1
|
Aguadé-Gorgorió G, Anderson ARA, Solé R. Modeling tumors as complex ecosystems. iScience 2024; 27:110699. [PMID: 39280631 PMCID: PMC11402243 DOI: 10.1016/j.isci.2024.110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Many cancers resist therapeutic intervention. This is fundamentally related to intratumor heterogeneity: multiple cell populations, each with different phenotypic signatures, coexist within a tumor and its metastases. Like species in an ecosystem, cancer populations are intertwined in a complex network of ecological interactions. Most mathematical models of tumor ecology, however, cannot account for such phenotypic diversity or predict its consequences. Here, we propose that the generalized Lotka-Volterra model (GLV), a standard tool to describe species-rich ecological communities, provides a suitable framework to model the ecology of heterogeneous tumors. We develop a GLV model of tumor growth and discuss how its emerging properties provide a new understanding of the disease. We discuss potential extensions of the model and their application to phenotypic plasticity, cancer-immune interactions, and metastatic growth. Our work outlines a set of questions and a road map for further research in cancer ecology.
Collapse
Affiliation(s)
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ricard Solé
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
2
|
Aguadé-Gorgorió G, Anderson AR, Solé R. Modeling tumors as species-rich ecological communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590504. [PMID: 38712062 PMCID: PMC11071393 DOI: 10.1101/2024.04.22.590504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Many advanced cancers resist therapeutic intervention. This process is fundamentally related to intra-tumor heterogeneity: multiple cell populations, each with different mutational and phenotypic signatures, coexist within a tumor and its metastatic nodes. Like species in an ecosystem, many cancer cell populations are intertwined in a complex network of ecological interactions. Most mathematical models of tumor ecology, however, cannot account for such phenotypic diversity nor are able to predict its consequences. Here we propose that the Generalized Lotka-Volterra model (GLV), a standard tool to describe complex, species-rich ecological communities, provides a suitable framework to describe the ecology of heterogeneous tumors. We develop a GLV model of tumor growth and discuss how its emerging properties, such as outgrowth and multistability, provide a new understanding of the disease. Additionally, we discuss potential extensions of the model and their application to three active areas of cancer research, namely phenotypic plasticity, the cancer-immune interplay and the resistance of metastatic tumors to treatment. Our work outlines a set of questions and a tentative road map for further research in cancer ecology.
Collapse
Affiliation(s)
| | - Alexander R.A. Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA
| | - Ricard Solé
- ICREA-Complex Systems Lab, UPF-PRBB, Dr. Aiguader 80, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
3
|
Veith T, Schultz A, Alahmari S, Beck R, Johnson J, Andor N. Mathematical Modeling of Clonal Interference by Density-Dependent Selection in Heterogeneous Cancer Cell Lines. Cells 2023; 12:1849. [PMID: 37508513 PMCID: PMC10378185 DOI: 10.3390/cells12141849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Many cancer cell lines are aneuploid and heterogeneous, with multiple karyotypes co-existing within the same cell line. Karyotype heterogeneity has been shown to manifest phenotypically, thus affecting how cells respond to drugs or to minor differences in culture media. Knowing how to interpret karyotype heterogeneity phenotypically would give insights into cellular phenotypes before they unfold temporally. Here, we re-analyzed single cell RNA (scRNA) and scDNA sequencing data from eight stomach cancer cell lines by placing gene expression programs into a phenotypic context. Using live cell imaging, we quantified differences in the growth rate and contact inhibition between the eight cell lines and used these differences to prioritize the transcriptomic biomarkers of the growth rate and carrying capacity. Using these biomarkers, we found significant differences in the predicted growth rate or carrying capacity between multiple karyotypes detected within the same cell line. We used these predictions to simulate how the clonal composition of a cell line would change depending on density conditions during in-vitro experiments. Once validated, these models can aid in the design of experiments that steer evolution with density-dependent selection.
Collapse
Affiliation(s)
- Thomas Veith
- Moffitt Cancer Center, Integrated Mathematical Oncology, USF Magnolia Drive, Tampa, FL 33612, USA; (T.V.); (A.S.); (R.B.)
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33612, USA
| | - Andrew Schultz
- Moffitt Cancer Center, Integrated Mathematical Oncology, USF Magnolia Drive, Tampa, FL 33612, USA; (T.V.); (A.S.); (R.B.)
| | - Saeed Alahmari
- Department of Computer Science, Najran University, King Abdulaziz Road, Najran 61441, Saudi Arabia;
| | - Richard Beck
- Moffitt Cancer Center, Integrated Mathematical Oncology, USF Magnolia Drive, Tampa, FL 33612, USA; (T.V.); (A.S.); (R.B.)
| | - Joseph Johnson
- Moffitt Cancer Center, Analytic Microscopy Core, USF Magnolia Drive, Tampa, FL 33612, USA;
| | - Noemi Andor
- Moffitt Cancer Center, Integrated Mathematical Oncology, USF Magnolia Drive, Tampa, FL 33612, USA; (T.V.); (A.S.); (R.B.)
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E Fowler Ave, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Bukkuri A, Pienta KJ, Hockett I, Austin RH, Hammarlund EU, Amend SR, Brown JS. Modeling cancer's ecological and evolutionary dynamics. Med Oncol 2023; 40:109. [PMID: 36853375 PMCID: PMC9974726 DOI: 10.1007/s12032-023-01968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023]
Abstract
In this didactic paper, we present a theoretical modeling framework, called the G-function, that integrates both the ecology and evolution of cancer to understand oncogenesis. The G-function has been used in evolutionary ecology, but has not been widely applied to problems in cancer. Here, we build the G-function framework from fundamental Darwinian principles and discuss how cancer can be seen through the lens of ecology, evolution, and game theory. We begin with a simple model of cancer growth and add on components of cancer cell competition and drug resistance. To aid in exploration of eco-evolutionary modeling with this approach, we also present a user-friendly software tool. By the end of this paper, we hope that readers will be able to construct basic G function models and grasp the usefulness of the framework to understand the games cancer plays in a biologically mechanistic fashion.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA.
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Ian Hockett
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Emma U Hammarlund
- Tissue Development and Evolution Research Group, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sarah R Amend
- The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, USA
| |
Collapse
|
5
|
Kareva I. Different costs of therapeutic resistance in cancer: Short- and long-term impact of population heterogeneity. Math Biosci 2022; 352:108891. [PMID: 35998834 DOI: 10.1016/j.mbs.2022.108891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/28/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022]
Abstract
Therapeutic resistance continues to undercut long-term success of many promising cancer treatments. At times, development of therapeutic resistance can come at a fitness cost for the cancer cell population, which could potentially be leveraged to the patient's advantage. A mathematical formulation of such a situation was proposed by Pressley et al. (2020), who discussed two scenarios, namely, when developing therapeutic resistance can come at a cost to proliferative capacity (such as when a drug targets a growth receptor), or to the total tumor carrying capacity (such as when a drug targets neovascularization). Here we expand the analysis of the two models and evaluate both short- and long-term dynamics of a population heterogeneous with respect to resistance. We analyze the four initial distributions with respect to resistance at the time of treatment initiation: uniform, bell-shaped, exponential, and U-shaped. We show that final population composition is invariant to the initial distribution, with a single clone eventually dominating within the population; the value of the resistance parameter of the final clone depends on other system parameters but not on the initial distribution. Transitional behaviors, however, which may have more significant implications for immediate treatment decisions, depend critically on the initial distribution. Furthermore, we show that depending on the mechanism for the cost of resistance (i.e., proliferation vs carrying capacity), increase in natural cell death rate has opposite effects, with higher natural death rate selecting for less resistant cell clones in the long term for proliferation-dependent model, and selecting for more resistant cell clones for carrying capacity-dependent model, a prediction that may have implications for combination therapy with cytotoxic agents. We conclude with a discussion of strengths and limitations of using modeling for understanding treatment trajectory, as well as the promise of model-informed evolutionary steering for improved long-term therapeutic outcomes.
Collapse
Affiliation(s)
- Irina Kareva
- Department of Biomedical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
6
|
M A M, Kim JY, Pan CH, Kim E. The impact of the spatial heterogeneity of resistant cells and fibroblasts on treatment response. PLoS Comput Biol 2022; 18:e1009919. [PMID: 35263336 PMCID: PMC8906648 DOI: 10.1371/journal.pcbi.1009919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
A long-standing practice in the treatment of cancer is that of hitting hard with the maximum tolerated dose to eradicate tumors. This continuous therapy, however, selects for resistant cells, leading to the failure of the treatment. A different type of treatment strategy, adaptive therapy, has recently been shown to have a degree of success in both preclinical xenograft experiments and clinical trials. Adaptive therapy is used to maintain a tumor's volume by exploiting the competition between drug-sensitive and drug-resistant cells with minimum effective drug doses or timed drug holidays. To further understand the role of competition in the outcomes of adaptive therapy, we developed a 2D on-lattice agent-based model. Our simulations show that the superiority of the adaptive strategy over continuous therapy depends on the local competition shaped by the spatial distribution of resistant cells. Intratumor competition can also be affected by fibroblasts, which produce microenvironmental factors that promote cancer cell growth. To this end, we simulated the impact of different fibroblast distributions on treatment outcomes. As a proof of principle, we focused on five types of distribution of fibroblasts characterized by different locations, shapes, and orientations of the fibroblast region with respect to the resistant cells. Our simulation shows that the spatial architecture of fibroblasts modulates tumor progression in both continuous and adaptive therapy. Finally, as a proof of concept, we simulated the outcomes of adaptive therapy of a virtual patient with four metastatic sites composed of different spatial distributions of fibroblasts and drug-resistant cell populations. Our simulation highlights the importance of undetected metastatic lesions on adaptive therapy outcomes.
Collapse
Affiliation(s)
- Masud M A
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Eunjung Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| |
Collapse
|
7
|
Solé R, Aguadé-Gorgorió G. The ecology of cancer differentiation therapy. J Theor Biol 2020; 511:110552. [PMID: 33309530 DOI: 10.1016/j.jtbi.2020.110552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022]
Abstract
A promising, yet still under development approach to cancer treatment is based on the idea of differentiation therapy (DTH). Most tumours are characterized by poorly differentiated cell populations exhibiting a marked loss of traits associated to communication and tissue homeostasis. DTH has been suggested as an alternative (or complement) to cytotoxic-based approaches, and has proven successful in some specific types of cancer such as acute promyelocytic leukemia (APL). While novel drugs favouring the activation of differentiation therapies are being tested, several open problems emerge in relation to its effectiveness on solid tumors. Here we present a mathematical framework to DTH based on a well-known ecological model used to describe habitat loss. The models presented here account for some of the observed clinical and in vitro outcomes of DTH, providing relevant insight into potential therapy design. Furthermore, the same ecological approach is tested in a hierarchical model that accounts for cancer stem cells, highlighting the role of niche specificity in CSC therapy resistance. We show that the lessons learnt from metapopulation ecology can help guide future developments and potential difficulties of DTH.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain; Institut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003 Barcelona, Catalonia, Spain; Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA
| | - Guim Aguadé-Gorgorió
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain; Institut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Reynolds BA, Oli MW, Oli MK. Eco-oncology: Applying ecological principles to understand and manage cancer. Ecol Evol 2020; 10:8538-8553. [PMID: 32884638 PMCID: PMC7452771 DOI: 10.1002/ece3.6590] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is a disease of single cells that expresses itself at the population level. The striking similarities between initiation and growth of tumors and dynamics of biological populations, and between metastasis and ecological invasion and community dynamics suggest that oncology can benefit from an ecological perspective to improve our understanding of cancer biology. Tumors can be viewed as complex, adaptive, and evolving systems as they are spatially and temporally heterogeneous, continually interacting with each other and with the microenvironment and evolving to increase the fitness of the cancer cells. We argue that an eco-evolutionary perspective is essential to understand cancer biology better. Furthermore, we suggest that ecologically informed therapeutic approaches that combine standard of care treatments with strategies aimed at decreasing the evolutionary potential and fitness of neoplastic cells, such as disrupting cell-to-cell communication and cooperation, and preventing successful colonization of distant organs by migrating cancer cells, may be effective in managing cancer as a chronic condition.
Collapse
Affiliation(s)
- Brent A. Reynolds
- Department of NeurosurgeryCollege of MedicineUniversity of FloridaGainesvilleFLUSA
| | - Monika W. Oli
- Department of Microbiology and Cell ScienceInstitute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFLUSA
| | - Madan K. Oli
- Department of Wildlife Ecology and ConservationInstitute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
9
|
Aguadé‐Gorgorió G, Solé R. Adaptive dynamics of unstable cancer populations: The canonical equation. Evol Appl 2018; 11:1283-1292. [PMID: 30151040 PMCID: PMC6099832 DOI: 10.1111/eva.12625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/15/2018] [Indexed: 12/24/2022] Open
Abstract
In most instances of tumour development, genetic instability plays a role in allowing cancer cell populations to respond to selection barriers, such as physical constraints or immune responses, and rapidly adapt to an always changing environment. Modelling instability is a nontrivial task, since by definition evolving instability leads to changes in the underlying landscape. In this article, we explore mathematically a simple version of unstable tumour progression using the formalism of adaptive dynamics (AD) where selection and mutation are explicitly coupled. Using a set of basic fitness landscapes, the so-called canonical equation for the evolution of genetic instability on a minimal scenario associated with a population of unstable cells is derived. We obtain explicit expressions for the evolution of mutation probabilities, and the implications of the model on further experimental studies and potential mutagenic therapies are discussed.
Collapse
Affiliation(s)
- Guim Aguadé‐Gorgorió
- ICREA‐Complex Systems LabUniversitat Pompeu FabraBarcelonaSpain
- Institut de Biologia Evolutiva (CSIC‐UPF)BarcelonaSpain
| | - Ricard Solé
- ICREA‐Complex Systems LabUniversitat Pompeu FabraBarcelonaSpain
- Institut de Biologia Evolutiva (CSIC‐UPF)BarcelonaSpain
- Santa Fe InstituteSanta FeNMUSA
| |
Collapse
|
10
|
Lambert B, MacLean AL, Fletcher AG, Combes AN, Little MH, Byrne HM. Bayesian inference of agent-based models: a tool for studying kidney branching morphogenesis. J Math Biol 2018; 76:1673-1697. [PMID: 29392399 PMCID: PMC5906521 DOI: 10.1007/s00285-018-1208-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/02/2018] [Indexed: 12/11/2022]
Abstract
The adult mammalian kidney has a complex, highly-branched collecting duct epithelium that arises as a ureteric bud sidebranch from an epithelial tube known as the nephric duct. Subsequent branching of the ureteric bud to form the collecting duct tree is regulated by subcellular interactions between the epithelium and a population of mesenchymal cells that surround the tips of outgrowing branches. The mesenchymal cells produce glial cell-line derived neurotrophic factor (GDNF), that binds with RET receptors on the surface of the epithelial cells to stimulate several subcellular pathways in the epithelium. Such interactions are known to be a prerequisite for normal branching development, although competing theories exist for their role in morphogenesis. Here we introduce the first agent-based model of ex vivo kidney uretic branching. Through comparison with experimental data, we show that growth factor-regulated growth mechanisms can explain early epithelial cell branching, but only if epithelial cell division depends in a switch-like way on the local growth factor concentration; cell division occurring only if the driving growth factor level exceeds a threshold. We also show how a recently-developed method, "Approximate Approximate Bayesian Computation", can be used to infer key model parameters, and reveal the dependency between the parameters controlling a growth factor-dependent growth switch. These results are consistent with a requirement for signals controlling proliferation and chemotaxis, both of which are previously identified roles for GDNF.
Collapse
Affiliation(s)
- Ben Lambert
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Adam L MacLean
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, UK
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
- Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Alexander N Combes
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
- Murdoch Childrens Research Institute, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
| | - Melissa H Little
- Murdoch Childrens Research Institute, Flemington Rd, Parkville, Melbourne, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Helen M Byrne
- Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford, UK
| |
Collapse
|
11
|
Qian JJ, Akçay E. Competition and niche construction in a model of cancer metastasis. PLoS One 2018; 13:e0198163. [PMID: 29813117 PMCID: PMC5973602 DOI: 10.1371/journal.pone.0198163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Niche construction theory states that not only does the environment act on populations to generate Darwinian selection, but organisms reciprocally modify the environment and the sources of natural selection. Cancer cells participate in niche construction as they alter their microenvironments and create pre-metastatic niches; in fact, metastasis is a product of niche construction. Here, we present a mathematical model of niche construction and metastasis. Our model contains producers, which pay a cost to contribute to niche construction that benefits all tumor cells, and cheaters, which reap the benefits without paying the cost. We derive expressions for the conditions necessary for metastasis, showing that the establishment of a mutant lineage that promotes metastasis depends on niche construction specificity and strength of interclonal competition. We identify a tension between the arrival and invasion of metastasis-promoting mutants, where tumors composed only of cheaters remain small but are susceptible to invasion whereas larger tumors containing producers may be unable to facilitate metastasis depending on the level of niche construction specificity. Our results indicate that even if metastatic subclones arise through mutation, metastasis may be hindered by interclonal competition, providing a potential explanation for recent surprising findings that most metastases are derived from early mutants in primary tumors.
Collapse
Affiliation(s)
- Jimmy J. Qian
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
12
|
Jarrett AM, Hormuth DA, Barnes SL, Feng X, Huang W, Yankeelov TE. Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results. Phys Med Biol 2018; 63:105015. [PMID: 29697054 PMCID: PMC5985823 DOI: 10.1088/1361-6560/aac040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Clinical methods for assessing tumor response to therapy are largely rudimentary, monitoring only temporal changes in tumor size. Our goal is to predict the response of breast tumors to therapy using a mathematical model that utilizes magnetic resonance imaging (MRI) data obtained non-invasively from individual patients. We extended a previously established, mechanically coupled, reaction-diffusion model for predicting tumor response initialized with patient-specific diffusion weighted MRI (DW-MRI) data by including the effects of chemotherapy drug delivery, which is estimated using dynamic contrast-enhanced (DCE-) MRI data. The extended, drug incorporated, model is initialized using patient-specific DW-MRI and DCE-MRI data. Data sets from five breast cancer patients were used-obtained before, after one cycle, and at mid-point of neoadjuvant chemotherapy. The DCE-MRI data was used to estimate spatiotemporal variations in tumor perfusion with the extended Kety-Tofts model. The physiological parameters derived from DCE-MRI were used to model changes in delivery of therapy drugs within the tumor for incorporation in the extended model. We simulated the original model and the extended model in both 2D and 3D and compare the results for this five-patient cohort. Preliminary results show reductions in the error of model predicted tumor cellularity and size compared to the experimentally-measured results for the third MRI scan when therapy was incorporated. Comparing the two models for agreement between the predicted total cellularity and the calculated total cellularity (from the DW-MRI data) reveals an increased concordance correlation coefficient from 0.81 to 0.98 for the 2D analysis and 0.85 to 0.99 for the 3D analysis (p < 0.01 for each) when the extended model was used in place of the original model. This study demonstrates the plausibility of using DCE-MRI data as a means to estimate drug delivery on a patient-specific basis in predictive models and represents a step toward the goal of achieving individualized prediction of tumor response to therapy.
Collapse
Affiliation(s)
- Angela M. Jarrett
- Institute for Computational Engineering and Sciences, The University of Texas at Austin Austin, Texas USA
| | - David A. Hormuth
- Institute for Computational Engineering and Sciences, The University of Texas at Austin Austin, Texas USA
| | - Stephane L. Barnes
- Institute for Computational Engineering and Sciences, The University of Texas at Austin Austin, Texas USA
| | - Xinzeng Feng
- Institute for Computational Engineering and Sciences, The University of Texas at Austin Austin, Texas USA
| | - Wei Huang
- Advanced Imaging Research Center Oregon Health and Science University Portland, Oregon USA
| | - Thomas E. Yankeelov
- Institute for Computational Engineering and Sciences, The University of Texas at Austin Austin, Texas USA
- Livestrong Cancer Institutes, The University of Texas at Austin Austin, Texas USA
- Department of Biomedical Engineering, The University of Texas at Austin Austin, Texas USA
- Department of Oncology, The University of Texas at Austin Austin, Texas USA
- Department of Diagnostic Medicine, The University of Texas at Austin Austin, Texas USA
| |
Collapse
|
13
|
Diebner HH, Zerjatke T, Griehl M, Roeder I. Metabolism is the tie: The Bertalanffy-type cancer growth model as common denominator of various modelling approaches. Biosystems 2018; 167:1-23. [PMID: 29605248 DOI: 10.1016/j.biosystems.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Cancer or tumour growth has been addressed from a variety of mathematical modelling perspectives in the past. Examples are single variable growth models, reaction diffusion models, compartment models, individual cell-based models, clonal competition models, to name only a few. In this paper, we show that the so called Bertalanffy-type growth model is a macroscopic model variant that can be conceived as an optimal condensed modelling approach that to a high degree preserves complexity with respect to the aforementioned more complex modelling variants. The derivation of the Bertalanffy-type model is crucially based on features of metabolism. Therefore, this model contains a shape parameter that can be interpreted as a resource utilisation efficiency. This shape parameter reflects features that are usually captured in much more complex models. To be specific, the shape parameter is related to morphological structures of tumours, which in turn depend on metabolic conditions. We, furthermore, show that a single variable variant of the Bertalanffy-type model can straightforwardly be extended to a multiclonal competition model. Since competition is crucially based on available shared or clone-specific resources, the metabolism-based approach is an obvious candidate to capture clonal competition. Depending on the specific context, metabolic reprogramming or other oncogene driven changes either lead to a suppression of cancer cells or to an improved competition resulting in outgrowth of tumours. The parametrisation of the Bertalanffy-type growth model allows to account for this observed variety of cancer characteristics. The shape parameter, conceived as a classifier for healthy and oncogenic phenotypes, supplies a link to survival and evolutionary stability concepts discussed in demographic studies, such as opportunistic versus equilibrium strategies.
Collapse
Affiliation(s)
- Hans H Diebner
- Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Institute for Medical Informatics and Biometry, Fetscherstrasse 74, D-01307 Dresden, Germany.
| | - Thomas Zerjatke
- Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Institute for Medical Informatics and Biometry, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Max Griehl
- Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Institute for Medical Informatics and Biometry, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Ingo Roeder
- Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Institute for Medical Informatics and Biometry, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
14
|
Gerlee P, Altrock PM. Extinction rates in tumour public goods games. J R Soc Interface 2017; 14:20170342. [PMID: 28954847 PMCID: PMC5636271 DOI: 10.1098/rsif.2017.0342] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer evolution and progression are shaped by cellular interactions and Darwinian selection. Evolutionary game theory incorporates both of these principles, and has been proposed as a framework to understand tumour cell population dynamics. A cornerstone of evolutionary dynamics is the replicator equation, which describes changes in the relative abundance of different cell types, and is able to predict evolutionary equilibria. Typically, the replicator equation focuses on differences in relative fitness. We here show that this framework might not be sufficient under all circumstances, as it neglects important aspects of population growth. Standard replicator dynamics might miss critical differences in the time it takes to reach an equilibrium, as this time also depends on cellular turnover in growing but bounded populations. As the system reaches a stable manifold, the time to reach equilibrium depends on cellular death and birth rates. These rates shape the time scales, in particular, in coevolutionary dynamics of growth factor producers and free-riders. Replicator dynamics might be an appropriate framework only when birth and death rates are of similar magnitude. Otherwise, population growth effects cannot be neglected when predicting the time to reach an equilibrium, and cell-type-specific rates have to be accounted for explicitly.
Collapse
Affiliation(s)
- Philip Gerlee
- Department of Mathematical Sciences, Chalmers University of Technology, 41296 Gothenburg, Sweden
- Department of Mathematical Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Philipp M Altrock
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
15
|
Santiago DN, Heidbuechel JPW, Kandell WM, Walker R, Djeu J, Engeland CE, Abate-Daga D, Enderling H. Fighting Cancer with Mathematics and Viruses. Viruses 2017; 9:E239. [PMID: 28832539 PMCID: PMC5618005 DOI: 10.3390/v9090239] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
After decades of research, oncolytic virotherapy has recently advanced to clinical application, and currently a multitude of novel agents and combination treatments are being evaluated for cancer therapy. Oncolytic agents preferentially replicate in tumor cells, inducing tumor cell lysis and complex antitumor effects, such as innate and adaptive immune responses and the destruction of tumor vasculature. With the availability of different vector platforms and the potential of both genetic engineering and combination regimens to enhance particular aspects of safety and efficacy, the identification of optimal treatments for patient subpopulations or even individual patients becomes a top priority. Mathematical modeling can provide support in this arena by making use of experimental and clinical data to generate hypotheses about the mechanisms underlying complex biology and, ultimately, predict optimal treatment protocols. Increasingly complex models can be applied to account for therapeutically relevant parameters such as components of the immune system. In this review, we describe current developments in oncolytic virotherapy and mathematical modeling to discuss the benefit of integrating different modeling approaches into biological and clinical experimentation. Conclusively, we propose a mutual combination of these research fields to increase the value of the preclinical development and the therapeutic efficacy of the resulting treatments.
Collapse
Affiliation(s)
- Daniel N Santiago
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | | | - Wendy M Kandell
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA.
| | - Rachel Walker
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Julie Djeu
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Christine E Engeland
- German Cancer Research Center, Heidelberg University, 69120 Heidelberg, Germany.
- National Center for Tumor Diseases Heidelberg, Department of Translational Oncology, Department of Medical Oncology, 69120 Heidelberg, Germany.
| | - Daniel Abate-Daga
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
16
|
Poleszczuk J, Walker R, Moros EG, Latifi K, Caudell JJ, Enderling H. Predicting Patient-Specific Radiotherapy Protocols Based on Mathematical Model Choice for Proliferation Saturation Index. Bull Math Biol 2017; 80:1195-1206. [PMID: 28681150 DOI: 10.1007/s11538-017-0279-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/31/2017] [Indexed: 01/27/2023]
Abstract
Radiation is commonly used in cancer treatment. Over 50% of all cancer patients will undergo radiotherapy (RT) as part of cancer care. Scientific advances in RT have primarily focused on the physical characteristics of treatment including beam quality and delivery. Only recently have inroads been made into utilizing tumor biology and radiobiology to design more appropriate RT protocols. Tumors are composites of proliferating and growth-arrested cells, and overall response depends on their respective proportions at irradiation. Prokopiou et al. (Radiat Oncol 10:159, 2015) developed the concept of the proliferation saturation index (PSI) to augment the clinical decision process associated with RT. This framework is based on the application of the logistic equation to pre-treatment imaging data in order to estimate a patient-specific tumor carrying capacity, which is then used to recommend a specific RT protocol. It is unclear, however, how dependent clinical recommendations are on the underlying tumor growth law. We discuss a PSI framework with a generalized logistic equation that can capture kinetics of different well-known growth laws including logistic and Gompertzian growth. Estimation of model parameters on the basis of clinical data revealed that the generalized logistic model can describe data equally well for a wide range of the generalized logistic exponent value. Clinical recommendations based on the calculated PSI, however, are strongly dependent on the specific growth law assumed. Our analysis suggests that the PSI framework may best be utilized in clinical practice when the underlying tumor growth law is known, or when sufficiently many tumor growth models suggest similar fractionation protocols.
Collapse
Affiliation(s)
- Jan Poleszczuk
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4 st., 02-109, Warsaw, Poland
| | - Rachel Walker
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA
| | - Jimmy J Caudell
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA.
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33647, USA.
| |
Collapse
|
17
|
Zhang H, Tian F, Harvim P, Georgescu P. Effects of size refuge specificity on a predator-prey model. Biosystems 2016; 152:11-23. [PMID: 28034644 DOI: 10.1016/j.biosystems.2016.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/01/2016] [Accepted: 12/06/2016] [Indexed: 11/27/2022]
Abstract
Predation is a major cause of early-stage mortality for prey individuals, which are often forced to use refuges in order to reduce the risk of being consumed. The ability of certain genotypes in a prey population to reach a size refuge from predation may contribute significantly to the preservation of community diversity. We investigate how the specificity of this behavior affects the evolution of a given population by using a modified Lotka-Volterra model, in which the proportion of each genotype available for predation consists of two components: an intrinsic part and a combination from all genotypes present in the population. The trade-off of these components is characterized by a specificity parameter. From the viewpoint of population dynamics, we observe that the ability of the mutant to invade the resident population strongly depends on the values of this parameter. Finally, we describe the possible evolutionary outcomes, analytically and numerically.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Financial Mathematics, Jiangsu University, ZhenJiang, JiangSu 212013, PR China.
| | - Feng Tian
- Faculty of Science, Jiangsu University, ZhenJiang, JiangSu 212013, PR China.
| | - Prince Harvim
- Faculty of Science, Jiangsu University, ZhenJiang, JiangSu 212013, PR China.
| | - Paul Georgescu
- Department of Mathematics, Technical University of Iaşi, Bd. Copou 11A, 700506 Iaşi, Romania.
| |
Collapse
|
18
|
Jin W, Penington CJ, McCue SW, Simpson MJ. Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions. Phys Biol 2016; 13:056003. [PMID: 27716634 DOI: 10.1088/1478-3975/13/5/056003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of [Formula: see text] concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, [Formula: see text], where λ is the proliferation rate, is generalised to a universal growth function, [Formula: see text]. Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.
Collapse
Affiliation(s)
- Wang Jin
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | | | | | | |
Collapse
|
19
|
Wimalawansa SA, Wimalawansa SJ. Environmentally induced, occupational diseases with emphasis on chronic kidney disease of multifactorial origin affecting tropical countries. Ann Occup Environ Med 2016; 28:33. [PMID: 27499855 PMCID: PMC4974668 DOI: 10.1186/s40557-016-0119-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Environmentally induced, occupational diseases are increasing worldwide, especially in rural agricultural communities. Poverty-associated malnutrition, environmental hazards and pollution, and lack of access to clean water, safe sanitation, and modern healthcare facilities are often associated with these chronic illnesses. METHOD The authors systematically reviewed occupational public health issues that have been related to the environment. General interpretations of results were included as per the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Pertinent publications from research databases were reviewed on (A) the risk-benefits, (B) the prevalence of risk factors for various diseases, (C) the benefits of not ignoring the risk factors (i.e., broader evidence), and (D) the risks, effects, and outcomes of different types of interventions. The authors used chronic kidney disease of multifactorial origin (CKDmfo) as an example to explore the theme. Emphasis was given to the regions with emerging economies and developing countries located in the vicinity of the equator. FINDINGS Geographical, socio-economic and aetiological similarities exist for many chronic non-communicable diseases that are affecting tropical countries around the equator. The authors identified manufacturing, mining, and agriculture as the biggest polluters of the environment. In addition, deforestation and associated soil erosion, overuse of agrochemicals, and irresponsible factory discharge (e.g., chemicals and paint, from rubber and textile factories, etc.), all contribute to pollution. To decrease the escalating incidences of environmentally induced diseases, governments should work proactively to protect the environment, especially watersheds, and take steps to minimise harmful occupational exposures and strictly enforce environmental regulations. CONCLUSION Creating public awareness of environmental issues and their relationship to public health is essential. This includes regular monitoring and periodic publication of the quality of water, air and soil; preventing deforestation and man-made soil erosion, increasing forest and ground cover, preventing occupational injuries, judicious and safe use of agrochemicals, sustainable agriculture and development programs, and implementing legislation to protect and conserve water heriage and the environment. These actions are essential both for a healthier environment and for the health of the people who live in that environment. Such measures would also decrease public health threats from such, including global-warming-related erratic environmental changes and the occurrence and the spread of non-communicable diseases, such as CKDmfo.
Collapse
|