1
|
Sands I, Demarco R, Thurber L, Esteban-Linares A, Song D, Meng E, Chen Y. Interface-Mediated Neurogenic Signaling: The Impact of Surface Geometry and Chemistry on Neural Cell Behavior for Regenerative and Brain-Machine Interfacing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401750. [PMID: 38961531 PMCID: PMC11326983 DOI: 10.1002/adma.202401750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Nanomaterial advancements have driven progress in central and peripheral nervous system applications such as tissue regeneration and brain-machine interfacing. Ideally, neural interfaces with native tissue shall seamlessly integrate, a process that is often mediated by the interfacial material properties. Surface topography and material chemistry are significant extracellular stimuli that can influence neural cell behavior to facilitate tissue integration and augment therapeutic outcomes. This review characterizes topographical modifications, including micropillars, microchannels, surface roughness, and porosity, implemented on regenerative scaffolding and brain-machine interfaces. Their impact on neural cell response is summarized through neurogenic outcome and mechanistic analysis. The effects of surface chemistry on neural cell signaling with common interfacing compounds like carbon-based nanomaterials, conductive polymers, and biologically inspired matrices are also reviewed. Finally, the impact of these extracellular mediated neural cues on intracellular signaling cascades is discussed to provide perspective on the manipulation of neuron and neuroglia cell microenvironments to drive therapeutic outcomes.
Collapse
Affiliation(s)
- Ian Sands
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ryan Demarco
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Laura Thurber
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Alberto Esteban-Linares
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
2
|
Das S, Ghosh B, Sahoo RN, Nayak AK. Recent Advancements in Bioelectronic Medicine: A Review. Curr Drug Deliv 2024; 21:1445-1459. [PMID: 38173212 DOI: 10.2174/0115672018286832231218112557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Bioelectronic medicine is a multidisciplinary field that combines molecular medicine, neurology, engineering, and computer science to design devices for diagnosing and treating diseases. The advancements in bioelectronic medicine can improve the precision and personalization of illness treatment. Bioelectronic medicine can produce, suppress, and measure electrical activity in excitable tissue. Bioelectronic devices modify specific neural circuits using electrons rather than pharmaceuticals and uses of bioelectronic processes to regulate the biological processes underlining various diseases. This promotes the potential to address the underlying causes of illnesses, reduce adverse effects, and lower costs compared to conventional medication. The current review presents different important aspects of bioelectronic medicines with recent advancements. The area of bioelectronic medicine has a lot of potential for treating diseases, enabling non-invasive therapeutic intervention by regulating brain impulses. Bioelectronic medicine uses electricity to control biological processes, treat illnesses, or regain lost capability. These new classes of medicines are designed by the technological developments in the detection and regulation of electrical signaling methods in the nervous system. Peripheral nervous system regulates a wide range of processes in chronic diseases; it involves implanting small devices onto specific peripheral nerves, which read and regulate the brain signaling patterns to achieve therapeutic effects specific to the signal capacity of a particular organ. The potential for bioelectronic medicine field is vast, as it investigates for treatment of various diseases, including rheumatoid arthritis, diabetes, hypertension, paralysis, chronic illnesses, blindness, etc.
Collapse
Affiliation(s)
- Sudipta Das
- Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia - 741222, West Bengal, India
| | - Baishali Ghosh
- Department of Pharmaceutics, Netaji Subhas Chandra Bose Institute of Pharmacy, Chakdaha, Nadia - 741222, West Bengal, India
| | - Rudra Narayan Sahoo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
3
|
Boulingre M, Portillo-Lara R, Green RA. Biohybrid neural interfaces: improving the biological integration of neural implants. Chem Commun (Camb) 2023; 59:14745-14758. [PMID: 37991846 PMCID: PMC10720954 DOI: 10.1039/d3cc05006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Implantable neural interfaces (NIs) have emerged in the clinic as outstanding tools for the management of a variety of neurological conditions caused by trauma or disease. However, the foreign body reaction triggered upon implantation remains one of the major challenges hindering the safety and longevity of NIs. The integration of tools and principles from biomaterial design and tissue engineering has been investigated as a promising strategy to develop NIs with enhanced functionality and performance. In this Feature Article, we highlight the main bioengineering approaches for the development of biohybrid NIs with an emphasis on relevant device design criteria. Technical and scientific challenges associated with the fabrication and functional assessment of technologies composed of both artificial and biological components are discussed. Lastly, we provide future perspectives related to engineering, regulatory, and neuroethical challenges to be addressed towards the realisation of the promise of biohybrid neurotechnology.
Collapse
Affiliation(s)
- Marjolaine Boulingre
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Roberto Portillo-Lara
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Rylie A Green
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
4
|
Scholten K, Xu H, Lu Z, Jiang W, Ortigoza-Diaz J, Petrossians A, Orler S, Gallonio R, Liu X, Song D, Meng E. Polymer Implantable Electrode Foundry: A shared resource for manufacturing polymer-based microelectrodes for neural interfaces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565048. [PMID: 37986740 PMCID: PMC10659271 DOI: 10.1101/2023.11.05.565048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Large scale monitoring of neural activity at the single unit level can be achieved via electrophysiological recording using implanted microelectrodes. While neuroscience researchers have widely employed chronically implanted electrode-based interfaces for this purpose, a commonly encountered limitation is loss of highly resolved signals arising from immunological response over time. Next generation electrode-based interfaces improve longitudinal signal quality using the strategy of stabilizing the device-tissue interface with microelectrode arrays constructed from soft and flexible polymer materials. The limited availability of such polymer microelectrode arrays has restricted access to a small number of researchers able to build their own custom devices or who have developed specific collaborations with engineering researchers who can produce them. Here, a new technology resource model is introduced that seeks to widely increase access to polymer microelectrode arrays by the neuroscience research community. The Polymer Implantable Electrode (PIE) Foundry provides custom and standardized polymer microelectrode arrays as well as training and guidance on best-practices for implantation and chronic experiments.
Collapse
Affiliation(s)
- Kee Scholten
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
| | - Huijing Xu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
| | - Zhouxiao Lu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
| | - Wenxuan Jiang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
| | - Jessica Ortigoza-Diaz
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
| | - Artin Petrossians
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
| | - Steven Orler
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
| | - Rachael Gallonio
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
| | - Xin Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
| | - Dong Song
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, USA
| | - Ellis Meng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, USA
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, USA
| |
Collapse
|
5
|
Thielen B, Meng E. Characterization of thin film Parylene C device curvature and the formation of helices via thermoforming. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2023; 33:095007. [PMID: 37520061 PMCID: PMC10373221 DOI: 10.1088/1361-6439/acdc33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 08/01/2023]
Abstract
In microfabricated biomedical devices, flexible, polymer substrates are becoming increasingly preferred over rigid, silicon substrates because of their ability to conform to biological tissue. Such devices, however, are fabricated in a planar configuration, which results in planar devices that do not closely match the shape of most tissues. Thermoforming, a process which can reshape thermoplastic polymers, can be used to transform flat, thin film, polymer devices with patterned metal features into complex three-dimensional (3D) geometries. This process extends the use of planar microfabrication to achieve 3D shapes which can more closely interface with the body. Common shapes include spheres, which can conform to the shape of the retina; cones, which can be used as a sheath to interface with an insertion stylet; and helices, which can be wrapped around nerves, blood vessels, muscle fibers, or be used as strain relief feature. This work characterizes the curvature of thin film Parylene C devices with patterned metal features built with varying Parylene thicknesses and processing conditions. Device curvature is caused by film stress in each Parylene and metal layer, which is characterized experimentally and by a mathematical model which estimates the effects of device geometry and processing on curvature. Using this characterization, an optimized process to thermoform thin film Parylene C devices with patterned metal features into 0.25 mm diameter helices while preventing cracking in the polymer and metal was developed.
Collapse
Affiliation(s)
- Brianna Thielen
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Ellis Meng
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
6
|
Qian S, Lin HA, Pan Q, Zhang S, Zhang Y, Geng Z, Wu Q, He Y, Zhu B. Chemically revised conducting polymers with inflammation resistance for intimate bioelectronic electrocoupling. Bioact Mater 2023; 26:24-51. [PMID: 36875055 PMCID: PMC9975642 DOI: 10.1016/j.bioactmat.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Conducting polymers offer attractive mixed ionic-electronic conductivity, tunable interfacial barrier with metal, tissue matchable softness, and versatile chemical functionalization, making them robust to bridge the gap between brain tissue and electronic circuits. This review focuses on chemically revised conducting polymers, combined with their superior and controllable electrochemical performance, to fabricate long-term bioelectronic implants, addressing chronic immune responses, weak neuron attraction, and long-term electrocommunication instability challenges. Moreover, the promising progress of zwitterionic conducting polymers in bioelectronic implants (≥4 weeks stable implantation) is highlighted, followed by a comment on their current evolution toward selective neural coupling and reimplantable function. Finally, a critical forward look at the future of zwitterionic conducting polymers for in vivo bioelectronic devices is provided.
Collapse
Affiliation(s)
- Sihao Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.,School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Hsing-An Lin
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Qichao Pan
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Shuhua Zhang
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Yunhua Zhang
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Zhi Geng
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Qing Wu
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Yong He
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Bo Zhu
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
7
|
Filho G, Júnior C, Spinelli B, Damasceno I, Fiuza F, Morya E. All-Polymeric Electrode Based on PEDOT:PSS for In Vivo Neural Recording. BIOSENSORS 2022; 12:853. [PMID: 36290990 PMCID: PMC9599788 DOI: 10.3390/bios12100853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
One of the significant challenges today in the brain-machine interfaces that use invasive methods is the stability of the chronic record. In recent years, polymer-based electrodes have gained notoriety for achieving mechanical strength values close to that of brain tissue, promoting a lower immune response to the implant. In this work, we fabricated fully polymeric electrodes based on PEDOT:PSS for neural recording in Wistar rats. We characterized the electrical properties and both in vitro and in vivo functionality of the electrodes. Additionally, we employed histological processing and microscopical visualization to evaluate the tecidual immune response at 7, 14, and 21 days post-implant. Electrodes with 400-micrometer channels showed a 12 dB signal-to-noise ratio. Local field potentials were characterized under two conditions: anesthetized and free-moving. There was a proliferation of microglia at the tissue-electrode interface in the early days, though there was a decrease after 14 days. Astrocytes also migrated to the interface, but there was not continuous recruitment of these cells in the tissue; there was inflammatory stability by day 21. The signal was not affected by this inflammatory action, demonstrating that fully polymeric electrodes can be an alternative means to prolong the valuable time of neural recordings.
Collapse
Affiliation(s)
- Gilberto Filho
- Edmond and Lily Safra International Institute of Neuroscience (ELS-IIN), Macaíba 59280-000, Brazil
| | - Cláudio Júnior
- Edmond and Lily Safra International Institute of Neuroscience (ELS-IIN), Macaíba 59280-000, Brazil
| | - Bruno Spinelli
- Edmond and Lily Safra International Institute of Neuroscience (ELS-IIN), Macaíba 59280-000, Brazil
| | - Igor Damasceno
- Department of Materials Engineering, Federal University of Rio Grande do Norte (UFRN), Natal 59072-970, Brazil
| | - Felipe Fiuza
- Edmond and Lily Safra International Institute of Neuroscience (ELS-IIN), Macaíba 59280-000, Brazil
| | - Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience (ELS-IIN), Macaíba 59280-000, Brazil
| |
Collapse
|
8
|
Bod RB, Rokai J, Meszéna D, Fiáth R, Ulbert I, Márton G. From End to End: Gaining, Sorting, and Employing High-Density Neural Single Unit Recordings. Front Neuroinform 2022; 16:851024. [PMID: 35769832 PMCID: PMC9236662 DOI: 10.3389/fninf.2022.851024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
The meaning behind neural single unit activity has constantly been a challenge, so it will persist in the foreseeable future. As one of the most sourced strategies, detecting neural activity in high-resolution neural sensor recordings and then attributing them to their corresponding source neurons correctly, namely the process of spike sorting, has been prevailing so far. Support from ever-improving recording techniques and sophisticated algorithms for extracting worthwhile information and abundance in clustering procedures turned spike sorting into an indispensable tool in electrophysiological analysis. This review attempts to illustrate that in all stages of spike sorting algorithms, the past 5 years innovations' brought about concepts, results, and questions worth sharing with even the non-expert user community. By thoroughly inspecting latest innovations in the field of neural sensors, recording procedures, and various spike sorting strategies, a skeletonization of relevant knowledge lays here, with an initiative to get one step closer to the original objective: deciphering and building in the sense of neural transcript.
Collapse
Affiliation(s)
- Réka Barbara Bod
- Laboratory of Experimental Neurophysiology, Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - János Rokai
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - Domokos Meszéna
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Richárd Fiáth
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - István Ulbert
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Gergely Márton
- Integrative Neuroscience Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
9
|
Wettability and Surface Roughness of Parylene C on Three-Dimensional-Printed Photopolymers. MATERIALS 2022; 15:ma15124159. [PMID: 35744218 PMCID: PMC9228345 DOI: 10.3390/ma15124159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
The use of poly-(para-chloro-xylylene) (Parylene C) in microelectromechanical systems and medical devices has increased rapidly. However, little research has been conducted on the wettability and surface roughness of Parylene C after being soaked in solutions. In this study, the contact angle and surface roughness (arithmetic average of roughness) of Parylene C on three-dimensional (3D)-printed photopolymer in 10% sodium hydroxide, 10% ammonium hydroxide, and 100% phosphate-buffered saline (PBS) solutions were investigated using a commercial contact angle measurement system and laser confocal microscope, respectively. The collected data indicated that 10% ammonium hydroxide had no major effect on the contact angle of Parylene C on a substrate, with a Shore A hardness of 50. However, 10% sodium hydroxide, 10% ammonium hydroxide, and 100% PBS considerably affected the contact angle of Parylene C on a substrate with a Shore A hardness of 85. Substrates with Parylene C coating exhibited lower surface roughness than uncoated substrates. The substrates coated with Parylene C that were soaked in 10% ammonium hydroxide exhibited high surface roughness. The aforementioned results indicate that 3D-printed photopolymers coated with Parylene C can offer potential benefits when used in biocompatible devices.
Collapse
|
10
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
11
|
Intracortical Microelectrode Array Unit Yield under Chronic Conditions: A Comparative Evaluation. MICROMACHINES 2021; 12:mi12080972. [PMID: 34442594 PMCID: PMC8400387 DOI: 10.3390/mi12080972] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023]
Abstract
While microelectrode arrays (MEAs) offer the promise of elucidating functional neural circuitry and serve as the basis for a cortical neuroprosthesis, the challenge of designing and demonstrating chronically reliable technology remains. Numerous studies report “chronic” data but the actual time spans and performance measures corresponding to the experimental work vary. In this study, we reviewed the experimental durations that constitute chronic studies across a range of MEA types and animal species to gain an understanding of the widespread variability in reported study duration. For rodents, which are the most commonly used animal model in chronic studies, we examined active electrode yield (AEY) for different array types as a means to contextualize the study duration variance, as well as investigate and interpret the performance of custom devices in comparison to conventional MEAs. We observed wide-spread variance within species for the chronic implantation period and an AEY that decayed linearly in rodent models that implanted commercially-available devices. These observations provide a benchmark for comparing the performance of new technologies and highlight the need for consistency in chronic MEA studies. Additionally, to fully derive performance under chronic conditions, the duration of abiotic failure modes, biological processes induced by indwelling probes, and intended application of the device are key determinants.
Collapse
|
12
|
Liu X, Bibineyshvili Y, Robles DA, Boreland AJ, Margolis DJ, Shreiber DI, Zahn JD. Fabrication of a Multilayer Implantable Cortical Microelectrode Probe to Improve Recording Potential. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2021; 30:569-581. [PMID: 34539168 PMCID: PMC8445332 DOI: 10.1109/jmems.2021.3092230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Intracortical neural probes are a key enabling technology for acquiring high fidelity neural signals within the cortex. They are viewed as a crucial component of brain-computer interfaces (BCIs) in order to record electrical activities from neurons within the brain. Smaller, more flexible, polymer-based probes have been investigated for their potential to limit the acute and chronic neural tissue response. Conventional methods of patterning electrodes and connecting traces on a single supporting layer can limit the number of recording sites which can be defined, particularly when designing narrower probes. We present a novel strategy of increasing the number of recording sites without proportionally increasing the size of the probe by using a multilayer fabrication process to vertically layer recording traces on multiple Parylene support layers, allowing more recording traces to be defined on a smaller probe width. Using this approach, we are able to define 16 electrodes on 4 supporting layers (4 electrodes per layer), each with a 30 μm diameter recording window and 5 μm wide connecting trace defined by conventional LWUV lithography, on an 80 μm wide by 9 μm thick microprobe. Prior to in vitro and in vivo validation, the multilayer probes are electrically characterized via impedance spectroscopy and evaluating crosstalk between adjacent layers. Demonstration of acute in vitro recordings in a cerebral organoid model and in vivo recordings in a murine model indicate the probe's capability for single unit recordings. This work demonstrates the ability to fabricate smaller, more compliant neural probes without sacrificing electrode density.
Collapse
Affiliation(s)
- Xin Liu
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Yelena Bibineyshvili
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA
| | - Denise A Robles
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Andrew J Boreland
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
13
|
McGlynn E, Nabaei V, Ren E, Galeote‐Checa G, Das R, Curia G, Heidari H. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002693. [PMID: 34026431 PMCID: PMC8132070 DOI: 10.1002/advs.202002693] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/15/2021] [Indexed: 05/04/2023]
Abstract
Neurological diseases are a prevalent cause of global mortality and are of growing concern when considering an ageing global population. Traditional treatments are accompanied by serious side effects including repeated treatment sessions, invasive surgeries, or infections. For example, in the case of deep brain stimulation, large, stiff, and battery powered neural probes recruit thousands of neurons with each pulse, and can invoke a vigorous immune response. This paper presents challenges in engineering and neuroscience in developing miniaturized and biointegrated alternatives, in the form of microelectrode probes. Progress in design and topology of neural implants has shifted the goal post toward highly specific recording and stimulation, targeting small groups of neurons and reducing the foreign body response with biomimetic design principles. Implantable device design recommendations, fabrication techniques, and clinical evaluation of the impact flexible, integrated probes will have on the treatment of neurological disorders are provided in this report. The choice of biocompatible material dictates fabrication techniques as novel methods reduce the complexity of manufacture. Wireless power, the final hurdle to truly implantable neural interfaces, is discussed. These aspects are the driving force behind continued research: significant breakthroughs in any one of these areas will revolutionize the treatment of neurological disorders.
Collapse
Affiliation(s)
- Eve McGlynn
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Vahid Nabaei
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Elisa Ren
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Gabriel Galeote‐Checa
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Rupam Das
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Giulia Curia
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Hadi Heidari
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| |
Collapse
|
14
|
Thielen B, Meng E. A comparison of insertion methods for surgical placement of penetrating neural interfaces. J Neural Eng 2021; 18:10.1088/1741-2552/abf6f2. [PMID: 33845469 PMCID: PMC8600966 DOI: 10.1088/1741-2552/abf6f2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Many implantable electrode arrays exist for the purpose of stimulating or recording electrical activity in brain, spinal, or peripheral nerve tissue, however most of these devices are constructed from materials that are mechanically rigid. A growing body of evidence suggests that the chronic presence of these rigid probes in the neural tissue causes a significant immune response and glial encapsulation of the probes, which in turn leads to gradual increase in distance between the electrodes and surrounding neurons. In recording electrodes, the consequence is the loss of signal quality and, therefore, the inability to collect electrophysiological recordings long term. In stimulation electrodes, higher current injection is required to achieve a comparable response which can lead to tissue and electrode damage. To minimize the impact of the immune response, flexible neural probes constructed with softer materials have been developed. These flexible probes, however, are often not strong enough to be inserted on their own into the tissue, and instead fail via mechanical buckling of the shank under the force of insertion. Several strategies have been developed to allow the insertion of flexible probes while minimizing tissue damage. It is critical to keep these strategies in mind during probe design in order to ensure successful surgical placement. In this review, existing insertion strategies will be presented and evaluated with respect to surgical difficulty, immune response, ability to reach the target tissue, and overall limitations of the technique. Overall, the majority of these insertion techniques have only been evaluated for the insertion of a single probe and do not quantify the accuracy of probe placement. More work needs to be performed to evaluate and optimize insertion methods for accurate placement of devices and for devices with multiple probes.
Collapse
Affiliation(s)
- Brianna Thielen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
15
|
Fernández E, Alfaro A, González-López P. Toward Long-Term Communication With the Brain in the Blind by Intracortical Stimulation: Challenges and Future Prospects. Front Neurosci 2020; 14:681. [PMID: 32848535 PMCID: PMC7431631 DOI: 10.3389/fnins.2020.00681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/03/2020] [Indexed: 11/15/2022] Open
Abstract
The restoration of a useful visual sense in a profoundly blind person by direct electrical stimulation of the visual cortex has been a subject of study for many years. However, the field of cortically based sight restoration has made few advances in the last few decades, and many problems remain. In this context, the scientific and technological problems associated with safe and effective communication with the brain are very complex, and there are still many unresolved issues delaying its development. In this work, we review some of the biological and technical issues that still remain to be solved, including long-term biotolerability, the number of electrodes required to provide useful vision, and the delivery of information to the implants. Furthermore, we emphasize the possible role of the neuroplastic changes that follow vision loss in the success of this approach. We propose that increased collaborations among clinicians, basic researchers, and neural engineers will enhance our ability to send meaningful information to the brain and restore a limited but useful sense of vision to many blind individuals.
Collapse
Affiliation(s)
- Eduardo Fernández
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, United States
| | - Arantxa Alfaro
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Hospital Vega Baja, Orihuela, Spain
| | - Pablo González-López
- Institute of Bioengineering, Universidad Miguel Hernández, Elche, Spain
- Hospital General Universitario de Alicante, Alicante, Spain
| |
Collapse
|
16
|
Bettinger CJ, Ecker M, Kozai TDY, Malliaras GG, Meng E, Voit W. Recent advances in neural interfaces-Materials chemistry to clinical translation. MRS BULLETIN 2020; 45:655-668. [PMID: 34690420 PMCID: PMC8536148 DOI: 10.1557/mrs.2020.195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Implantable neural interfaces are important tools to accelerate neuroscience research and translate clinical neurotechnologies. The promise of a bidirectional communication link between the nervous system of humans and computers is compelling, yet important materials challenges must be first addressed to improve the reliability of implantable neural interfaces. This perspective highlights recent progress and challenges related to arguably two of the most common failure modes for implantable neural interfaces: (1) compromised barrier layers and packaging leading to failure of electronic components; (2) encapsulation and rejection of the implant due to injurious tissue-biomaterials interactions, which erode the quality and bandwidth of signals across the biology-technology interface. Innovative materials and device design concepts could address these failure modes to improve device performance and broaden the translational prospects of neural interfaces. A brief overview of contemporary neural interfaces is presented and followed by recent progress in chemistry, materials, and fabrication techniques to improve in vivo reliability, including novel barrier materials and harmonizing the various incongruences of the tissue-device interface. Challenges and opportunities related to the clinical translation of neural interfaces are also discussed.
Collapse
Affiliation(s)
- Christopher J Bettinger
- Department of Materials Science and Engineering, and Department of Biomedical Engineering, Carnegie Mellon University, USA
| | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, USA
| | | | | | - Ellis Meng
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, USA
| | - Walter Voit
- Department of Mechanical Engineering, The University of Texas at Dallas, USA
| |
Collapse
|
17
|
Thompson CH, Riggins TE, Patel PR, Chestek CA, Li W, Purcell E. Toward guiding principles for the design of biologically-integrated electrodes for the central nervous system. J Neural Eng 2020; 17:021001. [PMID: 31986501 PMCID: PMC7523527 DOI: 10.1088/1741-2552/ab7030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Innovation in electrode design has produced a myriad of new and creative strategies for interfacing the nervous system with softer, less invasive, more broadly distributed sites with high spatial resolution. However, despite rapid growth in the use of implanted electrode arrays in research and clinical applications, there are no broadly accepted guiding principles for the design of biocompatible chronic recording interfaces in the central nervous system (CNS). Studies suggest that the architecture and flexibility of devices play important roles in determining effective tissue integration: device feature dimensions (varying from 'sub'- to 'supra'-cellular scales, <10 µm to >100 µm), Young's modulus, and bending modulus have all been identified as key features of design. However, critical knowledge gaps remain in the field with respect to the underlying motivation for these designs: (1) a systematic study of the relationship between device design features (materials, architecture, flexibility), biointegration, and signal quality needs to be performed, including controls for interaction effects between design features, (2) benchmarks for success need to be determined (biological integration, recording performance, longevity, stability), and (3) user results, particularly those that champion a specific design or electrode modification, need to be replicated across laboratories. Finally, the ancillary effects of factors such as tethering, site impedance and insertion method need to be considered. Here, we briefly review observations to-date of device design effects on tissue integration and performance, and then highlight the need for comprehensive and systematic testing of these effects moving forward.
Collapse
Affiliation(s)
- Cort H Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States of America
| | | | | | | | | | | |
Collapse
|
18
|
A review for the peripheral nerve interface designer. J Neurosci Methods 2019; 332:108523. [PMID: 31743684 DOI: 10.1016/j.jneumeth.2019.108523] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Abstract
Informational density and relative accessibility of the peripheral nervous system make it an attractive site for therapeutic intervention. Electrode-based electrophysiological interfaces with peripheral nerves have been under development since the 1960s and, for several applications, have seen widespread clinical implementation. However, many applications require a combination of neural target resolution and stability which has thus far eluded existing peripheral nerve interfaces (PNIs). With the goal of aiding PNI designers in development of devices that meet the demands of next-generation applications, this review seeks to collect and present practical considerations and best practices which emerge from the literature, including both lessons learned during early PNI development and recent ideas. Fundamental and practical principles guiding PNI design are reviewed, followed by an updated and critical account of existing PNI designs and strategies. Finally, a brief survey of in vitro and in vivo PNI characterization methods is presented.
Collapse
|
19
|
Sridharan A, Kodibagkar V, Muthuswamy J. Penetrating Microindentation of Hyper-soft, Conductive Silicone Neural Interfaces in Vivo Reveals Significantly Lower Mechanical Stresses. ACTA ACUST UNITED AC 2019. [DOI: 10.1557/adv.2019.356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Kim C, Jeong J, Kim SJ. Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1069. [PMID: 30832357 PMCID: PMC6427797 DOI: 10.3390/s19051069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
Abstract
Microfabrication technology for cortical interfaces has advanced rapidly over the past few decades for electrophysiological studies and neuroprosthetic devices offering the precise recording and stimulation of neural activity in the cortex. While various cortical microelectrode arrays have been extensively and successfully demonstrated in animal and clinical studies, there remains room for further improvement of the probe structure, materials, and fabrication technology, particularly for high-fidelity recording in chronic implantation. A variety of non-conventional probes featuring unique characteristics in their designs, materials and fabrication methods have been proposed to address the limitations of the conventional standard shank-type ("Utah-" or "Michigan-" type) devices. Such non-conventional probes include multi-sided arrays to avoid shielding and increase recording volumes, mesh- or thread-like arrays for minimized glial scarring and immune response, tube-type or cylindrical probes for three-dimensional (3D) recording and multi-modality, folded arrays for high conformability and 3D recording, self-softening or self-deployable probes for minimized tissue damage and extensions of the recording sites beyond gliosis, nanostructured probes to reduce the immune response, and cone-shaped electrodes for promoting tissue ingrowth and long-term recording stability. Herein, the recent progress with reference to the many different types of non-conventional arrays is reviewed while highlighting the challenges to be addressed and the microfabrication techniques necessary to implement such features.
Collapse
Affiliation(s)
- Chaebin Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
| | - Joonsoo Jeong
- Department of Biomedical Engineering, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Sung June Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
- Institute on Aging, College of Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
21
|
Hess-Dunning A, Tyler DJ. A Mechanically-Adaptive Polymer Nanocomposite-Based Intracortical Probe and Package for Chronic Neural Recording. MICROMACHINES 2018; 9:E583. [PMID: 30413034 PMCID: PMC6265703 DOI: 10.3390/mi9110583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022]
Abstract
Mechanical, materials, and biological causes of intracortical probe failure have hampered their utility in basic science and clinical applications. By anticipating causes of failure, we can design a system that will prevent the known causes of failure. The neural probe design was centered around a bio-inspired, mechanically-softening polymer nanocomposite. The polymer nanocomposite was functionalized with recording microelectrodes using a microfabrication process designed for chemical and thermal process compatibility. A custom package based upon a ribbon cable, printed circuit board, and a 3D-printed housing was designed to enable connection to external electronics. Probes were implanted into the primary motor cortex of Sprague-Dawley rats for 16 weeks, during which regular recording and electrochemical impedance spectroscopy measurement sessions took place. The implanted mechanically-softening probes had stable electrochemical impedance spectra across the 16 weeks and single units were recorded out to 16 weeks. The demonstration of chronic neural recording with the mechanically-softening probe suggests that probe architecture, custom package, and general design strategy are appropriate for long-term studies in rodents.
Collapse
Affiliation(s)
- Allison Hess-Dunning
- Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.
- Advanced Platform Technology Center, Cleveland, OH 44106, USA.
| | - Dustin J Tyler
- Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.
- Advanced Platform Technology Center, Cleveland, OH 44106, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
22
|
Ortigoza-Diaz J, Scholten K, Larson C, Cobo A, Hudson T, Yoo J, Baldwin A, Weltman Hirschberg A, Meng E. Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems. MICROMACHINES 2018; 9:E422. [PMID: 30424355 PMCID: PMC6187609 DOI: 10.3390/mi9090422] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/27/2022]
Abstract
Parylene C is a promising material for constructing flexible, biocompatible and corrosion-resistant microelectromechanical systems (MEMS) devices. Historically, Parylene C has been employed as an encapsulation material for medical implants, such as stents and pacemakers, due to its strong barrier properties and biocompatibility. In the past few decades, the adaptation of planar microfabrication processes to thin film Parylene C has encouraged its use as an insulator, structural and substrate material for MEMS and other microelectronic devices. However, Parylene C presents unique challenges during microfabrication and during use with liquids, especially for flexible, thin film electronic devices. In particular, the flexibility and low thermal budget of Parylene C require modification of the fabrication techniques inherited from silicon MEMS, and poor adhesion at Parylene-Parylene and Parylene-metal interfaces causes device failure under prolonged use in wet environments. Here, we discuss in detail the promises and challenges inherent to Parylene C and present our experience in developing thin-film Parylene MEMS devices.
Collapse
Affiliation(s)
- Jessica Ortigoza-Diaz
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Kee Scholten
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Christopher Larson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Angelica Cobo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Trevor Hudson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - James Yoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Alex Baldwin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Ahuva Weltman Hirschberg
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
23
|
Giagka V, Serdijn WA. Realizing flexible bioelectronic medicines for accessing the peripheral nerves - technology considerations. Bioelectron Med 2018; 4:8. [PMID: 32232084 PMCID: PMC7098212 DOI: 10.1186/s42234-018-0010-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 11/13/2022] Open
Abstract
Patients suffering from conditions such as paralysis, diabetes or rheumatoid arthritis could in the future be treated in a personalised manner using bioelectronic medicines (BEms) (Nat Rev Drug Discov 13:399–400, 2013, Proc Natl Acad Sci USA 113:8284–9, 2016, J Intern Med 282:37–45, 2017). To deliver this personalised therapy based on electricity, BEms need to target various sites in the human body and operate in a closed-loop manner. The specific conditions and anatomy of the targeted sites pose unique challenges in the development of BEms. With a focus on BEms based on flexible substrates for accessing small peripheral nerves, this paper discusses several system-level technology considerations related to the development of such devices. The focus is mainly on miniaturisation and long-term operation. We present an overview of common substrate and electrode materials, related processing methods, and discuss assembly, miniaturisation and long-term stability issues.
Collapse
Affiliation(s)
- Vasiliki Giagka
- 1Section Bioelectronics, Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.,2Technologies for Bioelectronics Group, Department of System Integration and Interconnection Technologies, Fraunhofer Institute for Reliability and Microintegration IZM, Berlin, Germany
| | - Wouter A Serdijn
- 1Section Bioelectronics, Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
24
|
Scholten K, Meng E. A review of implantable biosensors for closed-loop glucose control and other drug delivery applications. Int J Pharm 2018; 544:319-334. [DOI: 10.1016/j.ijpharm.2018.02.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/30/2018] [Accepted: 02/15/2018] [Indexed: 12/19/2022]
|
25
|
Bettinger CJ. Recent advances in materials and flexible electronics for peripheral nerve interfaces. Bioelectron Med 2018; 4:6. [PMID: 32232082 PMCID: PMC7098226 DOI: 10.1186/s42234-018-0007-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/03/2018] [Indexed: 11/10/2022] Open
Abstract
Peripheral nerve interfaces are a central technology in advancing bioelectronic medicines because these medical devices can record and modulate the activity of nerves that innervate visceral organs. Peripheral nerve interfaces that use electrical signals for recording or stimulation have advanced our collective understanding of the peripheral nervous system. Furthermore, devices such as cuff electrodes and multielectrode arrays of various form factors have been implanted in the peripheral nervous system of humans in several therapeutic contexts. Substantive advances have been made using devices composed of off-the-shelf commodity materials. However, there is also a demand for improved device performance including extended chronic reliability, enhanced biocompatibility, and increased bandwidth for recording and stimulation. These aspirational goals manifest as much needed improvements in device performance including: increasing mechanical compliance (reducing Young's modulus and increasing extensibility); improving the barrier properties of encapsulation materials; reducing impedance and increasing the charge injection capacity of electrode materials; and increasing the spatial resolution of multielectrode arrays. These proposed improvements require new materials and novel microfabrication strategies. This mini-review highlights selected recent advances in flexible electronics for peripheral nerve interfaces. The foci of this mini-review include novel materials for flexible and stretchable substrates, non-conventional microfabrication techniques, strategies for improved device packaging, and materials to improve signal transduction across the tissue-electrode interface. Taken together, this article highlights challenges and opportunities in materials science and processing to improve the performance of peripheral nerve interfaces and advance bioelectronic medicine.
Collapse
Affiliation(s)
- Christopher J. Bettinger
- Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA
| |
Collapse
|
26
|
Xu H, Hirschberg AW, Scholten K, Berger TW, Song D, Meng E. Acute in vivo testing of a conformal polymer microelectrode array for multi-region hippocampal recordings. J Neural Eng 2018; 15:016017. [PMID: 29044049 PMCID: PMC5792195 DOI: 10.1088/1741-2552/aa9451] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The success of a cortical prosthetic device relies upon its ability to attain resolvable spikes from many neurons in particular neural networks over long periods of time. Traditionally, lifetimes of neural recordings are greatly limited by the body's immune response against the foreign implant which causes neuronal death and glial scarring. This immune reaction is posited to be exacerbated by micromotion between the implant, which is often rigid, and the surrounding, soft brain tissue, and attenuates the quality of recordings over time. APPROACH In an attempt to minimize the foreign body response to a penetrating neural array that records from multiple brain regions, Parylene C, a flexible, biocompatible polymer was used as the substrate material for a functional, proof-of-concept neural array with a reduced elastic modulus. This probe array was designed and fabricated to have 64 electrodes positioned to match the anatomy of the rat hippocampus and allow for simultaneous recordings between two cell-body layers of interest. A dissolvable brace was used for deep-brain penetration of the flexible array. MAIN RESULTS Arrays were electrochemically characterized at the benchtop, and a novel insertion technique that restricts acute insertion injury enabled accurate target placement of four, bare, flexible arrays to greater than 4 mm deep into the rat brain. Arrays were tested acutely and in vivo recordings taken intra-operatively reveal spikes in both targeted regions of the hippocampus with spike amplitudes and noise levels similar to those recorded with microwires. Histological staining of a sham array implanted for one month reveals limited astrocytic scarring and neuronal death around the implant. SIGNIFICANCE This work represents one of the first examples of a penetrating polymer probe array that records from individual neurons in structures that lie deep within the brain.
Collapse
Affiliation(s)
- Huijing Xu
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089-1111, United States of America
| | | | | | | | | | | |
Collapse
|
27
|
Slutzky MW, Flint RD. Physiological properties of brain-machine interface input signals. J Neurophysiol 2017; 118:1329-1343. [PMID: 28615329 DOI: 10.1152/jn.00070.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
Brain-machine interfaces (BMIs), also called brain-computer interfaces (BCIs), decode neural signals and use them to control some type of external device. Despite many experimental successes and terrific demonstrations in animals and humans, a high-performance, clinically viable device has not yet been developed for widespread usage. There are many factors that impact clinical viability and BMI performance. Arguably, the first of these is the selection of brain signals used to control BMIs. In this review, we summarize the physiological characteristics and performance-including movement-related information, longevity, and stability-of multiple types of input signals that have been used in invasive BMIs to date. These include intracortical spikes as well as field potentials obtained inside the cortex, at the surface of the cortex (electrocorticography), and at the surface of the dura mater (epidural signals). We also discuss the potential for future enhancements in input signal performance, both by improving hardware and by leveraging the knowledge of the physiological characteristics of these signals to improve decoding and stability.
Collapse
Affiliation(s)
- Marc W Slutzky
- Department of Neurology, Northwestern University, Chicago, Illinois; .,Department of Physiology, Northwestern University, Chicago, Illinois; and.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Robert D Flint
- Department of Neurology, Northwestern University, Chicago, Illinois
| |
Collapse
|