1
|
Kang J, Koehler RC, Graham EM, Boctor EM. Photoacoustic assessment of the fetal brain and placenta as a method of non-invasive antepartum and intrapartum monitoring. Exp Neurol 2022; 347:113898. [PMID: 34662542 PMCID: PMC8756814 DOI: 10.1016/j.expneurol.2021.113898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022]
Abstract
A noninvasive monitor for concurrent evaluation of placental and fetal sagittal sinus sO 2 for both antepartum surveillance at the late 2nd and 3rd trimesters and intrapartum monitoring would be a great advantage over current methods. A PA fetal brain and placental monitor has potential value to rapidly identify the fetus at risk for developing hypoxia and ischemia of a sufficient degree that brain injury or death may develop, which may be prevented by intervention with delivery and other follow-up treatments.
Collapse
Affiliation(s)
- Jeeun Kang
- Laboratory for Computational Sensing and Robotics, Whiting School of Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Raymond C Koehler
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Ernest M Graham
- Department of Gyn-Ob, Division of Maternal-Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Neuroscience Intensive Care Nursery Program, Johns Hopkins University School of Medicine; Baltimore, MD, United States of America.
| | - Emad M Boctor
- Laboratory for Computational Sensing and Robotics, Whiting School of Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
2
|
Yang X, Chen YH, Xia F, Sawan M. Photoacoustic imaging for monitoring of stroke diseases: A review. PHOTOACOUSTICS 2021; 23:100287. [PMID: 34401324 PMCID: PMC8353507 DOI: 10.1016/j.pacs.2021.100287] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 05/14/2023]
Abstract
Stroke is the leading cause of death and disability after ischemic heart disease. However, there is lacking a non-invasive long-time monitoring technique for stroke diagnosis and therapy. The photoacoustic imaging approach reconstructs images of an object based on the energy excitation by optical absorption and its conversion to acoustic waves, due to corresponding thermoelastic expansion, which has optical resolution and acoustic propagation. This emerging functional imaging method is a non-invasive technique. Due to its precision, this method is particularly attractive for stroke monitoring purpose. In this paper, we review the achievements of this technology and its applications on stroke, as well as the development status in both animal and human applications. Also, various photoacoustic systems and multi-modality photoacoustic imaging are introduced as for potential clinical applications. Finally, the challenges of photoacoustic imaging for monitoring stroke are discussed.
Collapse
Affiliation(s)
- Xi Yang
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yun-Hsuan Chen
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Fen Xia
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Mohamad Sawan
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
- Corresponding author at: CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
3
|
Fast Correction of “Finite Aperture Effect” in Photoacoustic Tomography Based on Spatial Impulse Response. PHOTONICS 2021. [DOI: 10.3390/photonics8090356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photoacoustic computed tomography (PACT) is a fast-developing imaging technique, which can provide structural and functional information in biological tissues with high-resolution beyond the depth of the optical diffusion limit. However, the most current PACT reconstruction method generally employs a point detector assumption, whereas in most PAT systems with circular or spherical scanning modes, the transducer is mostly flat and with a finite size. This model mismatch leads to a notable deterioration in the lateral direction in regions far from the rotation center, which is known as the “finite aperture effect”. In this work, we propose to compensate a novel Back-projection (BP) method based on the transducer’s spatial impulse response (SIR) for fast correction of the “finite aperture effect”. The SIR accounts for the waveform change of the transducer for an arbitrary point source due to the geometry of the detection surface. Simulation results showed that the proposed SIR-BP method can effectively improve the lateral resolution and signal to noise ratio (SNR) in the off-center regions. For a target 4.5 mm far from the rotation center, this new method improved the lateral resolution about five times along with a 7 dB increase in the SNR. Experimental results also showed that this SIR-BP method can well restore the image angular blur to recover small structures, as demonstrated by the imaging of leaf veins. This new method offers a valuable alternative to the conventional BP method, and can guide the design of PAT systems based on circular/spherical scan.
Collapse
|
4
|
Qiu T, Lan Y, Gao W, Zhou M, Liu S, Huang W, Zeng S, Pathak JL, Yang B, Zhang J. Photoacoustic imaging as a highly efficient and precise imaging strategy for the evaluation of brain diseases. Quant Imaging Med Surg 2021; 11:2169-2186. [PMID: 33936997 DOI: 10.21037/qims-20-845] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photoacoustic imaging (PAI) is an emerging imaging strategy with a unique combination of rich optical contrasts, high ultrasound spatial resolution, and deep penetration depth without ionizing radiation. Taking advantage of the features mentioned above, PAI has been widely applied to preclinical studies in diverse fields, such as vascular biology, cardiology, neurology, ophthalmology, dermatology, gastroenterology, and oncology. Among various biomedical applications, photoacoustic brain imaging has great importance due to the brain's complex anatomy and the variability of brain disease. In this review, we aimed to introduce a novel and effective imaging modality for diagnosing brain diseases. Firstly, a brief overview of two major types of PAI system was provided. Then, PAI's major preclinical applications in brain diseases were introduced, including early diagnosis of brain tumors, subtle changes in the chemotherapy response, epileptic activity and brain injury, foreign body, and brain plaque. Finally, a perspective of the remaining challenges of PAI was given for future advancements.
Collapse
Affiliation(s)
- Ting Qiu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yintao Lan
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weijian Gao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mengyu Zhou
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shiqi Liu
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wenyan Huang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Sujuan Zeng
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Bin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
5
|
Razansky D, Klohs J, Ni R. Multi-scale optoacoustic molecular imaging of brain diseases. Eur J Nucl Med Mol Imaging 2021; 48:4152-4170. [PMID: 33594473 PMCID: PMC8566397 DOI: 10.1007/s00259-021-05207-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The ability to non-invasively visualize endogenous chromophores and exogenous probes and sensors across the entire rodent brain with the high spatial and temporal resolution has empowered optoacoustic imaging modalities with unprecedented capacities for interrogating the brain under physiological and diseased conditions. This has rapidly transformed optoacoustic microscopy (OAM) and multi-spectral optoacoustic tomography (MSOT) into emerging research tools to study animal models of brain diseases. In this review, we describe the principles of optoacoustic imaging and showcase recent technical advances that enable high-resolution real-time brain observations in preclinical models. In addition, advanced molecular probe designs allow for efficient visualization of pathophysiological processes playing a central role in a variety of neurodegenerative diseases, brain tumors, and stroke. We describe outstanding challenges in optoacoustic imaging methodologies and propose a future outlook.
Collapse
Affiliation(s)
- Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wolfgang-Pauli-Strasse 27, HIT E42.1, 8093, Zurich, Switzerland.
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.
- Institute for Regenerative Medicine, Uiversity of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Baruah J, Vasudevan A, Köhling R. Vascular Integrity and Signaling Determining Brain Development, Network Excitability, and Epileptogenesis. Front Physiol 2020; 10:1583. [PMID: 32038280 PMCID: PMC6987412 DOI: 10.3389/fphys.2019.01583] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/17/2019] [Indexed: 01/27/2023] Open
Abstract
Our understanding of the etiological mechanisms leading up to epilepsy has undergone radical changes over time due to more insights into the complexity of the disease. The traditional hypothesis emphasized network hyperexcitability and an imbalance of inhibition and excitation, eventually leading to seizures. In this context, the contribution of the vascular system, and particularly the interactions between blood vessels and neuronal tissue, came into focus only recently. Thus, one highly exciting causative or contributing factor of epileptogenesis is the disruption of the blood-brain barrier (BBB) in the context of not only posttraumatic epilepsy, but also other etiologies. This hypothesis is now recognized as a synergistic mechanism that can give rise to epilepsy, and BBB repair for restoration of cerebrovascular integrity is considered a therapeutic alternative. Endothelial cells lining the inner surface of blood vessels are an integral component of the BBB system. Sealed by tight junctions, they are crucial in maintaining homeostatic activities of the brain, as well as acting as an interface in the neurovascular unit. Additional potential vascular mechanisms such as inflammation, altered neurovascular coupling, or changes in blood flow that can modulate neuronal circuit activity have been implicated in epilepsy. Our own work has shown how intrinsic defects within endothelial cells from the earliest developmental time points, which preclude neuronal changes, can lead to vascular abnormalities and autonomously support the development of hyperexcitability and epileptiform activity. In this article, we review the importance of vascular integrity and signaling for network excitability and epilepsy by highlighting complementary basic and clinical research studies and by outlining possible novel therapeutic strategies.
Collapse
Affiliation(s)
- Jugajyoti Baruah
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
| | - Anju Vasudevan
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Angiogenesis and Brain Development Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
7
|
George SA, Efimov IR. Optocardiography: A Review of its Past, Present and Future. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 9:74-80. [PMID: 31803858 PMCID: PMC6892455 DOI: 10.1016/j.cobme.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiac electrophysiology has progressed in great strides since the electrical activity of the heart was first discovered in 1842 and documented using electrocardiography. Optical imaging of cardiac electrophysiology, or optocardiography, has seen many advances in recent years including panoramic imaging of the heart, alternating transillumination to image transmural electrical activity, optogenetic models and customizable 3D printed optical mapping systems. Most of these techniques were adopted from other fields of study and refined for cardiac electrophysiology purposes. The future of this field could see similar adaptations of photoacoustic tomography, structured light technology and optical coherence tomography contributing to optocardiography.
Collapse
Affiliation(s)
- Sharon A George
- Department of Biomedical Engineering, The George Washington University, Washington, DC
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC
| |
Collapse
|
8
|
Xiao J, Luo X, Peng K, Wang B. Improved back-projection method for circular-scanning-based photoacoustic tomography with improved tangential resolution. APPLIED OPTICS 2017; 56:8983-8990. [PMID: 29131179 DOI: 10.1364/ao.56.008983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
While photoacoustic computed tomography (PACT) is generally built with planar transducers of finite size, most current reconstruction algorithms assume the transducer to be an ideal point, which leads to a spinning blur in the consequently obtained PACT images due to the model mismatch. In this work, we put forward an improved back-projection method that factors in the geometry of the transducers to improve the tangential resolution for the reconstruction of 2D circular-scanning-based photoacoustic tomography. Extensive simulations and experiments were carried out to study the adaptability and stability of the proposed method. Results show that this method can effectively restore the tangential distortion of the PACT image for both simulated and experimental data. Results indicated that the improvement of the tangential resolution is more obvious for transducers with larger size. We also demonstrated the application of this method to transducers other than planar, and results show that the reconstructed image quality can be significantly affected by the shape and position of the transducers used. This study may help to guide the selection of transducer and design of scanning strategy in PACT.
Collapse
|
9
|
Sigal I, Koletar MM, Ringuette D, Gad R, Jeffrey M, Carlen PL, Stefanovic B, Levi O. Imaging brain activity during seizures in freely behaving rats using a miniature multi-modal imaging system. BIOMEDICAL OPTICS EXPRESS 2016; 7:3596-3609. [PMID: 27699123 PMCID: PMC5030035 DOI: 10.1364/boe.7.003596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 05/20/2023]
Abstract
We report on a miniature label-free imaging system for monitoring brain blood flow and blood oxygenation changes in awake, freely behaving rats. The device, weighing 15 grams, enables imaging in a ∼ 2 × 2 mm field of view with 4.4 μm lateral resolution and 1 - 8 Hz temporal sampling rate. The imaging is performed through a chronically-implanted cranial window that remains optically clear between 2 to > 6 weeks after the craniotomy. This imaging method is well suited for longitudinal studies of chronic models of brain diseases and disorders. In this work, it is applied to monitoring neurovascular coupling during drug-induced absence-like seizures 6 weeks following the craniotomy.
Collapse
Affiliation(s)
- Iliya Sigal
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada
| | - Margaret M. Koletar
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5,
Canada
| | - Dene Ringuette
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
| | - Raanan Gad
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada
| | - Melanie Jeffrey
- Krembil Research Institute, 60 Leonard Avenue, Toronto, ON M5T 2S1,
Canada
| | - Peter L. Carlen
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- Krembil Research Institute, 60 Leonard Avenue, Toronto, ON M5T 2S1,
Canada
| | - Bojana Stefanovic
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5,
Canada
- Department of Medical Biophysics, University of Toronto, 2075 Bayview Avenue, Toronto, ON M4N 3M5,
Canada
| | - Ofer Levi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9,
Canada
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, 10 King’s College Road, Toronto, ON M5S 3G4,
Canada
| |
Collapse
|
10
|
Lal C, Leahy MJ. An Updated Review of Methods and Advancements in Microvascular Blood Flow Imaging. Microcirculation 2016; 23:345-63. [DOI: 10.1111/micc.12284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/17/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Cerine Lal
- Department of Applied Physics; Tissue Optics and Microcirculation Imaging; National University of Ireland; Galway Ireland
| | - Martin J Leahy
- Department of Applied Physics; Tissue Optics and Microcirculation Imaging; National University of Ireland; Galway Ireland
- Royal College of Surgeons in Ireland; Dublin Ireland
| |
Collapse
|
11
|
Wang B, Zhou J, Carney P, Jiang H. A novel detachable head-mounted device for simultaneous EEG and photoacoustic monitoring of epilepsy in freely moving rats. Neurosci Res 2015; 91:57-62. [DOI: 10.1016/j.neures.2014.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/25/2014] [Accepted: 08/13/2014] [Indexed: 02/01/2023]
|