1
|
Baldwin A, States G, Pikov V, Gunalan P, Elyahoodayan S, Kilgore K, Meng E. Recent advances in facilitating the translation of bioelectronic medicine therapies. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2025; 33:100575. [PMID: 39896232 PMCID: PMC11781353 DOI: 10.1016/j.cobme.2024.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bioelectronic medicine is a growing field which involves directly interfacing with the vagus, sacral, enteric, and other autonomic nerves to treat conditions. Therapies based on bioelectronic medicine could address previously intractable diseases and provide an alternative to pharmaceuticals. However, translating a bioelectronic medicine therapy to the clinic requires overcoming several challenges, including titrating stimulation parameters to an individual's physiology, selectively stimulating target nerves without inducing off-target activation or block, and improving accessibility to clinically approved devices. This review describes recent progress towards solving these problems, including advances in mapping and characterizing the human autonomic nervous system, new sensor technology and signal processing techniques to enable closed-loop therapies, new methods for selectively stimulating autonomic nerves without inducing off-target effects, and efforts to develop open-source implantable devices. Recent commercial successes in bringing bioelectronic medicine therapies to the clinic are highlighted showing how addressing these challenges can lead to novel therapies.
Collapse
Affiliation(s)
- Alex Baldwin
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| | - Gregory States
- Department of Physical Medicine & Rehabilitation, Case
Western Reserve University and The MetroHealth System, Cleveland, OH, USA
| | | | - Pallavi Gunalan
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| | - Sahar Elyahoodayan
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| | - Kevin Kilgore
- Department of Physical Medicine & Rehabilitation, Case
Western Reserve University and The MetroHealth System, Cleveland, OH, USA
| | - Ellis Meng
- Alfred E. Mann Department of Biomedical Engineering,
University of Southern California, USA
| |
Collapse
|
2
|
Tahry RE, Dibué M, Szmalec A, Patel R, Verner R, Boffini M, Fahoum F, Tzadok M. Practical Considerations for the rapid titration of VNS. Epilepsy Behav Rep 2025; 29:100734. [PMID: 39803413 PMCID: PMC11721848 DOI: 10.1016/j.ebr.2024.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
For patients with drug-resistant epilepsy who are not candidates for epilepsy surgery, Vagus nerve stimulation (VNS) is the most widely available neuromodulation option and has been available in several countries for 30 years. Given its broad availability and extended history on the market, many healthcare providers (HCPs) have developed individualized practice habits regarding the titration and dosing of VNS. This study provides novel evidence to describe the extent to which VNS management differs among providers and discusses recent literature that indicates how unique programming approaches may impact patient outcomes. In this work, practice habits regarding the titration and dosing of VNS were explored through a survey of HCPs and an examination of ongoing study data collected as part of the CORE-VNS Study. The global survey revealed significant variability in dosing and titration habits. Providers reported a wide range of initial/maximum target doses and time-to-dose, even if the population averages approximated guidance from professional societies and the manufacturer's labeling. Variable dosing and titration were reflected in varied perception of how long it takes to realize the clinical benefits of VNS. In the CORE-VNS Study, this reported experience was represented in how different generator models were used, with users of SenTiva (and the Scheduled Programming feature) depicting faster time-to-dose than those using earlier models of VNS. Our results suggest VNS providers would benefit from continued training on the use of VNS and the use of the scheduled programming feature to enhance consistency of VNS management among providers.
Collapse
Affiliation(s)
- Riëm El Tahry
- Institute of Neuroscience, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Center for Refractory Epilepsy, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Maxine Dibué
- Medical Affairs Neuromodulation, LivaNova PLC, London, United Kingdom
| | - Arnaud Szmalec
- Center for Refractory Epilepsy, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Psychological Sciences Research Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
- Department of Experimental Psychology, Universiteit Gent (UGent), Gent, Belgium
| | - Roshani Patel
- Medical Affairs Neuromodulation, LivaNova PLC, London, United Kingdom
| | - Ryan Verner
- Medical Affairs Neuromodulation, LivaNova PLC, London, United Kingdom
| | | | - Firas Fahoum
- Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Tzadok
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Neurology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
3
|
Grill WM, Pelot NA. Computational modeling of autonomic nerve stimulation: Vagus et al. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 32:100557. [PMID: 39650310 PMCID: PMC11619812 DOI: 10.1016/j.cobme.2024.100557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Computational models of electrical stimulation, block and recording of autonomic nerves enable analysis of mechanisms of action underlying neural responses and design of optimized stimulation parameters. We reviewed advances in computational modeling of autonomic nerve stimulation, block, and recording over the past five years, with a focus on vagus nerve stimulation, including both implanted and less invasive approaches. Few models achieved quantitative validation, but integrated computational pipelines increase the reproducibility, reusability, and accessibility of computational modeling. Model-based optimization enabled design of electrode geometries and stimulation parameters for selective activation (across fiber locations or types). Growing efforts link models of neural activity to downstream physiological responses to represent more directly the therapeutic effects and side effects of stimulation. Thus, computational modeling is an increasingly important tool for analysis and design of bioelectronic therapies.
Collapse
|
4
|
Biscola NP, Bartmeyer PM, Beshay Y, Stern E, Mihaylov PV, Powley TL, Ward MP, Havton LA. Laterality, sexual dimorphism, and human vagal projectome heterogeneity shape neuromodulation to vagus nerve stimulation. Commun Biol 2024; 7:1536. [PMID: 39562711 PMCID: PMC11576867 DOI: 10.1038/s42003-024-07222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Neuromodulation by vagus nerve stimulation (VNS) provides therapeutic benefits in multiple medical conditions, including epilepsy and clinical depression, but underlying mechanisms of action are not well understood. Cervical vagus nerve biopsies were procured from transplant organ donors for high resolution light microscopy (LM) and transmission electron microscopy (TEM) to map the human fascicular and sub-fascicular organization. Cervical vagal segments show laterality with right sided dominance in fascicle numbers and cross-sectional areas as well as sexual dimorphism with female dominance in fascicle numbers. The novel and unprecedented detection of numerous small fascicles by high resolution LM and TEM expand the known fascicle size range and morphological diversity of the human vagus nerve. Ground truth TEM quantification of all myelinated and unmyelinated axons within individual nerve fascicles show marked sub-fascicular heterogeneity of nerve fiber numbers, size, and myelination. A heuristic action potential interpreter (HAPI) tool predicts VNS-evoked compound nerve action potentials (CNAPs) generated by myelinated and unmyelinated nerve fibers and validates functional dissimilarity between fascicles. Our findings of laterality, sexual dimorphism, and an expanded range of fascicle size heterogeneity provide mechanistic insights into the varied therapeutic responses and off-target effects to VNS and may guide new refinement strategies for neuromodulation.
Collapse
Affiliation(s)
- Natalia P Biscola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Petra M Bartmeyer
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Youssef Beshay
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Esther Stern
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Plamen V Mihaylov
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Terry L Powley
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew P Ward
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leif A Havton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
5
|
Ciotti F, John R, Katic Secerovic N, Gozzi N, Cimolato A, Jayaprakash N, Song W, Toth V, Zanos T, Zanos S, Raspopovic S. Towards enhanced functionality of vagus neuroprostheses through in silico optimized stimulation. Nat Commun 2024; 15:6119. [PMID: 39033186 PMCID: PMC11271449 DOI: 10.1038/s41467-024-50523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Bioelectronic therapies modulating the vagus nerve are promising for cardiovascular, inflammatory, and mental disorders. Clinical applications are however limited by side-effects such as breathing obstruction and headache caused by non-specific stimulation. To design selective and functional stimulation, we engineered VaStim, a realistic and efficient in-silico model. We developed a protocol to personalize VaStim in-vivo using simple muscle responses, successfully reproducing experimental observations, by combining models with trials conducted on five pigs. Through optimized algorithms, VaStim simulated the complete fiber population in minutes, including often omitted unmyelinated fibers which constitute 80% of the nerve. The model suggested that all Aα-fibers across the nerve affect laryngeal muscle, while heart rate changes were caused by B-efferents in specific fascicles. It predicted that tripolar paradigms could reduce laryngeal activity by 70% compared to typically used protocols. VaStim may serve as a model for developing neuromodulation therapies by maximizing efficacy and specificity, reducing animal experimentation.
Collapse
Affiliation(s)
- Federico Ciotti
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Robert John
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Natalija Katic Secerovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
- The Mihajlo Pupin Institute, University of Belgrade, Belgrade, Serbia
| | - Noemi Gozzi
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Andrea Cimolato
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland
| | - Naveen Jayaprakash
- Northwell Health, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Weiguo Song
- Northwell Health, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Viktor Toth
- Northwell Health, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Theodoros Zanos
- Northwell Health, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Stavros Zanos
- Northwell Health, New Hyde Park, NY, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, Zürich, Switzerland.
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Kolluru C, Joseph N, Seckler J, Fereidouni F, Levenson R, Shoffstall A, Jenkins M, Wilson D. NerveTracker: a Python-based software toolkit for visualizing and tracking groups of nerve fibers in serial block-face microscopy with ultraviolet surface excitation images. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:076501. [PMID: 38912214 PMCID: PMC11188586 DOI: 10.1117/1.jbo.29.7.076501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024]
Abstract
Significance Information about the spatial organization of fibers within a nerve is crucial to our understanding of nerve anatomy and its response to neuromodulation therapies. A serial block-face microscopy method [three-dimensional microscopy with ultraviolet surface excitation (3D-MUSE)] has been developed to image nerves over extended depths ex vivo. To routinely visualize and track nerve fibers in these datasets, a dedicated and customizable software tool is required. Aim Our objective was to develop custom software that includes image processing and visualization methods to perform microscopic tractography along the length of a peripheral nerve sample. Approach We modified common computer vision algorithms (optic flow and structure tensor) to track groups of peripheral nerve fibers along the length of the nerve. Interactive streamline visualization and manual editing tools are provided. Optionally, deep learning segmentation of fascicles (fiber bundles) can be applied to constrain the tracts from inadvertently crossing into the epineurium. As an example, we performed tractography on vagus and tibial nerve datasets and assessed accuracy by comparing the resulting nerve tracts with segmentations of fascicles as they split and merge with each other in the nerve sample stack. Results We found that a normalized Dice overlap (Dice norm ) metric had a mean value above 0.75 across several millimeters along the nerve. We also found that the tractograms were robust to changes in certain image properties (e.g., downsampling in-plane and out-of-plane), which resulted in only a 2% to 9% change to the meanDice norm values. In a vagus nerve sample, tractography allowed us to readily identify that subsets of fibers from four distinct fascicles merge into a single fascicle as we move ∼ 5 mm along the nerve's length. Conclusions Overall, we demonstrated the feasibility of performing automated microscopic tractography on 3D-MUSE datasets of peripheral nerves. The software should be applicable to other imaging approaches. The code is available at https://github.com/ckolluru/NerveTracker.
Collapse
Affiliation(s)
- Chaitanya Kolluru
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Naomi Joseph
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - James Seckler
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Farzad Fereidouni
- UC Davis Medical Center, Department of Pathology and Laboratory Medicine, Sacramento, California, United States
| | - Richard Levenson
- UC Davis Medical Center, Department of Pathology and Laboratory Medicine, Sacramento, California, United States
| | - Andrew Shoffstall
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States
| | - Michael Jenkins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States
| | - David Wilson
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Radiology, Cleveland, Ohio, United States
| |
Collapse
|
7
|
Feldman MJ, Bliss-Moreau E, Lindquist KA. The neurobiology of interoception and affect. Trends Cogn Sci 2024; 28:643-661. [PMID: 38395706 PMCID: PMC11222051 DOI: 10.1016/j.tics.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Scholars have argued for centuries that affective states involve interoception, or representations of the state of the body. Yet, we lack a mechanistic understanding of how signals from the body are transduced, transmitted, compressed, and integrated by the brains of humans to produce affective states. We suggest that to understand how the body contributes to affect, we first need to understand information flow through the nervous system's interoceptive pathways. We outline such a model and discuss how unique anatomical and physiological aspects of interoceptive pathways may give rise to the qualities of affective experiences in general and valence and arousal in particular. We conclude by considering implications and future directions for research on interoception, affect, emotions, and human mental experiences.
Collapse
Affiliation(s)
- M J Feldman
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - E Bliss-Moreau
- Department of Psychology, University of California Davis, Davis, CA, USA; California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - K A Lindquist
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Wernisch L, Edwards T, Berthon A, Tessier-Lariviere O, Sarkans E, Stoukidi M, Fortier-Poisson P, Pinkney M, Thornton M, Hanley C, Lee S, Jennings J, Appleton B, Garsed P, Patterson B, Buttinger W, Gonshaw S, Jakopec M, Shunmugam S, Mamen J, Tukiainen A, Lajoie G, Armitage O, Hewage E. Online Bayesian optimization of vagus nerve stimulation. J Neural Eng 2024; 21:026019. [PMID: 38479016 DOI: 10.1088/1741-2552/ad33ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Objective.In bioelectronic medicine, neuromodulation therapies induce neural signals to the brain or organs, modifying their function. Stimulation devices capable of triggering exogenous neural signals using electrical waveforms require a complex and multi-dimensional parameter space to control such waveforms. Determining the best combination of parameters (waveform optimization or dosing) for treating a particular patient's illness is therefore challenging. Comprehensive parameter searching for an optimal stimulation effect is often infeasible in a clinical setting due to the size of the parameter space. Restricting this space, however, may lead to suboptimal therapeutic results, reduced responder rates, and adverse effects.Approach. As an alternative to a full parameter search, we present a flexible machine learning, data acquisition, and processing framework for optimizing neural stimulation parameters, requiring as few steps as possible using Bayesian optimization. This optimization builds a model of the neural and physiological responses to stimulations, enabling it to optimize stimulation parameters and provide estimates of the accuracy of the response model. The vagus nerve (VN) innervates, among other thoracic and visceral organs, the heart, thus controlling heart rate (HR), making it an ideal candidate for demonstrating the effectiveness of our approach.Main results.The efficacy of our optimization approach was first evaluated on simulated neural responses, then applied to VN stimulation intraoperatively in porcine subjects. Optimization converged quickly on parameters achieving target HRs and optimizing neural B-fiber activations despite high intersubject variability.Significance.An optimized stimulation waveform was achieved in real time with far fewer stimulations than required by alternative optimization strategies, thus minimizing exposure to side effects. Uncertainty estimates helped avoiding stimulations outside a safe range. Our approach shows that a complex set of neural stimulation parameters can be optimized in real-time for a patient to achieve a personalized precision dosing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Guillaume Lajoie
- Université de Montréal and Mila-Quebec AI Institute, Montréal, Canada
| | | | | |
Collapse
|
9
|
Paggi V, Fallegger F, Serex L, Rizzo O, Galan K, Giannotti A, Furfaro I, Zinno C, Bernini F, Micera S, Lacour SP. A soft, scalable and adaptable multi-contact cuff electrode for targeted peripheral nerve modulation. Bioelectron Med 2024; 10:6. [PMID: 38350988 PMCID: PMC10865708 DOI: 10.1186/s42234-023-00137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/10/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Cuff electrodes target various nerves throughout the body, providing neuromodulation therapies for motor, sensory, or autonomic disorders. However, when using standard, thick silicone cuffs, fabricated in discrete circular sizes, complications may arise, namely cuff displacement or nerve compression, due to a poor adaptability to variable nerve shapes and sizes encountered in vivo. Improvements in cuff design, materials, closing mechanism and surgical approach are necessary to overcome these issues. METHODS In this work, we propose a microfabricated multi-channel silicone-based soft cuff electrode with a novel easy-to-implant and size-adaptable design and evaluate a number of essential features such as nerve-cuff contact, nerve compression, cuff locking stability, long-term integration and stimulation selectivity. We also compared performance to that of standard fixed-size cuffs. RESULTS The belt-like cuff made of 150 μm thick silicone membranes provides a stable and pressure-free conformal contact, independently of nerve size variability, combined with a straightforward implantation procedure. The adaptable design and use of soft materials lead to limited scarring and demyelination after 6-week implantation. In addition, multi-contact designs, ranging from 6 to 16 electrodes, allow for selective stimulation in models of rat and pig sciatic nerve, achieving targeted activation of up to 5 hindlimb muscles. CONCLUSION These results suggest a promising alternative to classic fixed-diameter cuffs and may facilitate the adoption of soft, adaptable cuffs in clinical settings.
Collapse
Affiliation(s)
- Valentina Paggi
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Florian Fallegger
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | - Olivier Rizzo
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Bertarelli Foundation Chair in Translational NeuroEngineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Katia Galan
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Alice Giannotti
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ivan Furfaro
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Ciro Zinno
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio Bernini
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational NeuroEngineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Stéphanie P Lacour
- Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
| |
Collapse
|
10
|
Pelot NA, Vaseghi M, Reznikov L, Osborne PB, Conde SV. Editorial: Multiscale anatomy and biophysics of the autonomic nervous system: implications for neuromodulation. Front Neurosci 2023; 17:1289177. [PMID: 38027516 PMCID: PMC10646572 DOI: 10.3389/fnins.2023.1289177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Leah Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Peregrine B. Osborne
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Silvia V. Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, iNOVA4Health, Lisboa, Portugal
| |
Collapse
|
11
|
Drakonaki E, Konschake M, Chlouverakis G, Tsiaoussis J. Ultrasound morphometry of the cervical vagus nerve for daily clinical practice: Reference values for cross sectional area and fascicle count. Ann Anat 2023; 250:152137. [PMID: 37506777 DOI: 10.1016/j.aanat.2023.152137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION High resolution ultrasound (US) of the cervical vagus nerve (CVN) is clinically relevant in the diagnostic workup and during neurostimulation therapy of several neurologic diseases. This prospective study aims to provide reference data of the cross-sectional area (CSA) and fascicle count of the normal CVN and to investigate their possible association with anthropometric data in a large cohort of patients. METHODS A total of 657 CVNs in 330 individuals without history of neurological disease were examined using US (7-15Mhz). The CVN fascicle count and CSA inside the hyperechoic epineurium at the level of the thyroid lobes were measured. Three CSA measurements were performed to calculate the mean value. Anthropometric data were recorded. RESULTS The mean fascicle count was 2.4 ± 1.1 (right) and 2 ± 1 (left) (paired t- test, p < 0.001). Two CVN patterns were identified: A single hypoechoic fascicular structure (26.2 % right, 36.3 % left) and a honeycomb structure of 2-6 discrete fascicles (72.3 % right, 63.7 % left). Right CVN mean CSA was larger compared to left (2.3 ± 1 mm2 and 1.8 ± 0.8 mm2 respectively, t-test, p-0.000). There was no difference in the CSA values between sex and no correlation to age or height. A positive correlation between the CSA and weight and BMI was found (Pearson's correlation, p = 0.01 right and p = 0.05 left). CONCLUSION The right CVN has larger CSA and contains more fascicles than the left. CVN is usually mono- or oligo-fascicular with a honeycomb appearance. The CSA increased with increasing BMI but no age and sex specific differences were noted.
Collapse
Affiliation(s)
- Elena Drakonaki
- Department of Anatomy, Medical School, University of Crete, Heraklion, Crete Greece; Diagnostic and Interventional Ultrasound Practice, Heraklion, Crete, Greece
| | - Marko Konschake
- Department of Anatomy, Histology and Embryology, Institute of Clinical and Functional Anatomy, Medical University Innsbruck (MUI), Innsbruck, Austria.
| | - Gregory Chlouverakis
- Biostatistics Laboratory, Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece.
| | - John Tsiaoussis
- Department of Anatomy, Medical School, University of Crete, Heraklion, Crete Greece
| |
Collapse
|
12
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
13
|
Ruigrok TJH, Mantel SA, Orlandini L, de Knegt C, Vincent AJPE, Spoor JKH. Sympathetic components in left and right human cervical vagus nerve: implications for vagus nerve stimulation. Front Neuroanat 2023; 17:1205660. [PMID: 37492698 PMCID: PMC10364449 DOI: 10.3389/fnana.2023.1205660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Cervical vagus nerve stimulation is in a great variety of clinical situations indicated as a form of treatment. It is textbook knowledge that at the cervical level the vagus nerve contains many different fiber classes. Yet, recently, several reports have shown that this nerve also may contain an additional class of potentially noradrenergic fibers, suggested to denote efferent sympathetic fibers. As such, the nature and presence of these fibers should be considered when choosing a stimulation protocol. We have studied human vagus material extracted from dissection room cadavers in order to further confirm the presence of this class of fibers, to study their origin and direction within the nerve and to determine their distribution and variability between subjects and pairs of left and right nerves of the same individual. Sections were studied with immunohistochemical techniques using antibodies against tyrosine hydroxylase (TH: presumed to indicate noradrenergic fibers), myelin basic protein and neurofilament. Our results show that at least part of the TH-positive fibers derive from the superior cervical ganglion or sympathetic trunk, do not follow a cranial but take a peripheral course through the nerve. The portion of TH-positive fibers is highly variable between individuals but also between the left and right pairs of the same individual. TH-positive fibers can distribute and wander throughout the fascicles but maintain a generally clustered appearance. The fraction of TH-positive fibers generally diminishes in the left cervical vagus nerve when moving in a caudal direction but remains more constant in the right nerve. These results may help to determine optimal stimulation parameters for cervical vagus stimulation in clinical settings.
Collapse
Affiliation(s)
- Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Sophia A. Mantel
- Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Lara Orlandini
- Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Corné de Knegt
- Department of Neuroscience, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Jochem K. H. Spoor
- Department of Neurosurgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
14
|
Musselman ED, Pelot NA, Grill WM. Validated computational models predict vagus nerve stimulation thresholds in preclinical animals and humans. J Neural Eng 2023; 20:10.1088/1741-2552/acda64. [PMID: 37257454 PMCID: PMC10324064 DOI: 10.1088/1741-2552/acda64] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
Objective.We demonstrated how automated simulations to characterize electrical nerve thresholds, a recently published open-source software for modeling stimulation of peripheral nerves, can be applied to simulate accurately nerve responses to electrical stimulation.Approach.We simulated vagus nerve stimulation (VNS) for humans, pigs, and rats. We informed our models using histology from sample-specific or representative nerves, device design features (i.e. cuff, waveform), published material and tissue conductivities, and realistic fiber models.Main results.Despite large differences in nerve size, cuff geometry, and stimulation waveform, the models predicted accurate activation thresholds across species and myelinated fiber types. However, our C fiber model thresholds overestimated thresholds across pulse widths, suggesting that improved models of unmyelinated nerve fibers are needed. Our models of human VNS yielded accurate thresholds to activate laryngeal motor fibers and captured the inter-individual variability for both acute and chronic implants. For B fibers, our small-diameter fiber model underestimated threshold and saturation for pulse widths >0.25 ms. Our models of pig VNS consistently captured the range ofin vivothresholds across all measured nerve and physiological responses (i.e. heart rate, Aδ/B fibers, Aγfibers, electromyography, and Aαfibers). In rats, our smallest diameter myelinated fibers accurately predicted fast fiber thresholds across short and intermediate pulse widths; slow unmyelinated fiber thresholds overestimated thresholds across shorter pulse widths, but there was overlap for pulse widths >0.3 ms.Significance.We elevated standards for models of peripheral nerve stimulation in populations of models across species, which enabled us to model accurately nerve responses, demonstrate that individual-specific differences in nerve morphology produce variability in neural and physiological responses, and predict mechanisms of VNS therapeutic and side effects.
Collapse
Affiliation(s)
- Eric D Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, United States of America
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States of America
- Department of Neurobiology, Duke University, Durham, NC, United States of America
- Department of Neurosurgery, Duke University, Durham, NC, United States of America
| |
Collapse
|
15
|
Buyukcelik ON, Lapierre-Landry M, Kolluru C, Upadhye AR, Marshall DP, Pelot NA, Ludwig KA, Gustafson KJ, Wilson DL, Jenkins MW, Shoffstall AJ. Deep-learning segmentation of fascicles from microCT of the human vagus nerve. Front Neurosci 2023; 17:1169187. [PMID: 37332862 PMCID: PMC10275336 DOI: 10.3389/fnins.2023.1169187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/12/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction MicroCT of the three-dimensional fascicular organization of the human vagus nerve provides essential data to inform basic anatomy as well as the development and optimization of neuromodulation therapies. To process the images into usable formats for subsequent analysis and computational modeling, the fascicles must be segmented. Prior segmentations were completed manually due to the complex nature of the images, including variable contrast between tissue types and staining artifacts. Methods Here, we developed a U-Net convolutional neural network (CNN) to automate segmentation of fascicles in microCT of human vagus nerve. Results The U-Net segmentation of ~500 images spanning one cervical vagus nerve was completed in 24 s, versus ~40 h for manual segmentation, i.e., nearly four orders of magnitude faster. The automated segmentations had a Dice coefficient of 0.87, a measure of pixel-wise accuracy, thus suggesting a rapid and accurate segmentation. While Dice coefficients are a commonly used metric to assess segmentation performance, we also adapted a metric to assess fascicle-wise detection accuracy, which showed that our network accurately detects the majority of fascicles, but may under-detect smaller fascicles. Discussion This network and the associated performance metrics set a benchmark, using a standard U-Net CNN, for the application of deep-learning algorithms to segment fascicles from microCT images. The process may be further optimized by refining tissue staining methods, modifying network architecture, and expanding the ground-truth training data. The resulting three-dimensional segmentations of the human vagus nerve will provide unprecedented accuracy to define nerve morphology in computational models for the analysis and design of neuromodulation therapies.
Collapse
Affiliation(s)
- Ozge N. Buyukcelik
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technologies Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Maryse Lapierre-Landry
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Aniruddha R. Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technologies Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Daniel P. Marshall
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI, United States
- Department of Neurological Surgery, University of Wisconsin Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering, Madison, WI, United States
| | - Kenneth J. Gustafson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - David L. Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Andrew J. Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technologies Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
16
|
de Araujo AM, Braga I, Leme G, Singh A, McDougle M, Smith J, Vergara M, Yang M, Lin M, Khoshbouei H, Krause E, de Oliveira AG, de Lartigue G. Asymmetric control of food intake by left and right vagal sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539627. [PMID: 37214924 PMCID: PMC10197596 DOI: 10.1101/2023.05.08.539627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigated the lateralization of gut-innervating vagal sensory neurons and their roles in feeding behavior. Using genetic, anatomical, and behavioral analyses, we discovered a subset of highly lateralized vagal sensory neurons with distinct sensory responses to intestinal stimuli. Our results demonstrated that left vagal sensory neurons (LNG) are crucial for distension-induced satiety, while right vagal sensory neurons (RNG) mediate preference for nutritive foods. Furthermore, these lateralized neurons engage different central circuits, with LNG neurons recruiting brain regions associated with energy balance and RNG neurons activating areas related to salience, memory, and reward. Altogether, our findings unveil the diverse roles of asymmetrical gut-vagal-brain circuits in feeding behavior, offering new insights for potential therapeutic interventions targeting vagal nerve stimulation in metabolic and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Alan Moreira de Araujo
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Isadora Braga
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Gabriel Leme
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Arashdeep Singh
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Molly McDougle
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Justin Smith
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Macarena Vergara
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Mingxing Yang
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - M Lin
- Dept of Neuroscience, University of Florida, Gainesville, USA
| | - H Khoshbouei
- Dept of Neuroscience, University of Florida, Gainesville, USA
| | - Eric Krause
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| | - Andre G de Oliveira
- Dept of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guillaume de Lartigue
- Monell Chemical Sense Center, Philadelphia, PA, USA
- Dept. Neuroscience, University of Pennsylvania, Philadelphia, USA
- Dept of Pharmacodynamics, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, USA
| |
Collapse
|
17
|
Suminski AJ, Rajala AZ, Birn RM, Mueller EM, Malone ME, Ness JP, Filla C, Brunner K, McMillan AB, Poore SO, Williams JC, Murali D, Brzeczkowski A, Hurley SA, Dingle AM, Zeng W, Lake WB, Ludwig KA, Populin LC. Vagus nerve stimulation in the non-human primate: implantation methodology, characterization of nerve anatomy, target engagement and experimental applications. Bioelectron Med 2023; 9:9. [PMID: 37118841 PMCID: PMC10148417 DOI: 10.1186/s42234-023-00111-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making. METHODS We describe the anatomical organization, surgical methodology to implant VNS electrodes on the left gagus nerve and characterization of target engagement/neural interface properties in a non-human primate (NHP) model of VNS that permits chronic stimulation over long periods of time. Furthermore, we describe the results of pilot experiments in a small number of NHPs to demonstrate how this preparation might be used in an animal model capable of performing complex motor and decision making tasks. RESULTS VNS electrode impedance remained constant over months suggesting a stable interface. VNS elicited robust activation of the vagus nerve which resulted in decreases of respiration rate and/or partial pressure of carbon dioxide in expired air, but not changes in heart rate in both awake and anesthetized NHPs. CONCLUSIONS We anticipate that this preparation will be very useful to study the mechanisms underlying the effects of VNS for the treatment of conditions such as epilepsy and depression, for which VNS is extensively used, as well as for the study of the neurobiological basis underlying higher order functions such as learning and memory.
Collapse
Affiliation(s)
- Aaron J Suminski
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Abigail Z Rajala
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ellie M Mueller
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Margaret E Malone
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Jared P Ness
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlyn Filla
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Kevin Brunner
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan B McMillan
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel O Poore
- Division of Plastic Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin C Williams
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Dhanabalan Murali
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea Brzeczkowski
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Aaron M Dingle
- Division of Plastic Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Weifeng Zeng
- Division of Plastic Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Wendell B Lake
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Kip A Ludwig
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Translational Neuroengineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Luis C Populin
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI, 53705, USA.
| |
Collapse
|
18
|
Davis CJ, Musselman ED, Grill WM, Pelot NA. Fibers in smaller fascicles have lower activation thresholds with cuff electrodes due to thinner perineurium and smaller cross-sectional area. J Neural Eng 2023; 20:10.1088/1741-2552/acc42b. [PMID: 36917856 PMCID: PMC10410695 DOI: 10.1088/1741-2552/acc42b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/14/2023] [Indexed: 03/15/2023]
Abstract
Objective. In nerve stimulation therapies, fibers in larger fascicles generally have higher activation thresholds, but the mechanisms are not well understood. We implemented and analyzed computational models to uncover the effects of morphological parameters on activation thresholds.Approach. We implemented finite element models of human vagus nerve stimulation to quantify the effects of morphological parameters on thresholds in realistic nerves. We also implemented simplified models to isolate effects of perineurium thickness, endoneurium diameter, fiber diameter, and fascicle location on current density, potential distributions (Ve), and activation thresholds across cuff geometries and stimulation waveforms. UsingVefrom each finite element model, we simulated activation thresholds in biophysical cable models of mammalian axons.Main results. Perineurium thickness increases with fascicle diameter, and both thicker perineurium and larger endoneurial diameter contributed to higher activation thresholds via lower peak and broader longitudinal potentials. Thicker perineurium caused less current to enter the fascicle transversely, decreasing peakVe. Thicker perineurium also inhibited current from leaving the fascicle, causing more constant longitudinal current density, broadeningVe. With increasing endoneurial diameter, intrafascicular volume increased faster than surface area, thereby decreasing intrafascicular current density and peakVe. Additionally, larger fascicles have greater cross-sectional area, thereby facilitating longitudinal intrafascicular current flow and broadeningVe. A large neighboring fascicle could increase activation thresholds, and for a given fascicle, fiber diameter had the greatest effect on thresholds, followed by fascicle diameter, and lastly, fascicle location within the epineurium. The circumneural cuff elicited robust activation across the nerve, whereas a bipolar transverse cuff with small contacts delivering a pseudo-monophasic waveform enabled more selective activation across fiber diameters and locations.Significance. Our computational studies provide mechanistic understanding of neural responses across relevant morphological parameters of peripheral nerves, thereby informing rational design of effective therapies.
Collapse
Affiliation(s)
- Christopher J Davis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Eric D Musselman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America
- Department of Neurobiology, Duke University, Durham, NC 27708, United States of America
- Department of Neurosurgery, Duke University, Durham, NC 27708, United States of America
| | - Nicole A Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
19
|
Jayaprakash N, Song W, Toth V, Vardhan A, Levy T, Tomaio J, Qanud K, Mughrabi I, Chang YC, Rob M, Daytz A, Abbas A, Nassrallah Z, Volpe BT, Tracey KJ, Al-Abed Y, Datta-Chaudhuri T, Miller L, Barbe MF, Lee SC, Zanos TP, Zanos S. Organ- and function-specific anatomical organization of vagal fibers supports fascicular vagus nerve stimulation. Brain Stimul 2023; 16:484-506. [PMID: 36773779 DOI: 10.1016/j.brs.2023.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Vagal fibers travel inside fascicles and form branches to innervate organs and regulate organ functions. Existing vagus nerve stimulation (VNS) therapies activate vagal fibers non-selectively, often resulting in reduced efficacy and side effects from non-targeted organs. The transverse and longitudinal arrangement of fibers inside the vagal trunk with respect to the functions they mediate and organs they innervate is unknown, however it is crucial for selective VNS. Using micro-computed tomography imaging, we tracked fascicular trajectories and found that, in swine, sensory and motor fascicles are spatially separated cephalad, close to the nodose ganglion, and merge caudad, towards the lower cervical and upper thoracic region; larynx-, heart- and lung-specific fascicles are separated caudad and progressively merge cephalad. Using quantified immunohistochemistry at single fiber level, we identified and characterized all vagal fibers and found that fibers of different morphological types are differentially distributed in fascicles: myelinated afferents and efferents occupy separate fascicles, myelinated and unmyelinated efferents also occupy separate fascicles, and small unmyelinated afferents are widely distributed within most fascicles. We developed a multi-contact cuff electrode to accommodate the fascicular structure of the vagal trunk and used it to deliver fascicle-selective cervical VNS in anesthetized and awake swine. Compound action potentials from distinct fiber types, and physiological responses from different organs, including laryngeal muscle, cough, breathing, and heart rate responses are elicited in a radially asymmetric manner, with consistent angular separations that agree with the documented fascicular organization. These results indicate that fibers in the trunk of the vagus nerve are anatomically organized according to functions they mediate and organs they innervate and can be asymmetrically activated by fascicular cervical VNS.
Collapse
Affiliation(s)
| | - Weiguo Song
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Viktor Toth
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Todd Levy
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Khaled Qanud
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Yao-Chuan Chang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Moontahinaz Rob
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Anna Daytz
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Adam Abbas
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Zeinab Nassrallah
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Bruce T Volpe
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Yousef Al-Abed
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Larry Miller
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Sunhee C Lee
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Stavros Zanos
- Feinstein Institutes for Medical Research, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| |
Collapse
|