1
|
Dhal J, Ghovvati M, Baidya A, Afshari R, Cetrulo CL, Abdi R, Annabi N. A stretchable, electroconductive tissue adhesive for the treatment of neural injury. Bioeng Transl Med 2024; 9:e10667. [PMID: 39553430 PMCID: PMC11561837 DOI: 10.1002/btm2.10667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 11/19/2024] Open
Abstract
Successful nerve repair using bioadhesive hydrogels demands minimizing tissue-material interfacial mechanical mismatch to reduce immune responses and scar tissue formation. Furthermore, it is crucial to maintain the bioelectrical stimulation-mediated cell-signaling mechanism to overcome communication barriers within injured nerve tissues. Therefore, engineering bioadhesives for neural tissue regeneration necessitates the integration of electroconductive properties with tissue-like biomechanics. In this study, we propose a stretchable bioadhesive based on a custom-designed chemically modified elastin-like polypeptides (ELPs) and a choline-based bioionic liquid (Bio-IL), providing an electroconductive microenvironment to reconnect damaged nerve tissue. The stretchability akin to native neural tissue was achieved by incorporating hydrophobic ELP pockets, and a robust tissue adhesion was obtained due to multi-mode tissue-material interactions through covalent and noncovalent bonding at the tissue interface. Adhesion tests revealed adhesive strength ~10 times higher than commercially available tissue adhesive, Evicel®. Furthermore, the engineered hydrogel supported in vitro viability and proliferation of human glial cells. We also evaluated the biodegradability and biocompatibility of the engineered bioadhesive in vivo using a rat subcutaneous implantation model, which demonstrated facile tissue infiltration and minimal immune response. The outlined functionalities empower the engineered elastic and electroconductive adhesive hydrogel to effectively enable sutureless surgical sealing of neural injuries and promote tissue regeneration.
Collapse
Affiliation(s)
- Jharana Dhal
- Department of Chemical and Biomolecular EngineeringUniversity of California – Los AngelesLos AngelesCaliforniaUSA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular EngineeringUniversity of California – Los AngelesLos AngelesCaliforniaUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, University of California – Los AngelesLos AngelesCaliforniaUSA
| | - Avijit Baidya
- Department of Chemical and Biomolecular EngineeringUniversity of California – Los AngelesLos AngelesCaliforniaUSA
| | - Ronak Afshari
- Department of Chemical and Biomolecular EngineeringUniversity of California – Los AngelesLos AngelesCaliforniaUSA
| | - Curtis L. Cetrulo
- Division of Plastic SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Reza Abdi
- Transplantation Research Center, Nephrology DivisionBrigham and Women's HospitalBostonMassachusettsUSA
| | - Nasim Annabi
- Department of Chemical and Biomolecular EngineeringUniversity of California – Los AngelesLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of California – Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Merces L, Ferro LMM, Nawaz A, Sonar P. Advanced Neuromorphic Applications Enabled by Synaptic Ion-Gating Vertical Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305611. [PMID: 38757653 PMCID: PMC11251569 DOI: 10.1002/advs.202305611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/07/2023] [Indexed: 05/18/2024]
Abstract
Bioinspired synaptic devices have shown great potential in artificial intelligence and neuromorphic electronics. Low energy consumption, multi-modal sensing and recording, and multifunctional integration are critical aspects limiting their applications. Recently, a new synaptic device architecture, the ion-gating vertical transistor (IGVT), has been successfully realized and timely applied to perform brain-like perception, such as artificial vision, touch, taste, and hearing. In this short time, IGVTs have already achieved faster data processing speeds and more promising memory capabilities than many conventional neuromorphic devices, even while operating at lower voltages and consuming less power. This work focuses on the cutting-edge progress of IGVT technology, from outstanding fabrication strategies to the design and realization of low-voltage multi-sensing IGVTs for artificial-synapse applications. The fundamental concepts of artificial synaptic IGVTs, such as signal processing, transduction, plasticity, and multi-stimulus perception are discussed comprehensively. The contribution draws special attention to the development and optimization of multi-modal flexible sensor technologies and presents a roadmap for future high-end theoretical and experimental advancements in neuromorphic research that are mostly achievable by the synaptic IGVTs.
Collapse
Affiliation(s)
- Leandro Merces
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Letícia Mariê Minatogau Ferro
- Research Center for MaterialsArchitectures, and Integration of Nanomembranes (MAIN)Chemnitz University of Technology09126ChemnitzGermany
| | - Ali Nawaz
- Center for Sensors and DevicesBruno Kessler Foundation (FBK)Trento38123Italy
| | - Prashant Sonar
- School of Chemistry and PhysicsQueensland University of Technology (QUT)BrisbaneQLD4000Australia
- Centre for Materials ScienceQueensland University of Technology2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
3
|
Ortego-Isasa I, Ortega-Morán JF, Lozano H, Stieglitz T, Sánchez-Margallo FM, Usón-Gargallo J, Pagador JB, Ramos-Murguialday A. Colonic Electrical Stimulation for Chronic Constipation: A Perspective Review. Biomedicines 2024; 12:481. [PMID: 38540095 PMCID: PMC10967790 DOI: 10.3390/biomedicines12030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 11/11/2024] Open
Abstract
Chronic constipation affects around 20% of the population and there is no efficient solution. This perspective review explores the potential of colonic electric stimulation (CES) using neural implants and methods of bioelectronic medicine as a therapeutic way to treat chronic constipation. The review covers the neurophysiology of colonic peristaltic function, the pathophysiology of chronic constipation, the technical aspects of CES, including stimulation parameters, electrode placement, and neuromodulation target selection, as well as a comprehensive analysis of various animal models highlighting their advantages and limitations in elucidating the mechanistic insights and translational relevance for CES. Finally, the main challenges and trends in CES are discussed.
Collapse
Affiliation(s)
- Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
| | | | - Héctor Lozano
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering–IMTEK and BrainLinks-BrainTools Center, University of Freiburg, 79110 Freiburg, Germany;
| | - Francisco M. Sánchez-Margallo
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| | - Jesús Usón-Gargallo
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
| | - J. Blas Pagador
- Jesús Usón Minimally Invasive Surgery Centre, 10071 Cáceres, Spain; (J.F.O.-M.); (F.M.S.-M.); (J.U.-G.)
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20009 San Sebastian, Spain; (H.L.); (A.R.-M.)
- Department of Neurology and Stroke, University of Tubingen, 72076 Tubingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tubingen, 72076 Tubingen, Germany
- Athenea Neuroclinics, 20014 San Sebastian, Spain
| |
Collapse
|
4
|
Fallegger F, Trouillet A, Coen FV, Schiavone G, Lacour SP. A low-profile electromechanical packaging system for soft-to-flexible bioelectronic interfaces. APL Bioeng 2023; 7:036109. [PMID: 37600068 PMCID: PMC10439817 DOI: 10.1063/5.0152509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Interfacing the human body with the next generation of electronics requires technological advancement in designing and producing bioelectronic circuits. These circuits must integrate electrical functionality while simultaneously addressing limitations in mechanical compliance and dynamics, biocompatibility, and consistent, scalable manufacturing. The combination of mechanically disparate materials ranging from elastomers to inorganic crystalline semiconductors calls for modular designs with reliable and scalable electromechanical connectors. Here, we report on a novel interconnection solution for soft-to-flexible bioelectronic interfaces using a patterned and machined flexible printed circuit board, which we term FlexComb, interfaced with soft transducing systems. Using a simple assembly process, arrays of protruding "fingers" bearing individual electrical terminals are laser-machined on a standard flexible printed circuit board to create a comb-like structure, namely, the FlexComb. A matching pattern is also machined in the soft system to host and interlock electromechanically the FlexComb connections via a soft electrically conducting composite. We examine the electrical and electromechanical properties of the interconnection and demonstrate the versatility and scalability of the method through various customized submillimetric designs. In a pilot in vivo study, we validate the stability and compatibility of the FlexComb technology in a subdural electrocorticography system implanted for 6 months on the auditory cortex of a minipig. The FlexComb provides a reliable and simple technique to bond and connect soft transducing systems with flexible or rigid electronic boards, which should find many implementations in soft robotics and wearable and implantable bioelectronics.
Collapse
Affiliation(s)
- Florian Fallegger
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Alix Trouillet
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Florent-Valéry Coen
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | | | - Stéphanie P. Lacour
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
5
|
Shen K, Chen O, Edmunds JL, Piech DK, Maharbiz MM. Translational opportunities and challenges of invasive electrodes for neural interfaces. Nat Biomed Eng 2023; 7:424-442. [PMID: 37081142 DOI: 10.1038/s41551-023-01021-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/15/2023] [Indexed: 04/22/2023]
Abstract
Invasive brain-machine interfaces can restore motor, sensory and cognitive functions. However, their clinical adoption has been hindered by the surgical risk of implantation and by suboptimal long-term reliability. In this Review, we highlight the opportunities and challenges of invasive technology for clinically relevant electrophysiology. Specifically, we discuss the characteristics of neural probes that are most likely to facilitate the clinical translation of invasive neural interfaces, describe the neural signals that can be acquired or produced by intracranial electrodes, the abiotic and biotic factors that contribute to their failure, and emerging neural-interface architectures.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Oliver Chen
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - Jordan L Edmunds
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
| | - David K Piech
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Michel M Maharbiz
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
6
|
Martinez S, Veirano F, Constandinou TG, Silveira F. Trends in Volumetric-Energy Efficiency of Implantable Neurostimulators: A Review From a Circuits and Systems Perspective. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:2-20. [PMID: 37015536 DOI: 10.1109/tbcas.2022.3228895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This paper presents a comprehensive review of state-of-the-art, commercially available neurostimulators. We analyse key design parameters and performance metrics of 45 implantable medical devices across six neural target categories: deep brain, vagus nerve, spinal cord, phrenic nerve, sacral nerve and hypoglossal nerve. We then benchmark these alongside modern cardiac pacemaker devices that represent a more established market. This work studies trends in device size, electrode number, battery technology (i.e., primary and secondary use and chemistry), power consumption and longevity. This information is analysed to show the course of design decisions adopted by industry and identifying opportunity for further innovation. We identify fundamental limits in power consumption, longevity and size as well as the interdependencies and trade-offs. We propose a figure of merit to quantify volumetric efficiency within specific therapeutic targets, battery technologies/capacities, charging capabilities and electrode count. Finally, we compare commercially available implantable medical devices with recently developed systems in the research community. We envisage this analysis to aid circuit and system designers in system optimisation and identifying innovation opportunities, particularly those related to low power circuit design techniques.
Collapse
|
7
|
Rustogi P, Judy JW. Microgaskets for High-Channel-Density Reconnectable Implantable Packaging. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2022; 31:384-392. [PMID: 35663544 PMCID: PMC9162095 DOI: 10.1109/jmems.2022.3159487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Demands for implantable bioelectronic devices to increase the number of channels for greater functional capacity and resolution, shrink implant size to minimize tissue response and patient burden, and support battery changes and electronics upgrades for long-term operational viability, cannot be met with existing implant-connector technology. In this paper we describe our novel approach to develop a rematable high-channel-density implant-connector technology, with a focus on the design, fabrication, and characterization of its microgasket. The microgaskets made of polydimethylsiloxane elastomer (PDMSe) have achieved much better electrical isolation for neural stimulation (~5 MΩ at 10 kHz) compared with conventional implant connectors (50 kΩ at 10 kHz), despite a 200-fold increase in channel density (conventional: ~0.0644 ch/mm2, microgasket: ~12.8 ch/mm2). The microgaskets also achieved high electrical isolation for neural recording (i.e., ~35 MΩ at 1 kHz) at the same high channel density. When mechanically compressed the microscale vias in the PDMSe microgaskets deform laterally, which could damage or enhance gasket-traversing conductive spring elements in each microscale via depending on their design. We have demonstrated that by lowering the height-to-width aspect ratio of the gasket vias, they can maintain their shape under clamping pressures high enough to achieve high isolation.
Collapse
Affiliation(s)
- Paritosh Rustogi
- Electrical and Computer Engineering Department and the Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, FL 32611 USA
| | - Jack W Judy
- Electrical and Computer Engineering Department, Biomedical Engineering Department, Department of Neurology, and the Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
8
|
Bianchi M, De Salvo A, Asplund M, Carli S, Di Lauro M, Schulze‐Bonhage A, Stieglitz T, Fadiga L, Biscarini F. Poly(3,4-ethylenedioxythiophene)-Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and In Vivo Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104701. [PMID: 35191224 PMCID: PMC9036021 DOI: 10.1002/advs.202104701] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/04/2022] [Indexed: 05/29/2023]
Abstract
Next-generation neural interfaces for bidirectional communication with the central nervous system aim to achieve the intimate integration with the neural tissue with minimal neuroinflammatory response, high spatio-temporal resolution, very high sensitivity, and readout stability. The design and manufacturing of devices for low power/low noise neural recording and safe and energy-efficient stimulation that are, at the same time, conformable to the brain, with matched mechanical properties and biocompatibility, is a convergence area of research where neuroscientists, materials scientists, and nanotechnologists operate synergically. The biotic-abiotic neural interface, however, remains a formidable challenge that prompts for new materials platforms and innovation in device layouts. Conductive polymers (CP) are attractive materials to be interfaced with the neural tissue and to be used as sensing/stimulating electrodes because of their mixed ionic-electronic conductivity, their low contact impedance, high charge storage capacitance, chemical versatility, and biocompatibility. This manuscript reviews the state-of-the-art of poly(3,4-ethylenedioxythiophene)-based neural interfaces for extracellular recording and stimulation, focusing on those technological approaches that are successfully demonstrated in vivo. The aim is to highlight the most reliable and ready-for-clinical-use solutions, in terms of materials technology and recording performance, other than spot major limitations and identify future trends in this field.
Collapse
Affiliation(s)
- Michele Bianchi
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
| | - Anna De Salvo
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Sezione di FisiologiaUniversità di Ferraravia Fossato di Mortara 17Ferrara44121Italy
| | - Maria Asplund
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleå971 87Sweden
- Department of Microsystems Engineering‐IMTEKUniversity of FreiburgFreiburg79110Germany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Stefano Carli
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Present address:
Department of Environmental and Prevention SciencesUniversità di FerraraFerrara44121Italy
| | - Michele Di Lauro
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
| | - Andreas Schulze‐Bonhage
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
- Epilepsy CenterFaculty of MedicineUniversity of FreiburgFreiburg79110Germany
| | - Thomas Stieglitz
- Department of Microsystems Engineering‐IMTEKUniversity of FreiburgFreiburg79110Germany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Sezione di FisiologiaUniversità di Ferraravia Fossato di Mortara 17Ferrara44121Italy
| | - Fabio Biscarini
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Life Science DepartmentUniversità di Modena e Reggio EmiliaVia Campi 103Modena41125Italy
| |
Collapse
|
9
|
Rashid RB, Du W, Griggs S, Maria IP, McCulloch I, Rivnay J. Ambipolar inverters based on cofacial vertical organic electrochemical transistor pairs for biosignal amplification. SCIENCE ADVANCES 2021; 7:eabh1055. [PMID: 34516877 PMCID: PMC8442873 DOI: 10.1126/sciadv.abh1055] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/20/2021] [Indexed: 05/29/2023]
Abstract
On-site signal amplification for bioelectronic sensing is a desirable approach to improving recorded signal quality and to reducing the burden on signal transmission and back-end electronics. While organic electrochemical transistors (OECTs) have been used as local transducers of bioelectronic signals, their current output presents challenges for implementation. OECT-based circuits offer new opportunities for high-performance signal processing. In this work, we introduce an active sensing node based on cofacial vertical OECTs forming an ambipolar complementary inverter. The inverter, which shows a voltage gain of 28, is composed of two OECTs on opposite side walls of a single active area, resulting in a footprint identical to a planar OECT. The inverter is used as an analog voltage preamplifier for recording electrocardiogram signals when biased at the input voltage corresponding to peak gain. We further demonstrate compatibility with nontraditional fabrication methods with potential benefits for rapid prototyping and large-area printed electronics.
Collapse
Affiliation(s)
- Reem B. Rashid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Weiyuan Du
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sophie Griggs
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Iuliana P. Maria
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Iain McCulloch
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Zhao Z, Cea C, Gelinas JN, Khodagholy D. Responsive manipulation of neural circuit pathology by fully implantable, front-end multiplexed embedded neuroelectronics. Proc Natl Acad Sci U S A 2021; 118:e2022659118. [PMID: 33972429 PMCID: PMC8157942 DOI: 10.1073/pnas.2022659118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Responsive neurostimulation is increasingly required to probe neural circuit function and treat neuropsychiatric disorders. We introduce a multiplex-then-amplify (MTA) scheme that, in contrast to current approaches (which necessitate an equal number of amplifiers as number of channels), only requires one amplifier per multiplexer, significantly reducing the number of components and the size of electronics in multichannel acquisition systems. It also enables simultaneous stimulation of arbitrary waveforms on multiple independent channels. We validated the function of MTA by developing a fully implantable, responsive embedded system that merges the ability to acquire individual neural action potentials using conformable conducting polymer-based electrodes with real-time onboard processing, low-latency arbitrary waveform stimulation, and local data storage within a miniaturized physical footprint. We verified established responsive neurostimulation protocols and developed a network intervention to suppress pathological coupling between the hippocampus and cortex during interictal epileptiform discharges. The MTA design enables effective, self-contained, chronic neural network manipulation with translational relevance to the treatment of neuropsychiatric disease.
Collapse
Affiliation(s)
- Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY 10027
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032;
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027;
| |
Collapse
|
11
|
Fallegger F, Schiavone G, Pirondini E, Wagner FB, Vachicouras N, Serex L, Zegarek G, May A, Constanthin P, Palma M, Khoshnevis M, Van Roost D, Yvert B, Courtine G, Schaller K, Bloch J, Lacour SP. MRI-Compatible and Conformal Electrocorticography Grids for Translational Research. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003761. [PMID: 33977054 PMCID: PMC8097365 DOI: 10.1002/advs.202003761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/23/2020] [Indexed: 05/23/2023]
Abstract
Intraoperative electrocorticography (ECoG) captures neural information from the surface of the cerebral cortex during surgeries such as resections for intractable epilepsy and tumors. Current clinical ECoG grids come in evenly spaced, millimeter-sized electrodes embedded in silicone rubber. Their mechanical rigidity and fixed electrode spatial resolution are common shortcomings reported by the surgical teams. Here, advances in soft neurotechnology are leveraged to manufacture conformable subdural, thin-film ECoG grids, and evaluate their suitability for translational research. Soft grids with 0.2 to 10 mm electrode pitch and diameter are embedded in 150 µm silicone membranes. The soft grids are compatible with surgical handling and can be folded to safely interface hidden cerebral surface such as the Sylvian fold in human cadaveric models. It is found that the thin-film conductor grids do not generate diagnostic-impeding imaging artefacts (<1 mm) nor adverse local heating within a standard 3T clinical magnetic resonance imaging scanner. Next, the ability of the soft grids to record subdural neural activity in minipigs acutely and two weeks postimplantation is validated. Taken together, these results suggest a promising future alternative to current stiff electrodes and may enable the future adoption of soft ECoG grids in translational research and ultimately in clinical settings.
Collapse
Affiliation(s)
- Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Elvira Pirondini
- Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV) and University of Lausanne (UNIL)Lausanne1010Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV)University of Lausanne (UNIL)Lausanne1015Switzerland
| | - Fabien B. Wagner
- Defitech Center for Interventional Neurotherapies (NeuroRestore)Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV)University of Lausanne (UNIL)Lausanne1015Switzerland
- UPCourtineCenter for Neuroprosthetics and Brain Mind InstituteSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
- Present address:
Institut des Maladies Neurodégénératives – CNRS UMR 5293Université de BordeauxCentre Broca Nouvelle‐Aquitaine146 rue Léo Saignat – CS 61292 – Case 28, Bordeaux cedexBordeaux33076France
| | - Nicolas Vachicouras
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Ludovic Serex
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Gregory Zegarek
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
| | - Adrien May
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
| | - Paul Constanthin
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
| | - Marie Palma
- BrainTech LaboratoryInsermUniv Grenoble AlpesGrenoble38400France
| | | | - Dirk Van Roost
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
- Department of NeurosurgeryGhent UniversityGhent9000Belgium
| | - Blaise Yvert
- BrainTech LaboratoryInsermUniv Grenoble AlpesGrenoble38400France
| | - Grégoire Courtine
- Defitech Center for Interventional Neurotherapies (NeuroRestore)Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV)University of Lausanne (UNIL)Lausanne1015Switzerland
- UPCourtineCenter for Neuroprosthetics and Brain Mind InstituteSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Karl Schaller
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
| | - Jocelyne Bloch
- Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV) and University of Lausanne (UNIL)Lausanne1010Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV)University of Lausanne (UNIL)Lausanne1015Switzerland
| | - Stéphanie P. Lacour
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| |
Collapse
|
12
|
Kaiju T, Inoue M, Hirata M, Suzuki T. High-density mapping of primate digit representations with a 1152-channel µECoG array. J Neural Eng 2021; 18. [PMID: 33530064 DOI: 10.1088/1741-2552/abe245] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Objective.Advances in brain-machine interfaces (BMIs) are expected to support patients with movement disorders. Electrocorticogram (ECoG) measures electrophysiological activities over a large area using a low-invasive flexible sheet placed on the cortex. ECoG has been considered as a feasible signal source of the clinical BMI device. To capture neural activities more precisely, the feasibility of higher-density arrays has been investigated. However, currently, the number of electrodes is limited to approximately 300 due to wiring difficulties, device size, and system costs.Approach.We developed a high-density recording system with a large coverage (14 × 7 mm2) and using 1152 electrodes by directly integrating dedicated flexible arrays with the neural-recording application-specific integrated circuits and their interposers.Main results.Comparative experiments with a 128-channel array demonstrated that the proposed device could delineate the entire digit representation of a nonhuman primate. Subsampling analysis revealed that higher-amplitude signals can be measured using higher-density arrays.Significance.We expect that the proposed system that simultaneously establishes large-scale sampling, high temporal-precision of electrophysiology, and high spatial resolution comparable to optical imaging will be suitable for next-generation brain-sensing technology.
Collapse
Affiliation(s)
- Taro Kaiju
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Osaka, Japan
| | - Masato Inoue
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Osaka, Japan.,Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hirata
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Osaka, Japan.,Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
13
|
Abstract
Peripheral nerve interfaces (PNIs) record and/or modulate neural activity of nerves, which are responsible for conducting sensory-motor information to and from the central nervous system, and for regulating the activity of inner organs. PNIs are used both in neuroscience research and in therapeutical applications such as precise closed-loop control of neuroprosthetic limbs, treatment of neuropathic pain and restoration of vital functions (e.g. breathing and bladder management). Implantable interfaces represent an attractive solution to directly access peripheral nerves and provide enhanced selectivity both in recording and in stimulation, compared to their non-invasive counterparts. Nevertheless, the long-term functionality of implantable PNIs is limited by tissue damage, which occurs at the implant-tissue interface, and is thus highly dependent on material properties, biocompatibility and implant design. Current research focuses on the development of mechanically compliant PNIs, which adapt to the anatomy and dynamic movements of nerves in the body thereby limiting foreign body response. In this paper, we review recent progress in the development of flexible and implantable PNIs, highlighting promising solutions related to materials selection and their associated fabrication methods, and integrated functions. We report on the variety of available interface designs (intraneural, extraneural and regenerative) and different modulation techniques (electrical, optical, chemical) emphasizing the main challenges associated with integrating such systems on compliant substrates.
Collapse
Affiliation(s)
- Valentina Paggi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland. Equally contributing authors
| | | | | | | |
Collapse
|
14
|
Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021; 10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Research on the field of implantable electronic devices that can be directly applied in the body with various functionalities is increasingly intensifying due to its great potential for various therapeutic applications. While conventional implantable electronics generally include rigid and hard conductive materials, their surrounding biological objects are soft and dynamic. The mechanical mismatch between implanted devices and biological environments induces damages in the body especially for long-term applications. Stretchable electronics with outstanding mechanical compliance with biological objects effectively improve such limitations of existing rigid implantable electronics. In this article, the recent progress of implantable soft electronics based on various conductive nanocomposites is systematically described. In particular, representative fabrication approaches of conductive and stretchable nanocomposites for implantable soft electronics and various in vivo applications of implantable soft electronics are focused on. To conclude, challenges and perspectives of current implantable soft electronics that should be considered for further advances are discussed.
Collapse
Affiliation(s)
- Byron Llerena Zambrano
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Aline F. Renz
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Samuel Lienemann
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Jaehong Lee
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno jungan‐dareo Daegu 42988 South Korea
| |
Collapse
|
15
|
Vaskov AK, Vu PP, North N, Davis AJ, Kung TA, Gates DH, Cederna PS, Chestek CA. Surgically Implanted Electrodes Enable Real-Time Finger and Grasp Pattern Recognition for Prosthetic Hands. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.28.20217273. [PMID: 33173910 PMCID: PMC7654906 DOI: 10.1101/2020.10.28.20217273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Currently available prosthetic hands are capable of actuating anywhere from five to 30 degrees of freedom (DOF). However, grasp control of these devices remains unintuitive and cumbersome. To address this issue, we propose directly extracting finger commands from the neuromuscular system via electrodes implanted in residual innervated muscles and regenerative peripheral nerve interfaces (RPNIs). Two persons with transradial amputations had RPNIs created by suturing autologous free muscle grafts to their transected median, ulnar, and dorsal radial sensory nerves. Bipolar electrodes were surgically implanted into their ulnar and median RPNIs and into their residual innervated muscles. The implanted electrodes recorded local electromyography (EMG) with Signal-to-Noise Ratios ranging from 23 to 350 measured across various movements. In a series of single-day experiments, participants used a high speed pattern recognition system to control a virtual prosthetic hand in real-time. Both participants were able to transition between 10 pseudo-randomly cued individual finger and wrist postures in the virtual environment with an average online accuracy of 86.5% and latency of 255 ms. When the set was reduced to five grasp postures, average metrics improved to 97.9% online accuracy and 135 ms latency. Virtual task performance remained stable across untrained static arm positions while supporting the weight of the prosthesis. Participants also used the high speed classifier to switch between robotic prosthetic grips and complete a functional performance assessment. These results demonstrate that pattern recognition systems can use the high-quality EMG afforded by intramuscular electrodes and RPNIs to provide users with fast and accurate grasp control. SUMMARY Surgically implanted electrodes recorded finger-specific electromyography enabling reliable finger and grasp control of an upper limb prosthesis.
Collapse
|
16
|
Mierzejewski M, Steins H, Kshirsagar P, Jones PD. The noise and impedance of microelectrodes. J Neural Eng 2020; 17:052001. [PMID: 33055360 DOI: 10.1088/1741-2552/abb3b4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE While the positive correlation between impedance and noise of microelectrodes is well known, their quantitative relationship is too rarely described. Knowledge of this relationship provides useful information for both microsystems engineers and electrophysiologists. APPROACH We discuss the physical basis of noise in recordings with microelectrodes, and compare measurements of impedance spectra to noise of microelectrodes. MAIN RESULTS Microelectrode recordings intrinsically include thermal noise, [Formula: see text], with the real component of impedance integrated over the recording frequency band. Impedance spectroscopy allows the quantitative prediction of thermal noise. Optimization of microelectrode noise should also consider the contribution of amplifier noise. These measures enable a quantitative evaluation of microelectrodes' recording quality which is more informative than common but limited comparisons based on the impedance magnitude at 1 kHz. SIGNIFICANCE Improved understanding of the origin of microelectrode noise will support efforts to produce smaller yet low noise microelectrodes, capable of recording from higher numbers of neurons. This tutorial is relevant for single microelectrodes, tetrodes, neural probes and microelectrode arrays, whether used in vitro or in vivo.
Collapse
Affiliation(s)
- Michael Mierzejewski
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | | | | |
Collapse
|
17
|
Rustogi P, Judy JW. Electrical Isolation Performance of Microgasket Technology for Implant Packaging. ... ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE. ELECTRONIC COMPONENTS & TECHNOLOGY CONFERENCE 2020; 2020:1601-1607. [PMID: 35586778 PMCID: PMC9112188 DOI: 10.1109/ectc32862.2020.00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High-channel-count neural interfaces are typically packaged by being permanently bonded to their packaged electronics followed by encapsulation. Such interfaces are often intimately integrated into neural tissue, their removal to replace the battery or upgrade electronics is not undesirable. Gaskets are widely used to provide liquid/electrical isolation and to seal the connection between two or more mating parts. Pressure-driven microgaskets are well established in the field of microfluidics. Although rematable microgaskets for fluidic interconnects exist, the use of microgaskets for electrical isolation have not been demonstrated. Our approach is to electrically isolate 2-D arrays of contact pads using a compressible silicone microgasket. Electrochemical impedance spectroscopy (EIS) was used to quantify the electrical isolation of the microgasket on contact pads, which were formed in a polyimide flex circuit, as a function of frequency after being soaked in saline. Experiments have shown that the compressed sub-millimeter PDMSe microgasket can provide excellent isolation (i.e., >30 MΩ at 1 KHz) that is comparable to the other more conventional packaging methods, such as encapsulation in polydimethylsiloxane elastomer (PDMSe) or parylene-C. Our microgasket-based approach should be scalable to high channel counts and high channel densities enabling much smaller and higher-performance neural implants.
Collapse
Affiliation(s)
- Paritosh Rustogi
- Electrical and Computer Engineering Department, Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, USA
| | - Jack W Judy
- Electrical and Computer Engineering Department, Nanoscience Institute for Medical and Engineering Technology, University of Florida, Gainesville, USA
| |
Collapse
|
18
|
Gundelach LA, Hüser MA, Beutner D, Ruther P, Bruegmann T. Towards the clinical translation of optogenetic skeletal muscle stimulation. Pflugers Arch 2020; 472:527-545. [PMID: 32415463 PMCID: PMC7239821 DOI: 10.1007/s00424-020-02387-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/05/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Paralysis is a frequent phenomenon in many diseases, and to date, only functional electrical stimulation (FES) mediated via the innervating nerve can be employed to restore skeletal muscle function in patients. Despite recent progress, FES has several technical limitations and significant side effects. Optogenetic stimulation has been proposed as an alternative, as it may circumvent some of the disadvantages of FES enabling cell type–specific, spatially and temporally precise stimulation of cells expressing light-gated ion channels, commonly Channelrhodopsin2. Two distinct approaches for the restoration of skeletal muscle function with optogenetics have been demonstrated: indirect optogenetic stimulation through the innervating nerve similar to FES and direct optogenetic stimulation of the skeletal muscle. Although both approaches show great promise, both have their limitations and there are several general hurdles that need to be overcome for their translation into clinics. These include successful gene transfer, sustained optogenetic protein expression, and the creation of optically active implantable devices. Herein, a comprehensive summary of the underlying mechanisms of electrical and optogenetic approaches is provided. With this knowledge in mind, we substantiate a detailed discussion of the advantages and limitations of each method. Furthermore, the obstacles in the way of clinical translation of optogenetic stimulation are discussed, and suggestions on how they could be overcome are provided. Finally, four specific examples of pathologies demanding novel therapeutic measures are discussed with a focus on the likelihood of direct versus indirect optogenetic stimulation.
Collapse
Affiliation(s)
- Lili A Gundelach
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
| | - Marc A Hüser
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Dirk Beutner
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center, Göttingen, Germany
| | - Patrick Ruther
- Microsystem Materials Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Cluster of Excellence at the University of Freiburg, Freiburg, Germany
| | - Tobias Bruegmann
- Institute of Cardiovascular Physiology, University Medical Center, Göttingen, Germany.
- DZHK e.V. (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
19
|
Raspopovic S, Cimolato A, Panarese A, Vallone F, Del Valle J, Micera S, Navarro X. Neural signal recording and processing in somatic neuroprosthetic applications. A review. J Neurosci Methods 2020; 337:108653. [PMID: 32114143 DOI: 10.1016/j.jneumeth.2020.108653] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/30/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Neurointerfaces have acquired major relevance as both rehabilitative and therapeutic tools for patients with spinal cord injury, limb amputations and other neural disorders. Bidirectional neural interfaces are a key component for the functional control of neuroprosthetic devices. The two main neuroprosthetic applications of interfaces with the peripheral nervous system (PNS) are: the refined control of artificial prostheses with sensory neural feedback, and functional electrical stimulation (FES) systems attempting to generate motor or visceral responses in paralyzed organs. The results obtained in experimental and clinical studies with both, extraneural and intraneural electrodes are very promising in terms of the achieved functionality for the neural stimulation mode. However, the results of neural recordings with peripheral nerve interfaces are more limited. In this paper we review the different existing approaches for PNS signals recording, denoising, processing and classification, enabling their use for bidirectional interfaces. PNS recordings can provide three types of signals: i) population activity signals recorded by using extraneural electrodes placed on the outer surface of the nerve, which carry information about cumulative nerve activity; ii) spike activity signals recorded with intraneural electrodes placed inside the nerve, which carry information about the electrical activity of a set of individual nerve fibers; and iii) hybrid signals, which contain both spiking and cumulative signals. Finally, we also point out some of the main limitations, which are hampering clinical translation of neural decoding, and indicate possible solutions for improvement.
Collapse
Affiliation(s)
- Stanisa Raspopovic
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zürich, Switzerland
| | - Andrea Cimolato
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092, Zürich, Switzerland; NEARLab - Neuroengineering and Medical Robotics Laboratory, DEIB Department of Electronics, Information and Bioengineering, Politecnico Di Milano, 20133, Milano, Italy; IIT Central Research Labs Genova, Istituto Italiano Tecnologia, 16163, Genova, Italy
| | | | - Fabio Vallone
- The BioRobotics Institute, Scuola Superiore Sant'Anna, I-56127, Pisa, Italy
| | - Jaume Del Valle
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma De Barcelona, CIBERNED, 08193, Bellaterra, Spain
| | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, I-56127, Pisa, Italy; Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale De Lausanne, Lausanne, CH-1015, Switzerland.
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma De Barcelona, CIBERNED, 08193, Bellaterra, Spain; Institut Guttmann De Neurorehabilitació, Badalona, Spain.
| |
Collapse
|
20
|
Zheng XS, Griffith AY, Chang E, Looker MJ, Fisher LE, Clapsaddle B, Cui XT. Evaluation of a conducting elastomeric composite material for intramuscular electrode application. Acta Biomater 2020; 103:81-91. [PMID: 31863910 DOI: 10.1016/j.actbio.2019.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 01/14/2023]
Abstract
Electrical stimulation of the muscle has been proven efficacious in preventing atrophy and/or reanimating paralyzed muscles. Intramuscular electrodes made from metals have significantly higher Young's Moduli than the muscle tissues, which has the potential to cause chronic inflammation and decrease device performance. Here, we present an intramuscular electrode made from an elastomeric conducting polymer composite consisting of PEDOT-PEG copolymer, silicone and carbon nanotubes (CNT) with fluorosilicone insulation. The electrode wire has a Young's modulus of 804 (±99) kPa, which better mimics the muscle tissue modulus than conventional stainless steel (SS) electrodes. Additionally, the non-metallic composition enables metal-artifact free CT and MR imaging. These soft wire (SW) electrodes present comparable electrical impedance to SS electrodes of similar geometric surface area, activate muscle at a lower threshold, and maintain stable electrical properties in vivo up to 4 weeks. Histologically, the SW electrodes elicited significantly less fibrotic encapsulation and less IBA-1 positive macrophage accumulation than the SS electrodes at one and three months. Further phenotyping the macrophages with the iNOS (pro-inflammatory) and ARG-1 (pro-healing) markers revealed significantly less presence of pro-inflammatory macrophage around SW implants at one month. By three months, there was a significant increase in pro-healing macrophages (ARG-1) around the SW implants but not around the SS implants. Furthermore, a larger number of AchR clusters closer to SW implants were found at both time points compared to SS implants. These results suggest that a softer implant encourages a more intimate and healthier electrode-tissue interface. STATEMENT OF SIGNIFICANCE: Intramuscular electrodes made from metals have significantly higher Young's Moduli than the muscle tissues, which has the potential to cause chronic inflammation and decrease device performance. Here, we present an intramuscular electrode made from an elastomeric conducting polymer composite consisting of PEDOT-PEG copolymer, silicone and carbon nanotubes with fluorosilicone insulation. This elastomeric composite results in an electrode wire with a Young's modulus mimicking that of the muscle tissue, which elicits significantly less foreign body response compared to stainless steel wires. The lack of metal in this composite also enables metal-artifact free MRI and CT imaging.
Collapse
Affiliation(s)
- X Sally Zheng
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Azante Y Griffith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Emily Chang
- TDA Research Inc., Wheat Ridge, CO 80033, United States
| | | | - Lee E Fisher
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - X Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|