell Biochem Biophys 2015; 74:181-90. [DOI: 10.1007/s12013-015-0718-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
In Vitro Study of Surface Modified Poly(ethylene glycol)-Impregnated Sintered Bovine Bone Scaffolds on Human Fibroblast Cells. Sci Rep 2015; 5:9806. [PMID: 25950377 PMCID: PMC4423443 DOI: 10.1038/srep09806] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/19/2015] [Indexed: 11/08/2022] Open
|
22
|
Chung HJ, Hassan MM, Park JO, Kim HJ, Hong ST. Manipulation of a quasi-natural cell block for high-efficiency transplantation of adherent somatic cells. Braz J Med Biol Res 2015; 48:392-400. [PMID: 25742639 PMCID: PMC4445661 DOI: 10.1590/1414-431x20144322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/10/2014] [Indexed: 11/22/2022] Open
Abstract
Recent advances have raised hope that transplantation of adherent somatic cells could
provide dramatic new therapies for various diseases. However, current methods for
transplanting adherent somatic cells are not efficient enough for therapeutic
applications. Here, we report the development of a novel method to generate
quasi-natural cell blocks for high-efficiency transplantation of adherent somatic
cells. The blocks were created by providing a unique environment in which cultured
cells generated their own extracellular matrix. Initially, stromal cells isolated
from mice were expanded in vitro in liquid cell culture medium
followed by transferring the cells into a hydrogel shell. After incubation for 1 day
with mechanical agitation, the encapsulated cell mass was perforated with a thin
needle and then incubated for an additional 6 days to form a quasi-natural cell
block. Allograft transplantation of the cell block into C57BL/6 mice resulted in
perfect adaptation of the allograft and complete integration into the tissue of the
recipient. This method could be widely applied for repairing damaged cells or
tissues, stem cell transplantation, ex vivo gene therapy, or plastic
surgery.
Collapse
Affiliation(s)
- H J Chung
- Department of Biomedical Sciences, Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, South Korea
| | - M M Hassan
- Department of Biomedical Sciences, Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, South Korea
| | - J O Park
- Department of Biomedical Sciences, Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, South Korea
| | - H J Kim
- JINIS BDRD Institute, JINIS Biopharmaceuticals Co., Wanju, Chonbuk, South Korea
| | - S T Hong
- Department of Biomedical Sciences, Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, South Korea
| |
Collapse
|
23
|
A comparison in mechanical properties of cermets of calcium silicate with Ti-55Ni and Ti-6Al-4V alloys for hard tissues replacement. ScientificWorldJournal 2014; 2014:616804. [PMID: 25538954 PMCID: PMC4235599 DOI: 10.1155/2014/616804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/07/2014] [Accepted: 09/14/2014] [Indexed: 11/17/2022] Open
Abstract
This study investigated the impact of calcium silicate (CS) content on composition, compressive mechanical properties, and hardness of CS cermets with Ti-55Ni and Ti-6Al-4V alloys sintered at 1200°C. The powder metallurgy route was exploited to prepare the cermets. New phases of materials of Ni16Ti6Si7, CaTiO3, and Ni31Si12 appeared in cermet of Ti-55Ni with CS and in cermet of Ti-6Al-4V with CS, the new phases Ti5Si3, Ti2O, and CaTiO3, which were emerged during sintering at different CS content (wt%). The minimum shrinkage and density were observed in both groups of cermets for the 50 and 100 wt% CS content, respectively. The cermets with 40 wt% of CS had minimum compressive Young's modulus. The minimum of compressive strength and strain percentage at maximum load were revealed in cermets with 50 and 40 wt% of CS with Ti-55Ni and Ti-6Al-4V cermets, respectively. The cermets with 80 and 90 wt% of CS showed more plasticity than the pure CS. It concluded that the composition and mechanical properties of sintered cermets of Ti-55Ni and Ti-6Al-4V with CS significantly depend on the CS content in raw cermet materials. Thus, the different mechanical properties of the cermets can be used as potential materials for different hard tissues replacements.
Collapse
|
24
|
Moradi A, Pramanik S, Ataollahi F, Abdul Khalil A, Kamarul T, Pingguan-Murphy B. A comparison study of different physical treatments on cartilage matrix derived porous scaffolds for tissue engineering applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2014; 15:065001. [PMID: 27877731 PMCID: PMC5090390 DOI: 10.1088/1468-6996/15/6/065001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 11/12/2014] [Accepted: 10/14/2014] [Indexed: 06/06/2023]
Abstract
Native cartilage matrix derived (CMD) scaffolds from various animal and human sources have drawn attention in cartilage tissue engineering due to the demonstrable presence of bioactive components. Different chemical and physical treatments have been employed to enhance the micro-architecture of CMD scaffolds. In this study we have assessed the typical effects of physical cross-linking methods, namely ultraviolet (UV) light, dehydrothermal (DHT) treatment, and combinations of them on bovine articular CMD porous scaffolds with three different matrix concentrations (5%, 15% and 30%) to assess the relative strengths of each treatment. Our findings suggest that UV and UV-DHT treatments on 15% CMD scaffolds can yield architecturally optimal scaffolds for cartilage tissue engineering.
Collapse
Affiliation(s)
- Ali Moradi
- Department of Biomedical Engineering, Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sumit Pramanik
- Department of Biomedical Engineering, Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Forough Ataollahi
- Department of Biomedical Engineering, Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Alizan Abdul Khalil
- Department of Surgery, Faculty of Medicine Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- Department of Orthopaedic Surgery, Faculty of Medicine Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Pramanik S, Pingguan-Murphy B, Cho J, Abu Osman NA. Design and development of potential tissue engineering scaffolds from structurally different longitudinal parts of a bovine-femur. Sci Rep 2014; 4:5843. [PMID: 25068570 PMCID: PMC5376170 DOI: 10.1038/srep05843] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/02/2014] [Indexed: 12/02/2022] Open
Abstract
The complex architecture of the cortical part of the bovine-femur was examined to develop potential tissue engineering (TE) scaffolds. Weight-change and X-ray diffraction (XRD) results show that significant phase transformation and morphology conversion of the bone occur at 500–750°C and 750–900°C, respectively. Another breakthrough finding was achieved by determining a sintering condition for the nucleation of hydroxyapatite crystal from bovine bone via XRD technique. Scanning electron microscopy results of morphological growth suggests that the concentration of polymer fibrils increases (or decreases, in case of apatite crystals) from the distal to proximal end of the femur. Energy-dispersive analysis of X-ray, Fourier transform infrared, micro-computer tomography, and mechanical studies of the actual composition also strongly support our microscopic results and firmly indicate the functionally graded material properties of bovine-femur. Bones sintered at 900 and 1000°C show potential properties for soft and hard TE applications, respectively.
Collapse
Affiliation(s)
- Sumit Pramanik
- Centre for Applied Biomechanics, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Belinda Pingguan-Murphy
- Centre for Applied Biomechanics, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jongman Cho
- Department of Biomedical Engineering, Inje University, Gimhae, 621-749, Republic of Korea
| | - Noor Azuan Abu Osman
- Centre for Applied Biomechanics, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
26
|
Li PS, Lee IL, Yu WL, Sun JS, Jane WN, Shen HH. A novel albumin-based tissue scaffold for autogenic tissue engineering applications. Sci Rep 2014; 4:5600. [PMID: 25034369 PMCID: PMC4102902 DOI: 10.1038/srep05600] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 06/19/2014] [Indexed: 01/12/2023] Open
Abstract
Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.
Collapse
Affiliation(s)
- Pei-Shan Li
- 1] Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan [2] Tissue Regeneration Product Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu County 310, Taiwan [3]
| | - I-Liang Lee
- 1] c/o Rm. 624, Bldg. 53, No. 195, Sec. 4, Chung Hsing Rd., Chutung Township, Hsinchu County 310, Taiwan [2]
| | - Wei-Lin Yu
- Tissue Regeneration Product Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu County 310, Taiwan
| | - Jui-Sheng Sun
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, National Taiwan University, Taipei 10051 and Department of Orthopaedic Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 30059, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hsin-Hsin Shen
- Tissue Regeneration Product Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu County 310, Taiwan
| |
Collapse
|
27
|
Bassil M, AL Moussawel J, Ibrahim M, Azzi G, El Tahchi M. Electrospinning of highly aligned and covalently cross-linked hydrogel microfibers. J Appl Polym Sci 2014. [DOI: 10.1002/app.41092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maria Bassil
- LBMI; Department of Physics; Lebanese University, Faculty of Sciences II; PO Box 90656 Jdeidet Lebanon
| | - Judy AL Moussawel
- Research platform of nanosciences and nanotechnologies; Department of Physics; Pierre Gemayel campus, Fanar, Lebanese University; 90239 Lebanon
| | - Michael Ibrahim
- LBMI; Department of Physics; Lebanese University, Faculty of Sciences II; PO Box 90656 Jdeidet Lebanon
| | - Georges Azzi
- LBMI; Department of Physics; Lebanese University, Faculty of Sciences II; PO Box 90656 Jdeidet Lebanon
| | - Mario El Tahchi
- LBMI; Department of Physics; Lebanese University, Faculty of Sciences II; PO Box 90656 Jdeidet Lebanon
| |
Collapse
|
28
|
Ataollahi F, Pramanik S, Moradi A, Dalilottojari A, Pingguan-Murphy B, Wan Abas WAB, Abu Osman NA. Endothelial cell responses in terms of adhesion, proliferation, and morphology to stiffness of polydimethylsiloxane elastomer substrates. J Biomed Mater Res A 2014; 103:2203-13. [DOI: 10.1002/jbm.a.35186] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/26/2014] [Accepted: 03/31/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Forough Ataollahi
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Sumit Pramanik
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Ali Moradi
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Adel Dalilottojari
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering; Faculty of Engineering; University of Malaya; Kuala Lumpur 50603 Malaysia
| |
Collapse
|
29
|
Ingavle GC, Leach JK. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:277-93. [PMID: 24004443 DOI: 10.1089/ten.teb.2013.0276] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymeric nanofibers have potential as tissue engineering scaffolds, as they mimic the nanoscale properties and structural characteristics of native extracellular matrix (ECM). Nanofibers composed of natural and synthetic polymers, biomimetic composites, ceramics, and metals have been fabricated by electrospinning for various tissue engineering applications. The inherent advantages of electrospinning nanofibers include the generation of substrata with high surface area-to-volume ratios, the capacity to precisely control material and mechanical properties, and a tendency for cellular in-growth due to interconnectivity within the pores. Furthermore, the electrospinning process affords the opportunity to engineer scaffolds with micro- to nanoscale topography similar to the natural ECM. This review describes the fundamental aspects of the electrospinning process when applied to spinnable natural and synthetic polymers; particularly, those parameters that influence fiber geometry, morphology, mesh porosity, and scaffold mechanical properties. We describe cellular responses to fiber morphology achieved by varying processing parameters and highlight successful applications of electrospun nanofibrous scaffolds when used to tissue engineer bone, skin, and vascular grafts.
Collapse
Affiliation(s)
- Ganesh C Ingavle
- 1 Department of Biomedical Engineering, University of California Davis , Davis, California
| | | |
Collapse
|
30
|
Aligning cells in arbitrary directions on a membrane sheet using locally formed microwrinkles. Biotechnol Lett 2013; 36:391-6. [DOI: 10.1007/s10529-013-1368-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/18/2013] [Indexed: 11/26/2022]
|
31
|
Morphological Cues for Regulation of Cell Adhesion and Motility with Tailored Electrospun Scaffolds of PCL and PCL/PVP Blends. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0293-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
32
|
Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:485-502. [PMID: 23672709 DOI: 10.1089/ten.teb.2012.0437] [Citation(s) in RCA: 1445] [Impact Index Per Article: 131.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tissue engineering applications commonly encompass the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the incorporation of cells or growth factors to regenerate damaged tissues or organs. These scaffolds serve to mimic the actual in vivo microenvironment where cells interact and behave according to the mechanical cues obtained from the surrounding 3D environment. Hence, the material properties of the scaffolds are vital in determining cellular response and fate. These 3D scaffolds are generally highly porous with interconnected pore networks to facilitate nutrient and oxygen diffusion and waste removal. This review focuses on the various fabrication techniques (e.g., conventional and rapid prototyping methods) that have been employed to fabricate 3D scaffolds of different pore sizes and porosity. The different pore size and porosity measurement methods will also be discussed. Scaffolds with graded porosity have also been studied for their ability to better represent the actual in vivo situation where cells are exposed to layers of different tissues with varying properties. In addition, the ability of pore size and porosity of scaffolds to direct cellular responses and alter the mechanical properties of scaffolds will be reviewed, followed by a look at nature's own scaffold, the extracellular matrix. Overall, the limitations of current scaffold fabrication approaches for tissue engineering applications and some novel and promising alternatives will be highlighted.
Collapse
Affiliation(s)
- Qiu Li Loh
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University , Singapore, Singapore
| | | |
Collapse
|
33
|
Morphological Change of Heat Treated Bovine Bone: A Comparative Study. MATERIALS 2012; 6:65-75. [PMID: 28809294 PMCID: PMC5452110 DOI: 10.3390/ma6010065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 10/31/2012] [Accepted: 11/08/2012] [Indexed: 12/02/2022]
Abstract
In this work, untreated bovine cortical bones (BCBs) were exposed to a range of heat treatments in order to determine at which temperature the apatite develops an optimum morphology comprising porous nano hydroxyapatite (nanoHAp) crystals. Rectangular specimens (10 mm × 10 mm × 3–5 mm) of BCB were prepared, being excised in normal to longitudinal and transverse directions. Specimens were sintered at up to 900 °C under ambient pressure in order to produce apatites by two steps sintering. The samples were characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) attached to an energy-dispersive X-ray spectroscopy detector. For the first time, morphology of the HAp particles was predicted by XRD, and it was verified by SEM. The results show that an equiaxed polycrystalline HAp particle with uniform porosity was produced at 900 °C. It indicates that a porous nanoHAp achieved by sintering at 900 °C can be an ideal candidate as an in situ scaffold for load-bearing tissue applications.
Collapse
|