1
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Malaga KA, Costello JT, Chou KL, Patil PG. Atlas-independent, N-of-1 tissue activation modeling to map optimal regions of subthalamic deep brain stimulation for Parkinson disease. NEUROIMAGE-CLINICAL 2020; 29:102518. [PMID: 33333464 PMCID: PMC7736726 DOI: 10.1016/j.nicl.2020.102518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/13/2023]
Abstract
Neuroanatomical variations among patients are obscured in atlas-based VTA modeling. N-of-1 neuroanatomical and VTA modeling enables patient-level precision. Mean optimal stimulation is dorsomedial to the STN, near its posterior half. Individual VTAs deviate from optimal stimulation sites to varying degrees. Optimal stimulation sites for rigidity, bradykinesia, and tremor partially overlap.
Background Motor outcomes after subthalamic deep brain stimulation (STN DBS) for Parkinson disease (PD) vary considerably among patients and strongly depend on stimulation location. The objective of this retrospective study was to map the regions of optimal STN DBS for PD using an atlas-independent, fully individualized (N-of-1) tissue activation modeling approach and to assess the relationship between patient-level therapeutic volumes of tissue activation (VTAs) and motor improvement. Methods The stimulation-induced electric field for 40 PD patients treated with bilateral STN DBS was modeled using finite element analysis. Neurostimulation models were generated for each patient, incorporating their individual STN anatomy, DBS lead position and orientation, anisotropic tissue conductivity, and clinical stimulation settings. A voxel-based analysis of the VTAs was then used to map the optimal location of stimulation. The amount of stimulation in specific regions relative to the STN was measured and compared between STNs with more and less optimal stimulation, as determined by their motor improvement scores and VTA. The relationship between VTA location and motor outcome was then assessed using correlation analysis. Patient variability in terms of STN anatomy, active contact position, and VTA location were also evaluated. Results from the N-of-1 model were compared to those from a simplified VTA model. Results Tissue activation modeling mapped the optimal location of stimulation to regions medial, posterior, and dorsal to the STN centroid. These regions extended beyond the STN boundary towards the caudal zona incerta (cZI). The location of the VTA and active contact position differed significantly between STNs with more and less optimal stimulation in the dorsal-ventral and anterior-posterior directions. Therapeutic stimulation spread noticeably more in the dorsal and posterior directions, providing additional evidence for cZI as an important DBS target. There were significant linear relationships between the amount of dorsal and posterior stimulation, as measured by the VTA, and motor improvement. These relationships were more robust than those between active contact position and motor improvement. There was high variability in STN anatomy, active contact position, and VTA location among patients. Spherical VTA modeling was unable to reproduce these results and tended to overestimate the size of the VTA. Conclusion Accurate characterization of the spread of stimulation is needed to optimize STN DBS for PD. High variability in neuroanatomy, stimulation location, and motor improvement among patients highlights the need for individualized modeling techniques. The atlas-independent, N-of-1 tissue activation modeling approach presented in this study can be used to develop and evaluate stimulation strategies to improve clinical outcomes on an individual basis.
Collapse
Affiliation(s)
- Karlo A Malaga
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph T Costello
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kelvin L Chou
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Parag G Patil
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Aubignat M, Lefranc M, Tir M, Krystkowiak P. Deep brain stimulation programming in Parkinson's disease: Introduction of current issues and perspectives. Rev Neurol (Paris) 2020; 176:770-779. [DOI: 10.1016/j.neurol.2020.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
|
4
|
Vorwerk J, McCann D, Krüger J, Butson CR. Interactive computation and visualization of deep brain stimulation effects using Duality. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION 2020; 8:3-14. [PMID: 32742820 DOI: 10.1080/21681163.2018.1484817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Deep brain stimulation (DBS) is an established treatment for movement disorders such as Parkinson's disease or essential tremor. Currently, the selection of optimal stimulation settings is performed by iteratively adjusting the stimulation parameters and is a time consuming procedure that requires multiple clinic visits of several hours. Recently, computational models to predict and visualize the effect of DBS have been developed with the goal to simplify and accelerate this procedure by providing visual guidance and such models have been made available also on mobile devices. However, currently available visualization software still either lacks mobility, i.e., it is running on desktop computers and not easily available in clinical praxis, or flexibility, as the simulations that are visualized on mobile devices have to be precomputed. The goal of the pipeline presented in this paper is to close this gap: Using Duality, a newly developed software for the interactive visualization of simulation results, we implemented a pipeline that allows to compute DBS simulations in near-real time and instantaneously visualize the result on a tablet computer. Therefore, a client-server setup is used, so that the visualization and user interaction occur on the tablet computer, while the computations are carried out on a remote server. We present two examples for the use of Duality, one for postoperative programming and one for the planning of DBS surgery in a pre- or intraoperative setting. We carry out a performance analysis and present the results of a case study in which the pipeline for postoperative programming was applied.
Collapse
Affiliation(s)
- J Vorwerk
- Scientific Computing & Imaging (SCI) Institute, Department of Bioengineering, University of Utah, Salt Lake City, UT-8f112, USA
| | - D McCann
- Scientific Computing & Imaging (SCI) Institute, Department of Bioengineering, University of Utah, Salt Lake City, UT-8f112, USA
| | - J Krüger
- Center of Visual Data Analysis and Computer Graphics (COVIDAG) & HPC Group, University of Duisburg-Essen, 47057 Duisburg, Germany.,Scientific Computing & Imaging (SCI) Institute, Department of Bioengineering, University of Utah, Salt Lake City, UT-8f112, USA
| | - C R Butson
- Scientific Computing & Imaging (SCI) Institute, Department of Bioengineering, University of Utah, Salt Lake City, UT-8f112, USA
| |
Collapse
|
5
|
Vorwerk J, Brock AA, Anderson DN, Rolston JD, Butson CR. A retrospective evaluation of automated optimization of deep brain stimulation parameters. J Neural Eng 2019; 16:064002. [PMID: 31344689 PMCID: PMC7759010 DOI: 10.1088/1741-2552/ab35b1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE We performed a retrospective analysis of an optimization algorithm for the computation of patient-specific multipolar stimulation configurations employing multiple independent current/voltage sources. We evaluated whether the obtained stimulation configurations align with clinical data and whether the optimized stimulation configurations have the potential to lead to an equal or better stimulation of the target region as manual programming, while reducing the time required for programming sessions. APPROACH For three patients (five electrodes) diagnosed with essential tremor, we derived optimized multipolar stimulation configurations using an approach that is suitable for the application in clinical practice. To evaluate the automatically derived stimulation settings, we compared them to the results of the monopolar review. MAIN RESULTS We observe a good agreement between the findings of the monopolar review and the optimized stimulation configurations, with the algorithm assigning the maximal voltage in the optimized multipolar pattern to the contact that was found to lead to the best therapeutic effect in the clinical monopolar review in all cases. Additionally, our simulation results predict that the optimized stimulation settings lead to the activation of an equal or larger volume fraction of the target compared to the manually determined settings in all cases. SIGNIFICANCE Our results demonstrate the feasibility of an automatic determination of optimal DBS configurations and motivate a further evaluation of the applied optimization algorithm.
Collapse
Affiliation(s)
- Johannes Vorwerk
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah, USA,Institute of Electrical and Biomedical Engineering, UMIT - Private University for Health Sciences, Medical Informatics and Technology, Hall in Tirol, Austria
| | - Andrea A. Brock
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah, USA,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Daria N. Anderson
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah, USA,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - John D. Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Christopher R. Butson
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, Utah, USA,Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA,Departments of Psychiatry and Neurology, University of Utah, Salt Lake City, Utah, USA,Correspondig Author.
| |
Collapse
|
6
|
Patel SR, Lieber CM. Precision electronic medicine in the brain. Nat Biotechnol 2019; 37:1007-1012. [PMID: 31477925 PMCID: PMC6741780 DOI: 10.1038/s41587-019-0234-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Periodically throughout history developments from adjacent fields of science and technology reach a tipping point where together they produce unparalleled advances, such as the Allen Brain Atlas and the Human Genome Project. Today, research focused at the interface between the nervous system and electronics is not only leading to advances in fundamental neuroscience, but also unlocking the potential of implants capable of cellular-level therapeutic targeting. Ultimately, these personalized electronic therapies will provide new treatment modalities for neurodegenerative and neuropsychiatric illness; powerful control of prosthetics for restorative function in degenerative diseases, trauma and amputation; and even augmentation of human cognition. Overall, we believe that emerging advances in tissue-like electronics will enable minimally invasive devices capable of establishing a stable long-term cellular neural interface and providing long-term treatment for chronic neurological conditions.
Collapse
Affiliation(s)
- Shaun R Patel
- McCance Center for Brain Health, Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Center for Brain Science, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
7
|
Hellerbach A, Dembek T, Hoevels M, Holz J, Gierich A, Luyken K, Barbe M, Wirths J, Visser-Vandewalle V, Treuer H. DiODe: Directional Orientation Detection of Segmented Deep Brain Stimulation Leads: A Sequential Algorithm Based on CT Imaging. Stereotact Funct Neurosurg 2018; 96:335-341. [DOI: 10.1159/000494738] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/07/2018] [Indexed: 11/19/2022]
|
8
|
Huh Y, Jung D, Seo T, Sun S, Kim SH, Rhim H, Chung S, Kim CH, Kwon Y, Bikson M, Chung YA, Kim JJ, Cho J. Brain stimulation patterns emulating endogenous thalamocortical input to parvalbumin-expressing interneurons reduce nociception in mice. Brain Stimul 2018; 11:1151-1160. [PMID: 29784588 DOI: 10.1016/j.brs.2018.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/11/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The bursting pattern of thalamocortical (TC) pathway dampens nociception. Whether brain stimulation mimicking endogenous patterns can engage similar sensory gating processes in the cortex and reduce nociceptive behaviors remains uninvestigated. OBJECTIVE We investigated the role of cortical parvalbumin expressing (PV) interneurons within the TC circuit in gating nociception and their selective response to TC burst patterns. We then tested if transcranial magnetic stimulation (TMS) patterned on endogenous nociceptive TC bursting modulate nociceptive behaviors. METHODS The switching of TC neurons between tonic (single spike) and burst (high frequency spikes) firing modes may be a critical component in modulating nociceptive signals. Deep brain electrical stimulation of TC neurons and immunohistochemistry were used to examine the differential influence of each firing mode on cortical PV interneuron activity. Optogenetic stimulation of cortical PV interneurons assessed a direct role in nociceptive modulation. A new TMS protocol mimicking thalamic burst firing patterns, contrasted with conventional continuous and intermittent theta burst protocols, tested if TMS patterned on endogenous TC activity reduces nociceptive behaviors in mice. RESULTS Immunohistochemical evidence confirmed that burst, but not tonic, deep brain stimulation of TC neurons increased the activity of PV interneurons in the cortex. Both optogenetic activation of PV interneurons and TMS protocol mimicking thalamic burst reduced nociceptive behaviors. CONCLUSIONS Our findings suggest that burst firing of TC neurons recruits PV interneurons in the cortex to reduce nociceptive behaviors and that neuromodulation mimicking thalamic burst firing may be useful for modulating nociception.
Collapse
Affiliation(s)
- Yeowool Huh
- Translational Brain Research Center, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea; Dept. of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea
| | - Dahee Jung
- Translational Brain Research Center, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea; Dept. of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea; Department of Neuroscience, University of Science and Technology, Daejeon, South Korea
| | - Taeyoon Seo
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Sukkyu Sun
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Su Hyun Kim
- Department of Neuroscience, University of Science and Technology, Daejeon, South Korea; Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea
| | - Sooyoung Chung
- Department of Neuroscience, University of Science and Technology, Daejeon, South Korea; Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea
| | - Chong-Hyun Kim
- Department of Neuroscience, University of Science and Technology, Daejeon, South Korea; Center for Neuroscience, Korea Institute of Science and Technology, Seoul, South Korea
| | - Youngwoo Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, South Korea
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of the City University of New York, NY, USA
| | - Yong-An Chung
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Jeiwon Cho
- Translational Brain Research Center, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea; Dept. of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, South Korea.
| |
Collapse
|
9
|
How stimulation frequency and intensity impact on the long-lasting effects of coordinated reset stimulation. PLoS Comput Biol 2018; 14:e1006113. [PMID: 29746458 PMCID: PMC5963814 DOI: 10.1371/journal.pcbi.1006113] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 05/22/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022] Open
Abstract
Several brain diseases are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR) stimulation was computationally designed to specifically counteract abnormal neuronal synchronization processes by desynchronization. In the presence of spike-timing-dependent plasticity (STDP) this may lead to a decrease of synaptic excitatory weights and ultimately to an anti-kindling, i.e. unlearning of abnormal synaptic connectivity and abnormal neuronal synchrony. The long-lasting desynchronizing impact of CR stimulation has been verified in pre-clinical and clinical proof of concept studies. However, as yet it is unclear how to optimally choose the CR stimulation frequency, i.e. the repetition rate at which the CR stimuli are delivered. This work presents the first computational study on the dependence of the acute and long-term outcome on the CR stimulation frequency in neuronal networks with STDP. For this purpose, CR stimulation was applied with Rapidly Varying Sequences (RVS) as well as with Slowly Varying Sequences (SVS) in a wide range of stimulation frequencies and intensities. Our findings demonstrate that acute desynchronization, achieved during stimulation, does not necessarily lead to long-term desynchronization after cessation of stimulation. By comparing the long-term effects of the two different CR protocols, the RVS CR stimulation turned out to be more robust against variations of the stimulation frequency. However, SVS CR stimulation can obtain stronger anti-kindling effects. We revealed specific parameter ranges that are favorable for long-term desynchronization. For instance, RVS CR stimulation at weak intensities and with stimulation frequencies in the range of the neuronal firing rates turned out to be effective and robust, in particular, if no closed loop adaptation of stimulation parameters is (technically) available. From a clinical standpoint, this may be relevant in the context of both invasive as well as non-invasive CR stimulation.
Collapse
|
10
|
van Dijk KJ, Verhagen R, Bour LJ, Heida C, Veltink PH. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead. Neuromodulation 2017; 21:553-561. [DOI: 10.1111/ner.12702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Kees J. van Dijk
- MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente; Enschede NL The Netherlands
| | - Rens Verhagen
- Department of Neurology/Clinical Neurophysiology; Academic Medical Center; Amsterdam NL The Netherlands
| | - Lo J. Bour
- Department of Neurology/Clinical Neurophysiology; Academic Medical Center; Amsterdam NL The Netherlands
| | - Ciska Heida
- MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente; Enschede NL The Netherlands
| | - Peter H. Veltink
- MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente; Enschede NL The Netherlands
| |
Collapse
|
11
|
Daneshi Kohan E, Lashkari BS, Sparrey CJ. The effects of paranodal myelin damage on action potential depend on axonal structure. Med Biol Eng Comput 2017; 56:395-411. [PMID: 28770425 DOI: 10.1007/s11517-017-1691-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/17/2017] [Indexed: 12/31/2022]
Abstract
Biophysical computational models of axons provide an important tool for quantifying the effects of injury and disease on signal conduction characteristics. Several studies have used generic models to study the average behavior of healthy and injured axons; however, few studies have included the effects of normal structural variation on the simulated axon's response to injury. The effects of variations in physiological characteristics on axonal function were mapped by altering the structure of the nodal, paranodal, and juxtaparanodal regions across reported values in three different caliber axons (1, 2, and 5.7 μm). Myelin detachment and retraction were simulated to quantify the effects of each injury mechanism on signal conduction. Conduction velocity was most affected by axonal fiber diameter (89%), while membrane potential amplitude was most affected by nodal length (86%) in healthy axons. Postinjury axonal functionality was most affected by myelin detachment in the paranodal and juxtaparanodal regions when retraction and detachment were modeled simultaneously. The efficacy of simulated potassium channel blockers on restoring membrane potential and velocity varied with axonal caliber and injury type. The structural characteristics of axons affect their functional response to myelin retraction and detachment and their subsequent response to potassium channel blocker treatment.
Collapse
Affiliation(s)
- Ehsan Daneshi Kohan
- Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC, V3T 0A3, Canada.,International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, 5th floor, 5200, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Behnia Shadab Lashkari
- International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, 5th floor, 5200, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Carolyn Jennifer Sparrey
- Mechatronic Systems Engineering, Simon Fraser University, 250-13450 102 Avenue, Surrey, BC, V3T 0A3, Canada. .,International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, 5th floor, 5200, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
12
|
Sitz A, Hoevels M, Hellerbach A, Gierich A, Luyken K, Dembek TA, Klehr M, Wirths J, Visser-Vandewalle V, Treuer H. Determining the orientation angle of directional leads for deep brain stimulation using computed tomography and digital x-ray imaging: A phantom study. Med Phys 2017. [PMID: 28639387 DOI: 10.1002/mp.12424] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Orientating the angle of directional leads for deep brain stimulation (DBS) in an axial plane introduces a new degree of freedom that is indicated by embedded anisotropic directional markers. Our aim was to develop algorithms to determine lead orientation angles from computed tomography (CT) and stereotactic x-ray imaging using standard clinical protocols, and subsequently assess the accuracy of both methods. METHODS In CT the anisotropic marker artifact was taken as a signature of the lead orientation angle and analyzed using discrete Fourier transform of circular intensity profiles. The orientation angle was determined from phase angles at a frequency 2/360° and corrected for aberrations at oblique leads. In x-ray imaging, frontal and lateral images were registered to stereotactic space and sub-images containing directional markers were extracted. These images were compared with projection images of an identically located virtual marker at different orientation angles. A similarity index was calculated and used to determine the lead orientation angle. Both methods were tested using epoxy phantoms containing directional leads (Cartesia™, Boston Scientific, Marlborough, USA) with known orientation. Anthropomorphic phantoms were used to compare both methods for DBS cases. RESULTS Mean deviation between CT and x-ray was 1.5° ± 3.6° (range: -2.3° to 7.9°) for epoxy phantoms and 3.6° ± 7.1° (range: -5.6° to 14.6°) for anthropomorphic phantoms. After correction for imperfections in the epoxy phantoms, the mean deviation from ground truth was 0.0° ± 5.0° (range: -12° to 14°) for x-ray. For CT the results depended on the polar angle of the lead in the scanner. Mean deviation was -0.3° ± 1.9° (range: -4.6° to 6.6°) or 1.6° ± 8.9° (range: -23° to 34°) for polar angles ≤ 40° or > 40°. CONCLUSIONS The results show that both imaging modalities can be used to determine lead orientation angles with high accuracy. CT is superior to x-ray imaging, but oblique leads (polar angle > 40°) show limited precision due to the current design of the directional marker.
Collapse
Affiliation(s)
- Alexander Sitz
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Mauritius Hoevels
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Alexandra Hellerbach
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Andreas Gierich
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Klaus Luyken
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Till A Dembek
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany.,Department of Neurology, University Hospital of Cologne, Cologne, 50924, Germany
| | - Martin Klehr
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| | - Harald Treuer
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Cologne, 50924, Germany
| |
Collapse
|
13
|
Lehto LJ, Slopsema JP, Johnson MD, Shatillo A, Teplitzky BA, Utecht L, Adriany G, Mangia S, Sierra A, Low WC, Gröhn O, Michaeli S. Orientation selective deep brain stimulation. J Neural Eng 2017; 14:016016. [PMID: 28068296 DOI: 10.1088/1741-2552/aa5238] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. APPROACH This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. MAIN RESULTS Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. SIGNIFICANCE The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.
Collapse
Affiliation(s)
- Lauri J Lehto
- Center for Magnetic Resonance Research, Radiology, University of Minnesota, 2021 6th St SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Peña E, Zhang S, Deyo S, Xiao Y, Johnson MD. Particle swarm optimization for programming deep brain stimulation arrays. J Neural Eng 2017; 14:016014. [PMID: 28068291 DOI: 10.1088/1741-2552/aa52d1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. APPROACH Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. MAIN RESULTS The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (⩽9.2%) and ROA (⩽1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n = 3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations showed discrepancies of <1% between approaches. SIGNIFICANCE The PSO algorithm provides a computationally efficient way to program DBS systems especially those with higher electrode counts.
Collapse
Affiliation(s)
- Edgar Peña
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
15
|
van Dijk KJ, Janssen MLF, Zwartjes DGM, Temel Y, Visser-Vandewalle V, Veltink PH, Benazzouz A, Heida T. Spatial Localization of Sources in the Rat Subthalamic Motor Region Using an Inverse Current Source Density Method. Front Neural Circuits 2016; 10:87. [PMID: 27857684 PMCID: PMC5093117 DOI: 10.3389/fncir.2016.00087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/14/2016] [Indexed: 11/18/2022] Open
Abstract
Objective: In this study we introduce the use of the current source density (CSD) method as a way to visualize the spatial organization of evoked responses in the rat subthalamic nucleus (STN) at fixed time stamps resulting from motor cortex stimulation. This method offers opportunities to visualize neuronal input and study the relation between the synaptic input and the neural output of neural populations. Approach: Motor cortex evoked local field potentials and unit activity were measured in the subthalamic region, with a 3D measurement grid consisting of 320 measurement points and high spatial resolution. This allowed us to visualize the evoked synaptic input by estimating the current source density (CSD) from the measured local field potentials, using the inverse CSD method. At the same time, the neuronal output of the cells within the grid is assessed by calculating post stimulus time histograms. Main results: The CSD method resulted in clear and distinguishable sources and sinks of the neuronal input activity in the STN after motor cortex stimulation. We showed that the center of the synaptic input of the STN from the motor cortex is located dorsal to the input from globus pallidus. Significance: For the first time we have performed CSD analysis on motor cortex stimulation evoked LFP responses in the rat STN as a proof of principle. Our results suggest that the CSD method can be used to gain new insights into the spatial extent of synaptic pathways in brain structures.
Collapse
Affiliation(s)
- Kees J van Dijk
- Biomedical Signals and Systems Group, MIRA institute for Biomedical Engineering and Technical Medicine, University of Twente Enschede, Netherlands
| | - Marcus L F Janssen
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Neurology, Maastricht University Medical CenterMaastricht, Netherlands; University de Bordeaux, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique UMR 5293Bordeaux, France
| | - Daphne G M Zwartjes
- Biomedical Signals and Systems Group, MIRA institute for Biomedical Engineering and Technical Medicine, University of Twente Enschede, Netherlands
| | - Yasin Temel
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Neurosurgery, Maastricht University Medical CenterMaastricht, Netherlands
| | | | - Peter H Veltink
- Biomedical Signals and Systems Group, MIRA institute for Biomedical Engineering and Technical Medicine, University of Twente Enschede, Netherlands
| | - Abdelhamid Benazzouz
- University de Bordeaux, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique UMR 5293 Bordeaux, France
| | - Tjitske Heida
- Biomedical Signals and Systems Group, MIRA institute for Biomedical Engineering and Technical Medicine, University of Twente Enschede, Netherlands
| |
Collapse
|
16
|
Alonso F, Latorre MA, Göransson N, Zsigmond P, Wårdell K. Investigation into Deep Brain Stimulation Lead Designs: A Patient-Specific Simulation Study. Brain Sci 2016; 6:brainsci6030039. [PMID: 27618109 PMCID: PMC5039468 DOI: 10.3390/brainsci6030039] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022] Open
Abstract
New deep brain stimulation (DBS) electrode designs offer operation in voltage and current mode and capability to steer the electric field (EF). The aim of the study was to compare the EF distributions of four DBS leads at equivalent amplitudes (3 V and 3.4 mA). Finite element method (FEM) simulations (n = 38) around cylindrical contacts (leads 3389, 6148) or equivalent contact configurations (leads 6180, SureStim1) were performed using homogeneous and patient-specific (heterogeneous) brain tissue models. Steering effects of 6180 and SureStim1 were compared with symmetric stimulation fields. To make relative comparisons between simulations, an EF isolevel of 0.2 V/mm was chosen based on neuron model simulations (n = 832) applied before EF visualization and comparisons. The simulations show that the EF distribution is largely influenced by the heterogeneity of the tissue, and the operating mode. Equivalent contact configurations result in similar EF distributions. In steering configurations, larger EF volumes were achieved in current mode using equivalent amplitudes. The methodology was demonstrated in a patient-specific simulation around the zona incerta and a "virtual" ventral intermediate nucleus target. In conclusion, lead design differences are enhanced when using patient-specific tissue models and current stimulation mode.
Collapse
Affiliation(s)
- Fabiola Alonso
- Department of Biomedical Engineering, Linköping University, Linköping 58185, Sweden.
| | - Malcolm A Latorre
- Department of Biomedical Engineering, Linköping University, Linköping 58185, Sweden.
| | - Nathanael Göransson
- Department of Biomedical Engineering, Linköping University, Linköping 58185, Sweden.
- Department of Neurosurgery, Linköping University Hospital, Region Östergötland, Linköping 58185, Sweden.
| | - Peter Zsigmond
- Department of Neurosurgery, Linköping University Hospital, Region Östergötland, Linköping 58185, Sweden.
- Department of Clinical and Experimental Medicine, Linköping University, Linköping 58185, Sweden.
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Linköping 58185, Sweden.
| |
Collapse
|
17
|
Wang J, Nebeck S, Muralidharan A, Johnson MD, Vitek JL, Baker KB. Coordinated Reset Deep Brain Stimulation of Subthalamic Nucleus Produces Long-Lasting, Dose-Dependent Motor Improvements in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine Non-Human Primate Model of Parkinsonism. Brain Stimul 2016; 9:609-17. [PMID: 27151601 DOI: 10.1016/j.brs.2016.03.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/25/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Novel deep brain stimulation (DBS) paradigms are being explored in an effort to further optimize therapeutic outcome for patients with Parkinson's disease (PD). One approach, termed 'Coordinated Reset' (CR) DBS, was developed to target pathological oscillatory network activity. with desynchronizing effects and associated therapeutic benefit hypothesized to endure beyond cessation of stimulus delivery. OBJECTIVE To characterize the acute and carry-over effects of low-intensity CR DBS versus traditional DBS (tDBS) in the region of the subthalamic nucleus (STN). METHODS A within-subject, block treatment design involving the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) non-human primate model of parkinsonism was used. Each treatment block consisted of five days of daily DBS delivery followed by a one week minimum post-treatment observation window. Motor behavior was quantified using a modified rating scale for both animals combined with an objective, upper-extremity reach task in one animal. RESULTS Both animals demonstrated significant motor improvements during acute tDBS; however, within-session and post-treatment carry-over was limited. Acute motor improvements were also observed in response to low-intensity CR DBS; however, both within- and between-session therapeutic carry-over enhanced progressively following each daily treatment. Moreover, in contrast to tDBS, five consecutive days of CR DBS treatment yielded carry-over benefits that persisted for up to two weeks without additional intervention. Notably, the magnitude and time-course of CR DBS' effects on each animal varied with daily dose-duration, pointing to possible interaction effects involving baseline parkinsonian severity. CONCLUSION Our results support the therapeutic promise of CR DBS for PD, including its potential to induce carryover while reducing both side effect risk and hardware power consumption.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shane Nebeck
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Matthew D Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kenneth B Baker
- Department of Neuroscience, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA.
| |
Collapse
|
18
|
Sweet JA, Pace J, Girgis F, Miller JP. Computational Modeling and Neuroimaging Techniques for Targeting during Deep Brain Stimulation. Front Neuroanat 2016; 10:71. [PMID: 27445709 PMCID: PMC4927621 DOI: 10.3389/fnana.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/09/2016] [Indexed: 12/15/2022] Open
Abstract
Accurate surgical localization of the varied targets for deep brain stimulation (DBS) is a process undergoing constant evolution, with increasingly sophisticated techniques to allow for highly precise targeting. However, despite the fastidious placement of electrodes into specific structures within the brain, there is increasing evidence to suggest that the clinical effects of DBS are likely due to the activation of widespread neuronal networks directly and indirectly influenced by the stimulation of a given target. Selective activation of these complex and inter-connected pathways may further improve the outcomes of currently treated diseases by targeting specific fiber tracts responsible for a particular symptom in a patient-specific manner. Moreover, the delivery of such focused stimulation may aid in the discovery of new targets for electrical stimulation to treat additional neurological, psychiatric, and even cognitive disorders. As such, advancements in surgical targeting, computational modeling, engineering designs, and neuroimaging techniques play a critical role in this process. This article reviews the progress of these applications, discussing the importance of target localization for DBS, and the role of computational modeling and novel neuroimaging in improving our understanding of the pathophysiology of diseases, and thus paving the way for improved selective target localization using DBS.
Collapse
Affiliation(s)
- Jennifer A Sweet
- Department of Neurosurgery, University Hospitals Case Medical Center, Case Western Reserve University Cleveland, OH, USA
| | - Jonathan Pace
- Department of Neurosurgery, University Hospitals Case Medical Center, Case Western Reserve University Cleveland, OH, USA
| | - Fady Girgis
- Department of Neurosurgery, University Hospitals Case Medical Center, Case Western Reserve University Cleveland, OH, USA
| | - Jonathan P Miller
- Department of Neurosurgery, University Hospitals Case Medical Center, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
19
|
Zeitler M, Tass PA. Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity. Front Comput Neurosci 2016; 10:44. [PMID: 27242500 PMCID: PMC4868855 DOI: 10.3389/fncom.2016.00044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022] Open
Abstract
Abnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal networks with spike timing–dependent plasticity CR stimulation causes a decrease of synaptic weights and finally anti-kindling, i.e., unlearning of abnormally strong synaptic connectivity and abnormal neuronal synchrony. Long-lasting desynchronizing aftereffects of CR stimulation have been verified in pre-clinical and clinical proof of concept studies. In general, for different neuromodulation approaches, both invasive and non-invasive, it is desirable to enable effective stimulation at reduced stimulation intensities, thereby avoiding side effects. For the first time, we here present a two-stage CR stimulation protocol, where two qualitatively different types of CR stimulation are delivered one after another, and the first stage comes at a particularly weak stimulation intensity. Numerical simulations show that a two-stage CR stimulation can induce the same degree of anti-kindling as a single-stage CR stimulation with intermediate stimulation intensity. This stimulation approach might be clinically beneficial in patients suffering from brain diseases characterized by abnormal neuronal synchrony where a first treatment stage should be performed at particularly weak stimulation intensities in order to avoid side effects. This might, e.g., be relevant in the context of acoustic CR stimulation in tinnitus patients with hyperacusis or in the case of electrical deep brain CR stimulation with sub-optimally positioned leads or side effects caused by stimulation of the target itself. We discuss how to apply our method in first in man and proof of concept studies.
Collapse
Affiliation(s)
- Magteld Zeitler
- Research Center Jülich, Institute of Neuroscience and Medicine, Neuromodulation (INM-7) Jülich, Germany
| | - Peter A Tass
- Research Center Jülich, Institute of Neuroscience and Medicine, Neuromodulation (INM-7)Jülich, Germany; Department of Neurosurgery, Stanford UniversityStanford, CA, USA; Department of Neuromodulation, University of CologneCologne, Germany
| |
Collapse
|
20
|
Kros L, Eelkman Rooda OHJ, De Zeeuw CI, Hoebeek FE. Controlling Cerebellar Output to Treat Refractory Epilepsy. Trends Neurosci 2015; 38:787-799. [PMID: 26602765 DOI: 10.1016/j.tins.2015.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/12/2015] [Accepted: 10/18/2015] [Indexed: 11/27/2022]
Abstract
Generalized epilepsy is characterized by recurrent seizures caused by oscillatory neuronal firing throughout thalamocortical networks. Current therapeutic approaches often intervene at the level of the thalamus or cerebral cortex to ameliorate seizures. We review here the therapeutic potential of cerebellar stimulation. The cerebellum forms a prominent ascending input to the thalamus and, whereas stimulation of the foliated cerebellar cortex exerts inconsistent results, stimulation of the centrally located cerebellar nuclei (CN) reliably stops generalized seizures in experimental models. Stimulation of this area indicates that the period of stimulation with respect to the phase of the oscillations in thalamocortical networks can optimize its effect, opening up the possibility of developing on-demand deep brain stimulation (DBS) treatments.
Collapse
Affiliation(s)
- Lieke Kros
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Oscar H J Eelkman Rooda
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Model-based analysis and design of waveforms for efficient neural stimulation. PROGRESS IN BRAIN RESEARCH 2015; 222:147-62. [PMID: 26541380 DOI: 10.1016/bs.pbr.2015.07.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design space for electrical stimulation of the nervous system is extremely large, and because the response to stimulation is highly nonlinear, the selection of stimulation parameters to achieve a desired response is a challenging problem. Computational models of the response of neurons to extracellular stimulation allow analysis of the effects of stimulation parameters on neural excitation and provide an approach to select or design optimal parameters of stimulation. Here, I review the use of computational models to understand the effects of stimulation waveform on the energy efficiency of neural excitation and to design novel stimulation waveforms to increase the efficiency of neural stimulation.
Collapse
|