1
|
Sun D, Amiri M, Meng Q, Unnithan RR, French C. Calcium Signalling in Neurological Disorders, with Insights from Miniature Fluorescence Microscopy. Cells 2024; 14:4. [PMID: 39791705 PMCID: PMC11719922 DOI: 10.3390/cells14010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target. Recently, the development of the miniature fluorescence microscope (miniscope) enabled simultaneous recording of the spatiotemporal calcium activity from large neuronal ensembles in unrestrained animals, providing a novel method for studying NDs. In this review, we discuss the abnormalities observed in calcium signalling and its potential as a therapeutic target for NDs. Additionally, we highlight recent studies that utilise miniscope technology to investigate the alterations in calcium dynamics associated with NDs.
Collapse
Affiliation(s)
- Dechuan Sun
- Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (M.A.); (Q.M.)
- Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Mona Amiri
- Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (M.A.); (Q.M.)
| | - Qi Meng
- Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (M.A.); (Q.M.)
| | - Ranjith R. Unnithan
- Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Chris French
- Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia; (M.A.); (Q.M.)
| |
Collapse
|
2
|
Zhang Y, Yuan L, Zhu Q, Wu J, Nöbauer T, Zhang R, Xiao G, Wang M, Xie H, Guo Z, Dai Q, Vaziri A. A miniaturized mesoscope for the large-scale single-neuron-resolved imaging of neuronal activity in freely behaving mice. Nat Biomed Eng 2024; 8:754-774. [PMID: 38902522 DOI: 10.1038/s41551-024-01226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/03/2024] [Indexed: 06/22/2024]
Abstract
Exploring the relationship between neuronal dynamics and ethologically relevant behaviour involves recording neuronal-population activity using technologies that are compatible with unrestricted animal behaviour. However, head-mounted microscopes that accommodate weight limits to allow for free animal behaviour typically compromise field of view, resolution or depth range, and are susceptible to movement-induced artefacts. Here we report a miniaturized head-mounted fluorescent mesoscope that we systematically optimized for calcium imaging at single-neuron resolution, for increased fields of view and depth of field, and for robustness against motion-generated artefacts. Weighing less than 2.5 g, the mesoscope enabled recordings of neuronal-population activity at up to 16 Hz, with 4 μm resolution over 300 μm depth-of-field across a field of view of 3.6 × 3.6 mm2 in the cortex of freely moving mice. We used the mesoscope to record large-scale neuronal-population activity in socially interacting mice during free exploration and during fear-conditioning experiments, and to investigate neurovascular coupling across multiple cortical regions.
Collapse
Affiliation(s)
- Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing, China
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Lekang Yuan
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Qiyu Zhu
- School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Jiamin Wu
- Department of Automation, Tsinghua University, Beijing, China
| | - Tobias Nöbauer
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Rujin Zhang
- Department of Anesthesiology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guihua Xiao
- Department of Automation, Tsinghua University, Beijing, China
| | - Mingrui Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
| | - Zengcai Guo
- School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Alipasha Vaziri
- Laboratory of Neurotechnology and Biophysics, The Rockefeller University, New York, NY, USA.
- The Kavli Neural Systems Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
3
|
Abstract
Brain-machine interfaces (BMIs) aim to treat sensorimotor neurological disorders by creating artificial motor and/or sensory pathways. Introducing artificial pathways creates new relationships between sensory input and motor output, which the brain must learn to gain dexterous control. This review highlights the role of learning in BMIs to restore movement and sensation, and discusses how BMI design may influence neural plasticity and performance. The close integration of plasticity in sensory and motor function influences the design of both artificial pathways and will be an essential consideration for bidirectional devices that restore both sensory and motor function.
Collapse
Affiliation(s)
- Maria C Dadarlat
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Ryan A Canfield
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Amy L Orsborn
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
- Washington National Primate Research Center, Seattle, Washington, USA
| |
Collapse
|
4
|
Ren X, Bok I, Vareberg A, Hai A. Stimulation-mediated reverse engineering of silent neural networks. J Neurophysiol 2023; 129:1505-1514. [PMID: 37222450 PMCID: PMC10311990 DOI: 10.1152/jn.00100.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023] Open
Abstract
Reconstructing connectivity of neuronal networks from single-cell activity is essential to understanding brain function, but the challenge of deciphering connections from populations of silent neurons has been largely unmet. We demonstrate a protocol for deriving connectivity of simulated silent neuronal networks using stimulation combined with a supervised learning algorithm, which enables inferring connection weights with high fidelity and predicting spike trains at the single-spike and single-cell levels with high accuracy. We apply our method on rat cortical recordings fed through a circuit of heterogeneously connected leaky integrate-and-fire neurons firing at typical lognormal distributions and demonstrate improved performance during stimulation for multiple subpopulations. These testable predictions about the number and protocol of the required stimulations are expected to enhance future efforts for deriving neuronal connectivity and drive new experiments to better understand brain function.NEW & NOTEWORTHY We introduce a new concept for reverse engineering silent neuronal networks using a supervised learning algorithm combined with stimulation. We quantify the performance of the algorithm and the precision of deriving synaptic weights in inhibitory and excitatory subpopulations. We then show that stimulation enables deciphering connectivity of heterogeneous circuits fed with real electrode array recordings, which could extend in the future to deciphering connectivity in broad biological and artificial neural networks.
Collapse
Affiliation(s)
- Xiaoxuan Ren
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ilhan Bok
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Adam Vareberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, Wisconsin, United States
| |
Collapse
|
5
|
Liang YW, Lai ML, Chiu FM, Tseng HY, Lo YC, Li SJ, Chang CW, Chen PC, Chen YY. Experimental Verification for Numerical Simulation of Thalamic Stimulation-Evoked Calcium-Sensitive Fluorescence and Electrophysiology with Self-Assembled Multifunctional Optrode. BIOSENSORS 2023; 13:265. [PMID: 36832031 PMCID: PMC9953878 DOI: 10.3390/bios13020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Owing to its capacity to eliminate a long-standing methodological limitation, fiber photometry can assist research gaining novel insight into neural systems. Fiber photometry can reveal artifact-free neural activity under deep brain stimulation (DBS). Although evoking neural potential with DBS is an effective method for mediating neural activity and neural function, the relationship between DBS-evoked neural Ca2+ change and DBS-evoked neural electrophysiology remains unknown. Therefore, in this study, a self-assembled optrode was demonstrated as a DBS stimulator and an optical biosensor capable of concurrently recording Ca2+ fluorescence and electrophysiological signals. Before the in vivo experiment, the volume of tissue activated (VTA) was estimated, and the simulated Ca2+ signals were presented using Monte Carlo (MC) simulation to approach the realistic in vivo environment. When VTA and the simulated Ca2+ signals were combined, the distribution of simulated Ca2+ fluorescence signals matched the VTA region. In addition, the in vivo experiment revealed a correlation between the local field potential (LFP) and the Ca2+ fluorescence signal in the evoked region, revealing the relationship between electrophysiology and the performance of neural Ca2+ concentration behavior. Concurrent with the VTA volume, simulated Ca2+ intensity, and the in vivo experiment, these data suggested that the behavior of neural electrophysiology was consistent with the phenomenon of Ca2+ influx to neurons.
Collapse
Affiliation(s)
- Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Feng-Mao Chiu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yi Tseng
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Po-Chuan Chen
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
6
|
Lowet E, Kondabolu K, Zhou S, Mount RA, Wang Y, Ravasio CR, Han X. Deep brain stimulation creates informational lesion through membrane depolarization in mouse hippocampus. Nat Commun 2022; 13:7709. [PMID: 36513664 PMCID: PMC9748039 DOI: 10.1038/s41467-022-35314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Deep brain stimulation (DBS) is a promising neuromodulation therapy, but the neurophysiological mechanisms of DBS remain unclear. In awake mice, we performed high-speed membrane voltage fluorescence imaging of individual hippocampal CA1 neurons during DBS delivered at 40 Hz or 140 Hz, free of electrical interference. DBS powerfully depolarized somatic membrane potentials without suppressing spike rate, especially at 140 Hz. Further, DBS paced membrane voltage and spike timing at the stimulation frequency and reduced timed spiking output in response to hippocampal network theta-rhythmic (3-12 Hz) activity patterns. To determine whether DBS directly impacts cellular processing of inputs, we optogenetically evoked theta-rhythmic membrane depolarization at the soma. We found that DBS-evoked membrane depolarization was correlated with DBS-mediated suppression of neuronal responses to optogenetic inputs. These results demonstrate that DBS produces powerful membrane depolarization that interferes with the ability of individual neurons to respond to inputs, creating an informational lesion.
Collapse
Affiliation(s)
- Eric Lowet
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| | - Krishnakanth Kondabolu
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Samuel Zhou
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Rebecca A. Mount
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Yangyang Wang
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Cara R. Ravasio
- grid.189504.10000 0004 1936 7558Boston University, Department of Biomedical Engineering, Boston, MA 02215 USA
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Schor JS, Gonzalez Montalvo I, Spratt PWE, Brakaj RJ, Stansil JA, Twedell EL, Bender KJ, Nelson AB. Therapeutic deep brain stimulation disrupts movement-related subthalamic nucleus activity in parkinsonian mice. eLife 2022; 11:e75253. [PMID: 35786442 PMCID: PMC9342952 DOI: 10.7554/elife.75253] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/01/2022] [Indexed: 12/02/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN DBS) relieves many motor symptoms of Parkinson's disease (PD), but its underlying therapeutic mechanisms remain unclear. Since its advent, three major theories have been proposed: (1) DBS inhibits the STN and basal ganglia output; (2) DBS antidromically activates motor cortex; and (3) DBS disrupts firing dynamics within the STN. Previously, stimulation-related electrical artifacts limited mechanistic investigations using electrophysiology. We used electrical artifact-free GCaMP fiber photometry to investigate activity in basal ganglia nuclei during STN DBS in parkinsonian mice. To test whether the observed changes in activity were sufficient to relieve motor symptoms, we then combined electrophysiological recording with targeted optical DBS protocols. Our findings suggest that STN DBS exerts its therapeutic effect through the disruption of movement-related STN activity, rather than inhibition or antidromic activation. These results provide insight into optimizing PD treatments and establish an approach for investigating DBS in other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jonathan S Schor
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
| | - Isabelle Gonzalez Montalvo
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
| | - Perry WE Spratt
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
| | - Rea J Brakaj
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Jasmine A Stansil
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Emily L Twedell
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Kevin J Bender
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Alexandra B Nelson
- Neuroscience Program, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of CaliforniaSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California,San FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| |
Collapse
|
8
|
Kim CY, Kim SJ, Kloosterman F. Simultaneous Cellular Imaging, Electrical Recording and Stimulation of Hippocampal Activity in Freely Behaving Mice. Exp Neurobiol 2022; 31:208-220. [PMID: 35786642 PMCID: PMC9272116 DOI: 10.5607/en22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Hippocampal sharp-wave ripple activity (SWRs) and the associated replay of neural activity patterns are well-known for their role in memory consolidation. This activity has been studied using electrophysiological approaches, as high temporal resolution is required to recognize SWRs in the neuronal signals. However, it has been difficult to analyze the individual contribution of neurons to task-specific SWRs, because it is hard to track neurons across a long time with electrophysiological recording. In this study, we recorded local field potential (LFP) signals in the hippocampal CA1 of freely behaving mice and simultaneously imaged calcium signals in contralateral CA1 to leverage the advantages of both electrophysiological and imaging approaches. We manufactured a custom-designed microdrive array and targeted tetrodes to the left hippocampus CA1 for LFP recording and applied electrical stimulation in the ventral hippocampal commissure (VHC) for closed-loop disruption of SWRs. Neuronal population imaging in the right hippocampal CA1 was performed using a miniature fluorescent microscope (Miniscope) and a genetically encoded calcium indicator. As SWRs show highly synchronized bilateral occurrence, calcium signals of SWR-participating neurons could be identified and tracked in spontaneous or SWR-disrupted conditions. Using this approach, we identified a subpopulation of CA1 neurons showing synchronous calcium elevation to SWRs. Our results showed that SWR-related calcium transients are more disrupted by electrical stimulation than non-SWR-related calcium transients, validating the capability of the system to detect and disrupt SWRs. Our dual recording method can be used to uncover the dynamic participation of individual neurons in SWRs and replay over extended time windows.
Collapse
Affiliation(s)
- Chae Young Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,NERF, Leuven 3000, Belgium
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Fabian Kloosterman
- NERF, Leuven 3000, Belgium.,Brain & Cognition, KU Leuven, Leuven 3000, Belgium.,VIB, Leuven 3001, Belgium.,imec, Leuven 3001, Belgium
| |
Collapse
|
9
|
Stieger KC, Eles JR, Ludwig K, Kozai TDY. Intracortical microstimulation pulse waveform and frequency recruits distinct spatiotemporal patterns of cortical neuron and neuropil activation. J Neural Eng 2022; 19. [PMID: 35263736 DOI: 10.1088/1741-2552/ac5bf5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Neural prosthetics often use intracortical microstimulation (ICMS) for sensory restoration. To restore natural and functional feedback, we must first understand how stimulation parameters influence the recruitment of neural populations. ICMS waveform asymmetry modulates the spatial activation of neurons around an electrode at 10 Hz; however, it is unclear how asymmetry may differentially modulate population activity at frequencies typically employed in the clinic (e.g. 100 Hz). We hypothesized that stimulation waveform asymmetry would differentially modulate preferential activation of certain neural populations, and the differential population activity would be frequency-dependent. APPROACH We quantified how asymmetric stimulation waveforms delivered at 10 Hz or 100 Hz for 30s modulated spatiotemporal activity of cortical layer II/III pyramidal neurons using in vivo two-photon and mesoscale calcium imaging in anesthetized mice. Asymmetry is defined in terms of the ratio of the duration of the leading phase to the duration of the return phase of charge-balanced cathodal- and anodal-first waveforms (i.e. longer leading phase relative to return has larger asymmetry). MAIN RESULTS Neurons within 40-60µm of the electrode display stable stimulation-induced activity indicative of direct activation, which was independent of waveform asymmetry. The stability of 72% of activated neurons and the preferential activation of 20-90 % of neurons depended on waveform asymmetry. Additionally, this asymmetry-dependent activation of different neural populations was associated with differential progression of population activity. Specifically, neural activity tended to increase over time during 10 hz stimulation for some waveforms, whereas activity remained at the same level throughout stimulation for other waveforms. During 100 Hz stimulation, neural activity decreased over time for all waveforms, but decreased more for the waveforms that resulted in increasing neural activity during 10 Hz stimulation. SIGNIFICANCE These data demonstrate that at frequencies commonly used for sensory restoration, stimulation waveform alters the pattern of activation of different but overlapping populations of excitatory neurons. The impact of these waveform specific responses on the activation of different subtypes of neurons as well as sensory perception merits further investigation.
Collapse
Affiliation(s)
- Kevin C Stieger
- Bioengineering, University of Pittsburgh, 300 Technology Dr, Pittsburgh, Pennsylvania, 15219, UNITED STATES
| | - James Regis Eles
- Department of Bioengineering, University of Pittsburgh, 300 Technology Dr, Pittsburgh, Pennsylvania, 15219, UNITED STATES
| | - Kip Ludwig
- Biomedical Engineering and Neurological Surgery, University of Wisconsin Madison, XXX, Madison, Wisconsin, 53706, UNITED STATES
| | - Takashi D Yoshida Kozai
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave, 5059-BST3, Pittsburgh, PA 15213, USA, Pittsburgh, Pennsylvania, 15219, UNITED STATES
| |
Collapse
|
10
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|
11
|
Optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus controls locomotion in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 2021; 118:2110934118. [PMID: 34670837 DOI: 10.1073/pnas.2110934118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 01/22/2023] Open
Abstract
In Parkinson's disease (PD), the loss of midbrain dopaminergic cells results in severe locomotor deficits, such as gait freezing and akinesia. Growing evidence indicates that these deficits can be attributed to the decreased activity in the mesencephalic locomotor region (MLR), a brainstem region controlling locomotion. Clinicians are exploring the deep brain stimulation of the MLR as a treatment option to improve locomotor function. The results are variable, from modest to promising. However, within the MLR, clinicians have targeted the pedunculopontine nucleus exclusively, while leaving the cuneiform nucleus unexplored. To our knowledge, the effects of cuneiform nucleus stimulation have never been determined in parkinsonian conditions in any animal model. Here, we addressed this issue in a mouse model of PD, based on the bilateral striatal injection of 6-hydroxydopamine, which damaged the nigrostriatal pathway and decreased locomotor activity. We show that selective optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus in mice expressing channelrhodopsin in a Cre-dependent manner in Vglut2-positive neurons (Vglut2-ChR2-EYFP mice) increased the number of locomotor initiations, increased the time spent in locomotion, and controlled locomotor speed. Using deep learning-based movement analysis, we found that the limb kinematics of optogenetic-evoked locomotion in pathological conditions were largely similar to those recorded in intact animals. Our work identifies the glutamatergic neurons of the cuneiform nucleus as a potentially clinically relevant target to improve locomotor activity in parkinsonian conditions. Our study should open avenues to develop the targeted stimulation of these neurons using deep brain stimulation, pharmacotherapy, or optogenetics.
Collapse
|
12
|
Ma Z, Wei L, Du X, Hou S, Chen F, Jiao Q, Liu A, Liu S, Wang J, Shen H. Two-photon calcium imaging of neuronal and astrocytic responses: the influence of electrical stimulus parameters and calcium signaling mechanisms. J Neural Eng 2021; 18. [PMID: 34130271 DOI: 10.1088/1741-2552/ac0b50] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022]
Abstract
Objective. Electrical brain stimulation has been used to ameliorate symptoms associated with neurologic and psychiatric disorders. The astrocytic activation and its interaction with neurons may contribute to the therapeutic effects of electrical stimulation. However, how the astrocytic activity is affected by electrical stimulation and its calcium signaling mechanisms remain largely unknown. This study is to explore the influence of electrical stimulus parameters on cellular calcium responses and corresponding calcium signaling mechanisms, with a focus on the heretofore largely overlooked astrocytes.Approach. Usingin vivotwo-photon microscopy in mouse somatosensory cortex, the calcium activity in neurons and astrocytes were recorded.Main results. The cathodal stimulation evoked larger responses in both neurons and astrocytes than anodal stimulation. Both neuronal and astrocytic response profiles exhibited the unimodal frequency dependency, the astrocytes prefer higher frequency stimulation than neurons. Astrocytes need longer pulse width and higher current intensity than neurons to activate. Compared to neurons, the astrocytes were not capable of keeping sustained calcium elevation during prolonged electrical stimulation. The neuronal Ca2+influx involves postsynaptic effects and direct depolarization. The Ca2+surge of astrocytes has a neuronal origin, the noradrenergic and glutamatergic signaling act synergistically to induce astrocytic activity.Significance. The astrocytic activity can be regulated by manipulating stimulus parameters and its calcium activation should be fully considered when interpreting the mechanisms of action of electrical neuromodulation. This study brings considerable benefits in the application of electrical stimulation and provides useful insights into cortical signal transduction, which contributes to the understanding of mechanisms underlying the therapeutic efficacy of electrical stimulation for neurorehabilitation applications.
Collapse
Affiliation(s)
- Zengguang Ma
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Liangpeng Wei
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Xiaolang Du
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shaowei Hou
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Feng Chen
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Qingyan Jiao
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Aili Liu
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Shujing Liu
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Junsong Wang
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China
| | - Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China.,Research Institute of Neurology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
13
|
Berke IM, McGrath TM, Stivers JJ, Gui C, Barcellona MN, Gayoso MG, Tang SY, Cao YQ, Gupta MC, Setton LA. Electric Field Stimulation for the Functional Assessment of Isolated Dorsal Root Ganglion Neuron Excitability. Ann Biomed Eng 2021; 49:1110-1118. [PMID: 33479787 PMCID: PMC8204591 DOI: 10.1007/s10439-021-02725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Genetically encoded calcium indicators have proven useful for characterizing dorsal root ganglion neuron excitability in vivo. Challenges persist in achieving high spatial-temporal resolutions in vivo, however, due to deep tissue imaging and motion artifacts that may be limiting technical factors in obtaining measurements. Here we report an ex vivo imaging method, using a peripheral neuron-specific Advillin-GCaMP mouse line and electric field stimulation of dorsal root ganglion tissues, to assess the sensitivity of neurons en bloc. The described method rapidly characterizes Ca2+ activity in hundreds of dorsal root ganglion neurons (221 ± 64 per dorsal root ganglion) with minimal perturbation to the in situ soma environment. We further validate the method for use as a drug screening platform with the voltage-gated sodium channel inhibitor, tetrodotoxin. Drug treatment led to decreased evoked Ca2+ activity; half-maximal response voltage (EV50) increased from 13.4 V in untreated tissues to 21.2, 23.3, 51.5 (p < 0.05), and 60.6 V (p < 0.05) at 0.01, 0.1, 1, and 10 µM doses, respectively. This technique may help improve an understanding of neural signaling while retaining tissue structural organization and serves as a tool for the rapid ex vivo recording and assessment of neural activity.
Collapse
Affiliation(s)
- Ian M Berke
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO, 63130, USA
| | - Tom M McGrath
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO, 63130, USA
| | - J Jordan Stivers
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chang Gui
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO, 63130, USA
| | - Marcos N Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO, 63130, USA
| | - Matthew G Gayoso
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO, 63130, USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yu-Qing Cao
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Munish C Gupta
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lori A Setton
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO, 63130, USA.
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|