1
|
Jansen NA, Linnenbank C, Schenke M, Voskuyl RA, Jorge MS, Krivoshein G, Breukel C, Linssen MM, Claassens JWC, Brouwers C, van Heiningen SH, Heuck A, Lykke-Hartmann K, Tolner EA, van den Maagdenberg AMJM. Spontaneous spreading depolarizations originate subcortically in a novel mouse model of familial hemiplegic migraine type 2. Neurobiol Dis 2024:106714. [PMID: 39448040 DOI: 10.1016/j.nbd.2024.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
The mechanisms of initiation of spreading depolarization (SD) are understudied due to a paucity of disease models with spontaneously occurring events. We here present a novel mouse model of familial hemiplegic migraine type 2 (FHM2), expressing the missense T345A-mutated α2 subunit of the Na+/K+ adenosine triphosphatase pump (Atp1a2T345A). Homozygous Atp1a2T345A mice showed regular spontaneous SDs that exhibit a diurnal rhythm and typically originate from the hippocampus. Heterozygous Atp1a2T345A mice rarely exhibited spontaneous SDs and, for electrically induced SDs, only showed an increased propagation speed, whereas homozygotes showed both increased propagation and decreased threshold. Remarkably, despite hippocampal hyperexcitability, spontaneous SDs in Atp1a2T345A mice were only rarely associated with epileptic behavior, and seizure expression during kindling was decreased. Spontaneous SDs could be prevented by modulation of persistent sodium currents. Hippocampal SDs occurred in the presence of an NMDA-receptor antagonist, but these events did not reach the cortex, suggesting that initiation and propagation of SD depend on different mechanisms in this model.
Collapse
Affiliation(s)
- Nico A Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Chelsey Linnenbank
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten Schenke
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob A Voskuyl
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria S Jorge
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Georgii Krivoshein
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Cor Breukel
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Margot M Linssen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jill W C Claassens
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Conny Brouwers
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Anders Heuck
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
2
|
Zhang JM, Masvidal-Codina E, Nguyen D, Illa X, Dégardin J, Goulet R, Prats-Alfonso E, Matsoukis S, Guger C, Garrido JA, Picaud S, Guimerà-Brunet A, Wykes RC. Concurrent functional ultrasound imaging with graphene-based DC-coupled electrophysiology as a platform to study slow brain signals and cerebral blood flow under control and pathophysiological brain states. NANOSCALE HORIZONS 2024; 9:544-554. [PMID: 38323517 DOI: 10.1039/d3nh00521f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Current methodology used to investigate how shifts in brain states associated with regional cerebral blood volume (CBV) change in deep brain areas, are limited by either the spatiotemporal resolution of the CBV techniques, and/or compatibility with electrophysiological recordings; particularly in relation to spontaneous brain activity and the study of individual events. Additionally, infraslow brain signals (<0.1 Hz), including spreading depolarisations, DC-shifts and infraslow oscillations (ISO), are poorly captured by traditional AC-coupled electrographic recordings; yet these very slow brain signals can profoundly change CBV. To gain an improved understanding of how infraslow brain signals couple to CBV we present a new method for concurrent CBV with wide bandwidth electrophysiological mapping using simultaneous functional ultrasound imaging (fUS) and graphene-based field effect transistor (gFET) DC-coupled electrophysiological acquisitions. To validate the feasibility of this methodology visually-evoked neurovascular coupling (NVC) responses were examined. gFET recordings are not affected by concurrent fUS imaging, and epidural placement of gFET arrays within the imaging window did not deteriorate fUS signal quality. To examine directly the impact of infra-slow potential shifts on CBV, cortical spreading depolarisations (CSDs) were induced. A biphasic pattern of decreased, followed by increased CBV, propagating throughout the ipsilateral cortex, and a delayed decrease in deeper subcortical brain regions was observed. In a model of acute seizures, CBV oscillations were observed prior to seizure initiation. Individual seizures occurred on the rising phase of both infraslow brain signal and CBV oscillations. When seizures co-occurred with CSDs, CBV responses were larger in amplitude, with delayed CBV decreases in subcortical structures. Overall, our data demonstrate that gFETs are highly compatible with fUS and allow concurrent examination of wide bandwidth electrophysiology and CBV. This graphene-enabled technological advance has the potential to improve our understanding of how infraslow brain signals relate to CBV changes in control and pathological brain states.
Collapse
Affiliation(s)
- Julie Meng Zhang
- Sorbonne Université, INSERM, CNRS, Institute de la Vision, Paris F75012, France
| | - Eduard Masvidal-Codina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| | - Diep Nguyen
- Sorbonne Université, INSERM, CNRS, Institute de la Vision, Paris F75012, France
| | - Xavi Illa
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
- Institute of Microelectronics of Barcelona, (IMB-CNM), CSIC, Spain
| | - Julie Dégardin
- Sorbonne Université, INSERM, CNRS, Institute de la Vision, Paris F75012, France
| | - Ruben Goulet
- Sorbonne Université, INSERM, CNRS, Institute de la Vision, Paris F75012, France
| | - Elisabet Prats-Alfonso
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
- Institute of Microelectronics of Barcelona, (IMB-CNM), CSIC, Spain
| | - Stratis Matsoukis
- G-Tec Medical Engineering GmbH, Austria
- Institute for Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Jose Antonio Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institute de la Vision, Paris F75012, France
| | - Anton Guimerà-Brunet
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
- Institute of Microelectronics of Barcelona, (IMB-CNM), CSIC, Spain
| | - Rob C Wykes
- University College London Queen Square Institute of Neurology, London, UK.
- Nanomedicine Lab, Division of Neuroscience, University of Manchester, UK
| |
Collapse
|
3
|
Loonen ICM, Voskuyl RA, Schenke M, van Heiningen SH, van den Maagdenberg AMJM, Tolner EA. Spontaneous and optogenetically induced cortical spreading depolarization in familial hemiplegic migraine type 1 mutant mice. Neurobiol Dis 2024; 192:106405. [PMID: 38211710 DOI: 10.1016/j.nbd.2024.106405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Mechanisms underlying the migraine aura are incompletely understood, which to large extent is related to a lack of models in which cortical spreading depolarization (CSD), the correlate of the aura, occurs spontaneously. Here, we investigated electrophysiological and behavioural CSD features in freely behaving mice expressing mutant CaV2.1 Ca2+ channels, either with the milder R192Q or the severer S218L missense mutation in the α1 subunit, known to cause familial hemiplegic migraine type 1 (FHM1) in patients. Very rarely, spontaneous CSDs were observed in mutant but never in wildtype mice. In homozygous Cacna1aR192Q mice exclusively single-wave CSDs were observed whereas heterozygous Cacna1aS218L mice displayed multiple-wave events, seemingly in line with the more severe clinical phenotype associated with the S218L mutation. Spontaneous CSDs were associated with body stretching, one-directional slow head turning, and rotating movement of the body. Spontaneous CSD events were compared with those induced in a controlled manner using minimally invasive optogenetics. Also in the optogenetic experiments single-wave CSDs were observed in Cacna1aR192Q and Cacna1aS218L mice (whereas the latter also showed multiple-wave events) with movements similar to those observed with spontaneous events. Compared to wildtype mice, FHM1 mutant mice exhibited a reduced threshold and an increased propagation speed for optogenetically induced CSD with a more profound CSD-associated dysfunction, as indicated by a prolonged suppression of transcallosal evoked potentials and a reduction of unilateral forepaw grip performance. When induced during sleep, the optogenetic CSD threshold was particularly lowered, which may explain why spontaneous CSD events predominantly occurred during sleep. In conclusion, our data show that key neurophysiological and behavioural features of optogenetically induced CSDs mimic those of rare spontaneous events in FHM1 R192Q and S218L mutant mice with differences in severity in line with FHM1 clinical phenotypes seen with these mutations.
Collapse
Affiliation(s)
- Inge C M Loonen
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 RC, the Netherlands
| | - Rob A Voskuyl
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 RC, the Netherlands
| | - Maarten Schenke
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 RC, the Netherlands
| | - Sandra H van Heiningen
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 RC, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 RC, the Netherlands; Department of Neurology, Leiden University Medical Center, Leiden 2333 RC, the Netherlands
| | - Else A Tolner
- Department of Human Genetics, Leiden University Medical Center, Leiden 2333 RC, the Netherlands; Department of Neurology, Leiden University Medical Center, Leiden 2333 RC, the Netherlands.
| |
Collapse
|
4
|
Cancino-Fuentes N, Manasanch A, Covelo J, Suarez-Perez A, Fernandez E, Matsoukis S, Guger C, Illa X, Guimerà-Brunet A, Sanchez-Vives MV. Recording physiological and pathological cortical activity and exogenous electric fields using graphene microtransistor arrays in vitro. NANOSCALE 2024; 16:664-677. [PMID: 38100059 DOI: 10.1039/d3nr03842d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Graphene-based solution-gated field-effect transistors (gSGFETs) allow the quantification of the brain's full-band signal. Extracellular alternating current (AC) signals include local field potentials (LFP, population activity within a reach of hundreds of micrometers), multiunit activity (MUA), and ultimately single units. Direct current (DC) potentials are slow brain signals with a frequency under 0.1 Hz, and commonly filtered out by conventional AC amplifiers. This component conveys information about what has been referred to as "infraslow" activity. We used gSGFET arrays to record full-band patterns from both physiological and pathological activity generated by the cerebral cortex. To this end, we used an in vitro preparation of cerebral cortex that generates spontaneous rhythmic activity, such as that occurring in slow wave sleep. This examination extended to experimentally induced pathological activities, including epileptiform discharges and cortical spreading depression. Validation of recordings obtained via gSGFETs, including both AC and DC components, was accomplished by cross-referencing with well-established technologies, thereby quantifying these components across different activity patterns. We then explored an additional gSGFET potential application, which is the measure of externally induced electric fields such as those used in therapeutic neuromodulation in humans. Finally, we tested the gSGFETs in human cortical slices obtained intrasurgically. In conclusion, this study offers a comprehensive characterization of gSGFETs for brain recordings, with a focus on potential clinical applications of this emerging technology.
Collapse
Affiliation(s)
| | - Arnau Manasanch
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Joana Covelo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Alex Suarez-Perez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | | - Stratis Matsoukis
- g.tec medical engineering, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | | | - Xavi Illa
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Anton Guimerà-Brunet
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Maria V Sanchez-Vives
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- ICREA, Barcelona, Spain
| |
Collapse
|
5
|
Dell’Orco M, Weisend JE, Perrone-Bizzozero NI, Carlson AP, Morton RA, Linsenbardt DN, Shuttleworth CW. Repetitive spreading depolarization induces gene expression changes related to synaptic plasticity and neuroprotective pathways. Front Cell Neurosci 2023; 17:1292661. [PMID: 38162001 PMCID: PMC10757627 DOI: 10.3389/fncel.2023.1292661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Spreading depolarization (SD) is a slowly propagating wave of profound depolarization that sweeps through cortical tissue. While much emphasis has been placed on the damaging consequences of SD, there is uncertainty surrounding the potential activation of beneficial pathways such as cell survival and plasticity. The present study used unbiased assessments of gene expression to evaluate that compensatory and repair mechanisms could be recruited following SD, regardless of the induction method, which prior to this work had not been assessed. We also tested assumptions of appropriate controls and the spatial extent of expression changes that are important for in vivo SD models. SD clusters were induced with either KCl focal application or optogenetic stimulation in healthy mice. Cortical RNA was extracted and sequenced to identify differentially expressed genes (DEGs). SDs using both induction methods significantly upregulated 16 genes (vs. sham animals) that included the cell proliferation-related genes FOS, JUN, and DUSP6, the plasticity-related genes ARC and HOMER1, and the inflammation-related genes PTGS2, EGR2, and NR4A1. The contralateral hemisphere is commonly used as control tissue for DEG studies, but its activity could be modified by near-global disruption of activity in the adjacent brain. We found 21 upregulated genes when comparing SD-involved cortex vs. tissue from the contralateral hemisphere of the same animals. Interestingly, there was almost complete overlap (21/16) with the DEGs identified using sham controls. Neuronal activity also differs in SD initiation zones, where sustained global depolarization is required to initiate propagating events. We found that gene expression varied as a function of the distance from the SD initiation site, with greater expression differences observed in regions further away. Functional and pathway enrichment analyses identified axonogenesis, branching, neuritogenesis, and dendritic growth as significantly enriched in overlapping DEGs. Increased expression of SD-induced genes was also associated with predicted inhibition of pathways associated with cell death, and apoptosis. These results identify novel biological pathways that could be involved in plasticity and/or circuit modification in brain tissue impacted by SD. These results also identify novel functional targets that could be tested to determine potential roles in the recovery and survival of peri-infarct tissues.
Collapse
Affiliation(s)
- Michela Dell’Orco
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jordan E. Weisend
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrew P. Carlson
- Department of Neurosurgery, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Russell A. Morton
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - David N. Linsenbardt
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - C. William Shuttleworth
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
6
|
Vitale M, Tottene A, Zarin Zadeh M, Brennan KC, Pietrobon D. Mechanisms of initiation of cortical spreading depression. J Headache Pain 2023; 24:105. [PMID: 37553625 PMCID: PMC10408042 DOI: 10.1186/s10194-023-01643-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND There is increasing evidence from human and animal studies that cortical spreading depression (CSD) is the neurophysiological correlate of migraine aura and a trigger of migraine pain mechanisms. The mechanisms of initiation of CSD in the brain of migraineurs remain unknown, and the mechanisms of initiation of experimentally induced CSD in normally metabolizing brain tissue remain incompletely understood and controversial. Here, we investigated the mechanisms of CSD initiation by focal application of KCl in mouse cerebral cortex slices. METHODS High KCl puffs of increasing duration up to the threshold duration eliciting a CSD were applied on layer 2/3 whilst the membrane potential of a pyramidal neuron located very close to the site of KCl application and the intrinsic optic signal were simultaneously recorded. This was done before and after the application of a specific blocker of either NMDA or AMPA glutamate receptors (NMDARs, AMPARs) or voltage-gated Ca2+ (CaV) channels. If the drug blocked CSD, stimuli up to 12-15 times the threshold were applied. RESULTS Blocking either NMDARs with MK-801 or CaV channels with Ni2+ completely inhibited CSD initiation by both CSD threshold and largely suprathreshold KCl stimuli. Inhibiting AMPARs with NBQX was without effect on the CSD threshold and velocity. Analysis of the CSD subthreshold and threshold neuronal depolarizations in control conditions and in the presence of MK-801 or Ni2+ revealed that the mechanism underlying ignition of CSD by a threshold stimulus (and not by a just subthreshold stimulus) is the CaV-dependent activation of a threshold level of NMDARs (and/or of channels whose opening depends on the latter). The delay of several seconds with which this occurs underlies the delay of CSD initiation relative to the rapid neuronal depolarization produced by KCl. CONCLUSIONS Both NMDARs and CaV channels are necessary for CSD initiation, which is not determined by the extracellular K+ or neuronal depolarization levels per se, but requires the CaV-dependent activation of a threshold level of NMDARs. This occurs with a delay of several seconds relative to the rapid depolarization produced by the KCl stimulus. Our data give insights into potential mechanisms of CSD initiation in migraine.
Collapse
Affiliation(s)
- Marina Vitale
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Angelita Tottene
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - Maral Zarin Zadeh
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, UT, 84108, Salt Lake City, USA
| | - Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, 35131, Padova, Italy.
- Padova Neuroscience Center (PNC), University of Padova, 35131, Padova, Italy.
| |
Collapse
|
7
|
Ye T, Yang Y, Bai J, Wu FY, Zhang L, Meng LY, Lan Y. The mechanical, optical, and thermal properties of graphene influencing its pre-clinical use in treating neurological diseases. Front Neurosci 2023; 17:1162493. [PMID: 37360172 PMCID: PMC10288862 DOI: 10.3389/fnins.2023.1162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Rapid progress in nanotechnology has advanced fundamental neuroscience and innovative treatment using combined diagnostic and therapeutic applications. The atomic scale tunability of nanomaterials, which can interact with biological systems, has attracted interest in emerging multidisciplinary fields. Graphene, a two-dimensional nanocarbon, has gained increasing attention in neuroscience due to its unique honeycomb structure and functional properties. Hydrophobic planar sheets of graphene can be effectively loaded with aromatic molecules to produce a defect-free and stable dispersion. The optical and thermal properties of graphene make it suitable for biosensing and bioimaging applications. In addition, graphene and its derivatives functionalized with tailored bioactive molecules can cross the blood-brain barrier for drug delivery, substantially improving their biological property. Therefore, graphene-based materials have promising potential for possible application in neuroscience. Herein, we aimed to summarize the important properties of graphene materials required for their application in neuroscience, the interaction between graphene-based materials and various cells in the central and peripheral nervous systems, and their potential clinical applications in recording electrodes, drug delivery, treatment, and as nerve scaffolds for neurological diseases. Finally, we offer insights into the prospects and limitations to aid graphene development in neuroscience research and nanotherapeutics that can be used clinically.
Collapse
Affiliation(s)
- Ting Ye
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Jin Bai
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Feng-Ying Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
| | - Lu Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Long-Yue Meng
- Department of Environmental Science, Department of Chemistry, Yanbian University, Yanji, Jilin, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
8
|
Podkowa K, Czarnacki K, Borończyk A, Borończyk M, Paprocka J. The NMDA receptor antagonists memantine and ketamine as anti-migraine agents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02444-2. [PMID: 36869904 DOI: 10.1007/s00210-023-02444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Migraine is a debilitating disorder affecting females more frequently than males. There is some evidence that drugs targeting glutamate receptors: memantine and ketamine might be beneficial in the therapy of this entity. Therefore, the purpose of this work is to present NMDA receptor antagonists, memantine and ketamine, as potential anti-migraine agents. We searched PubMed/MEDLINE, Embase, and clinical trials submitted to ClinicalTrials.gov to find publications describing eligible trials published between database inception and December 31, 2021. This comprehensive literature review summarizes data on the use of the NMDA receptor antagonists memantine and ketamine in the pharmacotherapy of migraine. Results from 20 previous and recent preclinical experiments are discussed and correlated with 19 clinical trials (including case series, open-label, and randomized placebo-controlled trials). For the purposes of this review, the authors hypothesized that the propagation of SD is a major mechanism in the pathophysiology of migraine. In several animal studies and in vitro studies, memantine and ketamine inhibited or reduced propagation of the SD. In addition, the results of clinical trials suggest that memantine or ketamine may be an effective treatment option for migraine. However, most studies on these agents lack control group. Although further clinical trials are needed, the results suggest that ketamine or memantine may be promising molecules for the treatment of severe migraine. Particular attention should be paid to people who have a treatment-resistant form of migraine with aura or have exhausted existing treatment options. For them, the drugs under discussion could represent an interesting alternative in the future.
Collapse
Affiliation(s)
- Karolina Podkowa
- Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland.
| | - Kamil Czarnacki
- Students' Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Borończyk
- Students' Scientific Association, Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Michał Borończyk
- Students' Scientific Association, Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
9
|
Parrish RR, MacKenzie-Gray Scott C, Jackson-Taylor T, Grundmann A, McLeod F, Codadu NK, Călin A, Alfonsa H, Wykes RC, Voipio J, Trevelyan AJ. Indirect Effects of Halorhodopsin Activation: Potassium Redistribution, Nonspecific Inhibition, and Spreading Depolarization. J Neurosci 2023; 43:685-692. [PMID: 36639898 PMCID: PMC9899079 DOI: 10.1523/jneurosci.1141-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The movement of ions in and out of neurons can exert significant effects on neighboring cells. Here we report several experimentally important consequences of activation of the optogenetic chloride pump, halorhodopsin. We recorded extracellular K+ concentration ([K+]extra) in neocortical brain slices prepared from young adult mice (both sexes) which express halorhodopsin in pyramidal cells. Strong halorhodopsin activation induced a pronounced drop in [K+]extra that persisted for the duration of illumination. Pharmacological blockade of K+ channels reduced the amplitude of this drop, indicating that it represents K+ redistribution into cells during the period of hyperpolarization. Halorhodopsin thus drives the inward movement of both Cl- directly, and K+ secondarily. When the illumination period ended, a rebound surge in extracellular [K+] developed over tens of seconds, partly reflecting the previous inward redistribution of K+, but additionally driven by clearance of Cl- coupled to K+ by the potassium-chloride cotransporter, KCC2. The drop in [K+]extra during light activation leads to a small (2-3 mV) hyperpolarization also of other cells that do not express halorhodopsin. Its activation therefore has both direct and indirect inhibitory effects. Finally, we show that persistent strong activation of halorhodopsin causes cortical spreading depolarizations (CSDs), both in vitro and in vivo This novel means of triggering CSDs is unusual, in that the events can arise during the actual period of illumination, when neurons are being hyperpolarized and [K+]extra is low. We suggest that this fundamentally different experimental model of CSDs will open up new avenues of research to explain how they occur naturally.SIGNIFICANCE STATEMENT Halorhodopsin is a light-activated electrogenic chloride pump, which has been widely used to inhibit neurons optogenetically. Here, we demonstrate three previously unrecognized consequences of its use: (1) intense activation leads to secondary movement of K+ ions into the cells; (2) the resultant drop in extracellular [K+] reduces excitability also in other, nonexpressing cells; and (3) intense persistent halorhodopsin activation can trigger cortical spreading depolarization (CSD). Halorhodopsin-induced CSDs can occur when neurons are hyperpolarized and extracellular [K+] is low. This contrasts with the most widely used experimental models that trigger CSDs with high [K+]. Both models, however, are consistent with the hypothesis that CSDs arise following net inward ionic movement into the principal neuron population.
Collapse
Affiliation(s)
- R Ryley Parrish
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
- Department of Cell Biology and Physiology, Brigham Young University, Provo 84602, Utah
| | | | - Tom Jackson-Taylor
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Alex Grundmann
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Faye McLeod
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Neela K Codadu
- Queen Square Institute of Neurology, University College London, WC1N 3BG, United Kingdom
| | - Alexandru Călin
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Hannah Alfonsa
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Rob C Wykes
- Nanomedicine Lab, University of Manchester, Manchester, M13 9PL, United Kingdom
- Queen Square Institute of Neurology, University College London, WC1N 3BG, United Kingdom
| | - Juha Voipio
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences, University of Helsinki, Helsinki, 00014, Finland
| | - Andrew J Trevelyan
- Newcastle University Biosciences Institute, Medical School, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
10
|
Pi C, Tang W, Li Z, Liu Y, Jing Q, Dai W, Wang T, Yang C, Yu S. Cortical pain induced by optogenetic cortical spreading depression: from whole brain activity mapping. Mol Brain 2022; 15:99. [PMID: 36471383 PMCID: PMC9721019 DOI: 10.1186/s13041-022-00985-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cortical spreading depression (CSD) is an electrophysiological event underlying migraine aura. Traditional CSD models are invasive and often cause injuries. The aim of the study was to establish a minimally invasive optogenetic CSD model and identify the active networks after CSD using whole-brain activity mapping. METHODS CSD was induced in mice by light illumination, and their periorbital thresholds and behaviours in the open field, elevated plus-maze and light-aversion were recorded. Using c-fos, we mapped the brain activity after CSD. The whole brain was imaged, reconstructed and analyzed using the Volumetric Imaging with Synchronized on-the-fly-scan and Readout technique. To ensure the accuracy of the results, the immunofluorescence staining method was used to verify the imaging results. RESULTS The optogenetic CSD model showed significantly decreased periorbital thresholds, increased facial grooming and freezing behaviours and prominent light-aversion behaviours. Brain activity mapping revealed that the somatosensory, primary sensory, olfactory, basal ganglia and default mode networks were activated. However, the thalamus and trigeminal nucleus caudalis were not activated. CONCLUSIONS Optogenetic CSD model could mimic the behaviours of headache and photophobia. Moreover, the optogenetic CSD could activate multiple sensory cortical regions without the thalamus or trigeminal nucleus caudalis to induce cortical pain.
Collapse
Affiliation(s)
- Chenghui Pi
- grid.216938.70000 0000 9878 7032College of Medicine, Nankai University, Tianjin, China ,grid.414252.40000 0004 1761 8894Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenjing Tang
- grid.414252.40000 0004 1761 8894Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhishuai Li
- grid.9227.e0000000119573309The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- grid.414252.40000 0004 1761 8894Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qi Jing
- grid.59053.3a0000000121679639School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei Dai
- grid.414252.40000 0004 1761 8894Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Tao Wang
- grid.414252.40000 0004 1761 8894Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chunxiao Yang
- grid.216938.70000 0000 9878 7032College of Medicine, Nankai University, Tianjin, China ,grid.414252.40000 0004 1761 8894Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Shengyuan Yu
- grid.216938.70000 0000 9878 7032College of Medicine, Nankai University, Tianjin, China ,grid.414252.40000 0004 1761 8894Department of Neurology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Wykes RC, Masvidal-Codina E, Guimerà-Brunet A, Garrido JA. The advantages of mapping slow brain potentials using DC-coupled graphene micro-transistors: Clinical and translational applications. Clin Transl Med 2022; 12:e968. [PMID: 35802821 PMCID: PMC9269996 DOI: 10.1002/ctm2.968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rob C Wykes
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom.,Nanomedicine Lab, University of Manchester, Manchester, United Kingdom
| | - Eduard Masvidal-Codina
- Catalan Institute of Nanoscience andNanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Anton Guimerà-Brunet
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
| | - Jose A Garrido
- Catalan Institute of Nanoscience andNanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
12
|
Hills KE, Kostarelos K, Wykes RC. Converging Mechanisms of Epileptogenesis and Their Insight in Glioblastoma. Front Mol Neurosci 2022; 15:903115. [PMID: 35832394 PMCID: PMC9271928 DOI: 10.3389/fnmol.2022.903115] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and advanced form of primary malignant tumor occurring in the adult central nervous system, and it is frequently associated with epilepsy, a debilitating comorbidity. Seizures are observed both pre- and post-surgical resection, indicating that several pathophysiological mechanisms are shared but also prompting questions about how the process of epileptogenesis evolves throughout GBM progression. Molecular mutations commonly seen in primary GBM, i.e., in PTEN and p53, and their associated downstream effects are known to influence seizure likelihood. Similarly, various intratumoral mechanisms, such as GBM-induced blood-brain barrier breakdown and glioma-immune cell interactions within the tumor microenvironment are also cited as contributing to network hyperexcitability. Substantial alterations to peri-tumoral glutamate and chloride transporter expressions, as well as widespread dysregulation of GABAergic signaling are known to confer increased epileptogenicity and excitotoxicity. The abnormal characteristics of GBM alter neuronal network function to result in metabolically vulnerable and hyperexcitable peri-tumoral tissue, properties the tumor then exploits to favor its own growth even post-resection. It is evident that there is a complex, dynamic interplay between GBM and epilepsy that promotes the progression of both pathologies. This interaction is only more complicated by the concomitant presence of spreading depolarization (SD). The spontaneous, high-frequency nature of GBM-associated epileptiform activity and SD-associated direct current (DC) shifts require technologies capable of recording brain signals over a wide bandwidth, presenting major challenges for comprehensive electrophysiological investigations. This review will initially provide a detailed examination of the underlying mechanisms that promote network hyperexcitability in GBM. We will then discuss how an investigation of these pathologies from a network level, and utilization of novel electrophysiological tools, will yield a more-effective, clinically-relevant understanding of GBM-related epileptogenesis. Further to this, we will evaluate the clinical relevance of current preclinical research and consider how future therapeutic advancements may impact the bidirectional relationship between GBM, SDs, and seizures.
Collapse
Affiliation(s)
- Kate E. Hills
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Catalan Institute for Nanoscience and Nanotechnology (ICN2), Edifici ICN2, Campus UAB, Barcelona, Spain
| | - Robert C. Wykes
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- *Correspondence: Robert C. Wykes
| |
Collapse
|
13
|
Yousef Yengej D, Nwaobi SE, Ferando I, Kechechyan G, Charles A, Faas GC. Different characteristics of cortical spreading depression in the sleep and wake states. Headache 2022; 62:577-587. [DOI: 10.1111/head.14300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Dmitri Yousef Yengej
- Department of Neurology The David Geffen School of Medicine at UCLA Los Angeles California USA
| | - Sinifunanya E. Nwaobi
- Department of Neurology The David Geffen School of Medicine at UCLA Los Angeles California USA
| | - Isabella Ferando
- Department of Neurology Miller School of Medicine at the University of Miami Miami Florida USA
| | - Gayane Kechechyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California, San Diego La Jolla California USA
| | - Andrew Charles
- Department of Neurology The David Geffen School of Medicine at UCLA Los Angeles California USA
| | - Guido C. Faas
- Department of Neurology The David Geffen School of Medicine at UCLA Los Angeles California USA
| |
Collapse
|
14
|
Guimerà-Brunet A, Masvidal-Codina E, Cisneros-Fernández J, Serra-Graells F, Garrido JA. Novel transducers for high-channel-count neuroelectronic recording interfaces. Curr Opin Biotechnol 2021; 72:39-47. [PMID: 34695765 DOI: 10.1016/j.copbio.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023]
Abstract
Neuroelectronic interfaces with the nervous system are an essential technology in state-of-the-art neuroscience research aiming to uncover the fundamental working mechanisms of the brain. Progress towards increased spatio-temporal resolution has been tightly linked to the advance of microelectronics technology and novel materials. Translation of these technologies to neuroscience has resulted in multichannel neural probes and acquisition systems enabling the recording of brain signals using thousands of channels. This review provides an overview of state-of-the-art neuroelectronic technologies, with emphasis on recording site architectures which enable the implementation of addressable arrays for high-channel-count neural interfaces. In this field, active transduction mechanisms are gaining importance fueled by novel materials, as they facilitate the implementation of high density addressable arrays.
Collapse
Affiliation(s)
- Anton Guimerà-Brunet
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Eduard Masvidal-Codina
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | | | - Francesc Serra-Graells
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain; Universitat Autònoma de Barcelona, Spain
| | - Jose A Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|