1
|
Matilainen N, Kataja J, Laakso I. Verification of neuronavigated TMS accuracy using structured-light 3D scans. Phys Med Biol 2024; 69:085004. [PMID: 38479018 DOI: 10.1088/1361-6560/ad33b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Objective.To investigate the reliability and accuracy of the manual three-point co-registration in neuronavigated transcranial magnetic stimulation (TMS). The effect of the error in landmark pointing on the coil placement and on the induced electric and magnetic fields was examined.Approach.The position of the TMS coil on the head was recorded by the neuronavigation system and by 3D scanning for ten healthy participants. The differences in the coil locations and orientations and the theoretical error values for electric and magnetic fields between the neuronavigated and 3D scanned coil positions were calculated. In addition, the sensitivity of the coil location on landmark accuracy was calculated.Main results.The measured distances between the neuronavigated and 3D scanned coil locations were on average 10.2 mm, ranging from 3.1 to 18.7 mm. The error in angles were on average from two to three degrees. The coil misplacement caused on average a 29% relative error in the electric field with a range from 9% to 51%. In the magnetic field, the same error was on average 33%, ranging from 10% to 58%. The misplacement of landmark points could cause a 1.8-fold error for the coil location.Significance.TMS neuronavigation with three landmark points can cause a significant error in the coil position, hampering research using highly accurate electric field calculations. Including 3D scanning to the process provides an efficient method to achieve a more accurate coil position.
Collapse
Affiliation(s)
- Noora Matilainen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Juhani Kataja
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
- Aalto Neuroimaging, Aalto University, Espoo, Finland
| |
Collapse
|
2
|
Matilainen N, Kataja J, Laakso I. Predicting the hotspot location and motor threshold prior to transcranial magnetic stimulation using electric field modelling. Phys Med Biol 2023; 69:015012. [PMID: 37816371 DOI: 10.1088/1361-6560/ad0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Objective.To investigate whether the motor threshold (MT) and the location of the motor hotspot in transcranial magnetic stimulation (TMS) can be predicted with computational models of the induced electric field.Approach.Individualized computational models were constructed from structural magnetic resonance images of ten healthy participants, and the induced electric fields were determined with the finite element method. The models were used to optimize the location and direction of the TMS coil on the scalp to produce the largest electric field at a predetermined cortical target location. The models were also used to predict how the MT changes as the magnetic coil is moved to various locations over the scalp. To validate the model predictions, the motor evoked potentials were measured from the first dorsal interosseous (FDI) muscle with TMS in the ten participants. Both computational and experimental methods were preregistered prior to the experiments.Main results.Computationally optimized hotspot locations were nearly as accurate as those obtained using manual hotspot search procedures. The mean Euclidean distance between the predicted and the measured hotspot locations was approximately 1.3 cm with a 0.8 cm bias towards the anterior direction. Exploratory analyses showed that the bias could be removed by changing the cortical target location that was used for the prediction. The results also indicated a statistically significant relationship (p< 0.001) between the calculated electric field and the MT measured at several locations on the scalp.Significance.The results show that the individual TMS hotspot can be located using computational analysis without stimulating the subject or patient even once. Adapting computational modelling would save time and effort in research and clinical use of TMS.
Collapse
Affiliation(s)
- Noora Matilainen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Juhani Kataja
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
- Aalto Neuroimaging, Aalto University, Espoo, Finland
| |
Collapse
|
3
|
Chen Y, Jiang Y, Zhang Z, Li Z, Zhu C. Transcranial magnetic stimulation mapping of the motor cortex: comparison of five estimation algorithms. Front Neurosci 2023; 17:1301075. [PMID: 38130697 PMCID: PMC10733534 DOI: 10.3389/fnins.2023.1301075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background There are currently five different kinds of transcranial magnetic stimulation (TMS) motor mapping algorithms available, from ordinary point-based algorithms to advanced field-based algorithms. However, there have been only a limited number of comparison studies conducted, and they have not yet examined all of the currently available algorithms. This deficiency impedes the judicious selection of algorithms for application in both clinical and basic neuroscience, and hinders the potential promotion of a potential superior algorithm. Considering the influence of algorithm complexity, further investigation is needed to examine the differences between fMRI peaks and TMS cortical hotspots that were identified previously. Methods Twelve healthy participants underwent TMS motor mapping and a finger-tapping task during fMRI. The motor cortex TMS mapping results were estimated by five algorithms, and fMRI activation results were obtained. For each algorithm, the prediction error was defined as the distance between the measured scalp hotspot and optimized coil position, which was determined by the maximum electric field strength in the estimated motor cortex. Additionally, the study identified the minimum number of stimuli required for stable mapping. Finally, the location difference between the TMS mapping cortical hotspot and the fMRI activation peak was analyzed. Results The projection yielded the lowest prediction error (5.27 ± 4.24 mm) among the point-based algorithms and the association algorithm yielded the lowest (6.66 ± 3.48 mm) among field-based estimation algorithms. The projection algorithm required fewer stimuli, possibly resulting from its suitability for the grid-based mapping data collection method. The TMS cortical hotspots from all algorithms consistently deviated from the fMRI activation peak (20.52 ± 8.46 mm for five algorithms). Conclusion The association algorithm might be a superior choice for clinical applications and basic neuroscience research, due to its lower prediction error and higher estimation sensitivity in the deep cortical structure, especially for the sulcus. It also has potential applicability in various other TMS domains, including language area mapping and more. Otherwise, our results provide further evidence that TMS motor mapping intrinsically differs from fMRI motor mapping.
Collapse
Affiliation(s)
- Yuanyuan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yihan Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China
| | - Zong Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zheng Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University Zhuhai, Zhuhai, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Nieminen AE, Nieminen JO, Stenroos M, Novikov P, Nazarova M, Vaalto S, Nikulin V, Ilmoniemi RJ. Accuracy and precision of navigated transcranial magnetic stimulation. J Neural Eng 2022; 19. [PMID: 36541458 DOI: 10.1088/1741-2552/aca71a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
Objective.Transcranial magnetic stimulation (TMS) induces an electric field (E-field) in the cortex. To facilitate stimulation targeting, image-guided neuronavigation systems have been introduced. Such systems track the placement of the coil with respect to the head and visualize the estimated cortical stimulation location on an anatomical brain image in real time. The accuracy and precision of the neuronavigation is affected by multiple factors. Our aim was to analyze how different factors in TMS neuronavigation affect the accuracy and precision of the coil-head coregistration and the estimated E-field.Approach.By performing simulations, we estimated navigation errors due to distortions in magnetic resonance images (MRIs), head-to-MRI registration (landmark- and surface-based registrations), localization and movement of the head tracker, and localization of the coil tracker. We analyzed the effect of these errors on coil and head coregistration and on the induced E-field as determined with simplistic and realistic head models.Main results.Average total coregistration accuracies were in the range of 2.2-3.6 mm and 1°; precision values were about half of the accuracy values. The coregistration errors were mainly due to head-to-MRI registration with average accuracies 1.5-1.9 mm/0.2-0.4° and precisions 0.5-0.8 mm/0.1-0.2° better with surface-based registration. The other major source of error was the movement of the head tracker with average accuracy of 1.5 mm and precision of 1.1 mm. When assessed within an E-field method, the average accuracies of the peak E-field location, orientation, and magnitude ranged between 1.5 and 5.0 mm, 0.9 and 4.8°, and 4.4 and 8.5% across the E-field models studied. The largest errors were obtained with the landmark-based registration. When computing another accuracy measure with the most realistic E-field model as a reference, the accuracies tended to improve from about 10 mm/15°/25% to about 2 mm/2°/5% when increasing realism of the E-field model.Significance.The results of this comprehensive analysis help TMS operators to recognize the main sources of error in TMS navigation and that the coregistration errors and their effect in the E-field estimation depend on the methods applied. To ensure reliable TMS navigation, we recommend surface-based head-to-MRI registration and realistic models for E-field computations.
Collapse
Affiliation(s)
- Aino E Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,AMI Centre, Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| | - Jaakko O Nieminen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Matti Stenroos
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Pavel Novikov
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Maria Nazarova
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Selja Vaalto
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,HUS Diagnostic Center, Clinical Neurophysiology, Clinical Neurosciences, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Vadim Nikulin
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
5
|
Matilainen N, Soldati M, Laakso I. The Effect of Inter-pulse Interval on TMS Motor Evoked Potentials in Active Muscles. Front Hum Neurosci 2022; 16:845476. [PMID: 35392119 PMCID: PMC8980278 DOI: 10.3389/fnhum.2022.845476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Objective The time interval between transcranial magnetic stimulation (TMS) pulses affects evoked muscle responses when the targeted muscle is resting. This necessitates using sufficiently long inter-pulse intervals (IPIs). However, there is some evidence that the IPI has no effect on the responses evoked in active muscles. Thus, we tested whether voluntary contraction could remove the effect of the IPI on TMS motor evoked potentials (MEPs). Methods In our study, we delivered sets of 30 TMS pulses with three different IPIs (2, 5, and 10 s) to the left primary motor cortex. These measurements were performed with the resting and active right hand first dorsal interosseous muscle in healthy participants (N = 9 and N = 10). MEP amplitudes were recorded through electromyography. Results We found that the IPI had no significant effect on the MEP amplitudes in the active muscle (p = 0.36), whereas in the resting muscle, the IPI significantly affected the MEP amplitudes (p < 0.001), decreasing the MEP amplitude of the 2 s IPI. Conclusions These results show that active muscle contraction removes the effect of the IPI on the MEP amplitude. Therefore, using active muscles in TMS motor mapping enables faster delivery of TMS pulses, reducing measurement time in novel TMS motor mapping studies.
Collapse
Affiliation(s)
- Noora Matilainen
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
- *Correspondence: Noora Matilainen
| | - Marco Soldati
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
- Aalto Neuroimaging, Aalto University, Espoo, Finland
| |
Collapse
|