1
|
Maita F, Maiolo L, Lucarini I, Del Rio De Vicente JI, Sciortino A, Ledda M, Mussi V, Lisi A, Convertino A. Revealing Low Amplitude Signals of Neuroendocrine Cells through Disordered Silicon Nanowires-Based Microelectrode Array. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301925. [PMID: 37357140 PMCID: PMC10460871 DOI: 10.1002/advs.202301925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Today, the key methodology to study in vitro or in vivo electrical activity in a population of electrogenic cells, under physiological or pathological conditions, is by using microelectrode array (MEA). While significant efforts have been devoted to develop nanostructured MEAs for improving the electrophysiological investigation in neurons and cardiomyocytes, data on the recording of the electrical activity from neuroendocrine cells with MEA technology are scarce owing to their weaker electrical signals. Disordered silicon nanowires (SiNWs) for developing a MEA that, combined with a customized acquisition board, successfully capture the electrical signals generated by the corticotrope AtT-20 cells as a function of the extracellular calcium (Ca2+ ) concentration are reported. The recorded signals show a shape that clearly resembles the action potential waveform by suggesting a natural membrane penetration of the SiNWs. Additionally, the generation of synchronous signals observed under high Ca2+ content indicates the occurrence of a collective behavior in the AtT-20 cell population. This study extends the usefulness of MEA technology to the investigation of the electrical communication in cells of the pituitary gland, crucial in controlling several essential human functions, and provides new perspectives in recording with MEA the electrical activity of excitable cells.
Collapse
Affiliation(s)
- Francesco Maita
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Luca Maiolo
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Ivano Lucarini
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | | | - Antonio Sciortino
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Mario Ledda
- Institute of Translational PharmacologyNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Valentina Mussi
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Antonella Lisi
- Institute of Translational PharmacologyNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Annalisa Convertino
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| |
Collapse
|
2
|
Jung H, Nam Y. Optical recording of neural responses to gold-nanorod mediated photothermal neural inhibition. J Neurosci Methods 2022; 373:109564. [DOI: 10.1016/j.jneumeth.2022.109564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
|
3
|
Toward neuroprosthetic real-time communication from in silico to biological neuronal network via patterned optogenetic stimulation. Sci Rep 2020; 10:7512. [PMID: 32371937 PMCID: PMC7200763 DOI: 10.1038/s41598-020-63934-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/30/2020] [Indexed: 02/04/2023] Open
Abstract
Restoration of the communication between brain circuitry is a crucial step in the recovery of brain damage induced by traumatic injuries or neurological insults. In this work we present a study of real-time unidirectional communication between a spiking neuronal network (SNN) implemented on digital platform and an in-vitro biological neuronal network (BNN), generating similar spontaneous patterns of activity both spatial and temporal. The communication between the networks was established using patterned optogenetic stimulation via a modified digital light projector (DLP) receiving real-time input dictated by the spiking neurons' state. Each stimulation consisted of a binary image composed of 8 × 8 squares, representing the state of 64 excitatory neurons. The spontaneous and evoked activity of the biological neuronal network was recorded using a multi-electrode array in conjunction with calcium imaging. The image was projected in a sub-portion of the cultured network covered by a subset of the all electrodes. The unidirectional information transmission (SNN to BNN) is estimated using the similarity matrix of the input stimuli and output firing. Information transmission was studied in relation to the distribution of stimulus frequency and stimulus intensity, both regulated by the spontaneous dynamics of the SNN, and to the entrainment of the biological networks. We demonstrate that high information transfer from SNN to BNN is possible and identify a set of conditions under which such transfer can occur, namely when the spiking network synchronizations drive the biological synchronizations (entrainment) and in a linear regime response to the stimuli. This research provides further evidence of possible application of miniaturized SNN in future neuro-prosthetic devices for local replacement of injured micro-circuitries capable to communicate within larger brain networks.
Collapse
|
4
|
Bar El Y, Kanner S, Barzilai A, Hanein Y. Calcium imaging, MEA recordings, and immunostaining images dataset of neuron-astrocyte networks in culture under the effect of norepinephrine. Gigascience 2019; 8:5244747. [PMID: 30544133 PMCID: PMC6351728 DOI: 10.1093/gigascience/giy161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/07/2018] [Indexed: 11/24/2022] Open
Abstract
Background Monitoring the activity and morphology of neuron-astrocyte networks in culture is a powerful tool for studying dynamics, structure, and communication in neuron-astrocyte networks independently or as a model of the sub-brain network. These cultures are known to produce stereotypical patterns of activity, e.g., highly synchronized network bursts resembling sleep or seizure states, thus it enables the exploration of behaviors that can relate to brain function and disease. High-resolution microscopy of calcium imaging combined with simultaneous electrical recording provides a comprehensive overview on the network's dynamics. This setup makes it possible to apply global perturbations of electrical and chemical stimulation on the cultures during the recording task and to record the effects on network activity on-line. Morphological changes in the cultures can be obtained to have a complete dataset for structure-function study of neuron-astrocyte networks in vitro. Findings The 4 TB of data presented here was recorded and imaged as part of an accompanying study looking at in vitro structure-function of neuron-astrocyte networks. Simultaneous optical (calcium imaging) and electrical (micro-electrode array) recordings lasted 5–12 minutes and included spontaneous activity recording, electrical and chemical stimulation of neuron-astrocyte, and isolated astrocyte cultures. The data include activity recordings of 58 different cultures, with 1–2 regions of interest recorded for each culture. Production procedures, experimental protocols, and reuse options are included. The data have been suitable to reveal changes in the activity and morphology of the cultures and enabled observation and analysis of neuron-astrocyte and isolated astrocyte culture behaviors under the applied perturbations. Conclusions Our dataset is sufficient to show significant changes in activity and morphology of neuron-astrocyte networks in culture under the applied stimulations. More than 100 recordings of 58 different cultures give insight of the observation's significance and led to conclusions about astrocyte activity and neuron-astrocyte network communication. Making it available here will allow others to test new tools for calcium imaging analysis and extracellular neuronal voltage recordings.
Collapse
Affiliation(s)
- Yasmin Bar El
- School of Physics and Astronomy, Tel-Aviv University, 30 Chaim Levanon street, Tel- Aviv, 6997801, Israel
| | - Sivan Kanner
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, 30 Chaim Levanon street , Tel-Aviv, 6997801, Israel
| | - Ari Barzilai
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, 30 Chaim Levanon street, Tel-Aviv, 6997801, Israel.,Sagol School of Neuroscience, Tel-Aviv University, 30 Chaim Levanon street, Tel-Aviv, 6997801, Israel
| | - Yael Hanein
- Sagol School of Neuroscience, Tel-Aviv University, 30 Chaim Levanon street, Tel-Aviv, 6997801, Israel.,School of Electrical Engineering, Tel-Aviv University, 30 Chaim Levanon street, Tel-Aviv, 6997801, Israel
| |
Collapse
|
5
|
Yoo S, Park JH, Nam Y. Single-Cell Photothermal Neuromodulation for Functional Mapping of Neural Networks. ACS NANO 2019; 13:544-551. [PMID: 30592595 DOI: 10.1021/acsnano.8b07277] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photothermal neuromodulation is one of the emerging technologies being developed for neuroscience studies because it can provide minimally invasive control of neural activity in the deep brain with submillimeter precision. However, single-cell modulation without genetic modification still remains a challenge, hindering its path to broad applications. Here, we introduce a nanoplasmonic approach to inhibit single-neural activity with high temporal resolution. Low-intensity near-infrared light was focused at the single cell size on a gold-nanorod-integrated microelectrode array platform, generating a photothermal effect underneath a target neuron for photothermal stimulation. We found that the photothermal stimulation modulates the spontaneous activity of a target neuron in an inhibitory manner. Single neuron inhibition was fast and highly reliable without thermal damage, and it can induce changes in network firing patterns, potentially suggesting their application for in vivo circuit modulation and functional connectomes.
Collapse
|
6
|
Keller JM, Frega M. Past, Present, and Future of Neuronal Models In Vitro. ADVANCES IN NEUROBIOLOGY 2019; 22:3-17. [PMID: 31073930 DOI: 10.1007/978-3-030-11135-9_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Over the past century, robust methods were developed that enable the isolation, culture, and dynamic observation of mammalian neuronal networks in vitro. But even if neuronal culture cannot yet fully recapitulate the normal brain, the knowledge that has been acquired from these surrogate in vitro models is invaluable. Indeed, neuronal culture has continued to propel basic neuroscience research, proving that in vitro systems have legitimacy when it comes to studying either the healthy or diseased human brain. Furthermore, scientific advancement typically parallels technical refinements in the field. A pertinent example is that a collective drive in the field of neuroscience to better understand the development, organization, and emergent properties of neuronal networks is being facilitated by progressive advances in micro-electrode array (MEA) technology. In this chapter, we briefly review the emergence of neuronal cell culture as a technique, the current trends in human stem cell-based modeling, and the technologies used to monitor neuronal communication. We conclude by highlighting future prospects that are evolving specifically out of the combination of human neuronal models and MEA technology.
Collapse
Affiliation(s)
- Jason M Keller
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Monica Frega
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands. .,Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
7
|
Reconstruction of Functional Connectivity from Multielectrode Recordings and Calcium Imaging. ADVANCES IN NEUROBIOLOGY 2019; 22:207-231. [PMID: 31073938 DOI: 10.1007/978-3-030-11135-9_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the last two decades, increasing research efforts in neuroscience have been focused on determining both structural and functional connectivity of brain circuits, with the main goal of relating the wiring diagram of neuronal systems to their emerging properties, from the microscale to the macroscale. While combining multisite parallel recordings with structural circuits' reconstruction in vivo is still very challenging, the reductionist in vitro approach based on neuronal cultures offers lower technical difficulties and is much more stable under control conditions. In this chapter, we present different approaches to infer the connectivity of cultured neuronal networks using multielectrode array or calcium imaging recordings. We first formally introduce the used methods, and then we will describe into details how those methods were applied in case studies. Since multielectrode array and calcium imaging recordings provide distinct and complementary spatiotemporal features of neuronal activity, in this chapter we present the strategies implemented with the two different methodologies in distinct sections.
Collapse
|
8
|
Bar El Y, Kanner S, Barzilai A, Hanein Y. Activity changes in neuron-astrocyte networks in culture under the effect of norepinephrine. PLoS One 2018; 13:e0203761. [PMID: 30332429 PMCID: PMC6192555 DOI: 10.1371/journal.pone.0203761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/27/2018] [Indexed: 11/26/2022] Open
Abstract
The concerted activity of neuron-glia networks is responsible for the fascinating dynamics of brain functions. Although these networks have been extensively investigated using a variety of experimental (in vivo and in vitro) and theoretical models, the manner by which neuron-glia networks interact is not fully understood. In particular, how neuromodulators influence network-level signaling between neurons and astrocytes was poorly addressed. In this work, we investigated global effects of the neuromodulator norepinephrine (NE) on neuron-astrocyte network communication in co-cultures of neurons and astrocytes and in isolated astrocyte networks. Electrical stimulation was used to activate the neuron-astrocyte glutamate-mediated pathway. Our results showed dramatic changes in network activity under applied global perturbations. Under neuromodulation, there was a marked rise in calcium signaling in astrocytes, neuronal spontaneous activity was reduced, and the communication between neuron-astrocyte networks was perturbed. Moreover, in the presence of NE, we observed two astrocyte behaviors based on their coupling to neurons. There were also morphological changes in astrocytes upon application of NE, suggesting a physical cause underlies the change in signaling. Our results shed light on the role of NE in controlling sleep-wake cycles.
Collapse
Affiliation(s)
- Yasmin Bar El
- School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Hanein
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- School of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
9
|
Verstraelen P, Van Dyck M, Verschuuren M, Kashikar ND, Nuydens R, Timmermans JP, De Vos WH. Image-Based Profiling of Synaptic Connectivity in Primary Neuronal Cell Culture. Front Neurosci 2018; 12:389. [PMID: 29997468 PMCID: PMC6028601 DOI: 10.3389/fnins.2018.00389] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/22/2018] [Indexed: 12/04/2022] Open
Abstract
Neurological disorders display a broad spectrum of clinical manifestations. Yet, at the cellular level, virtually all these diseases converge into a common phenotype of dysregulated synaptic connectivity. In dementia, synapse dysfunction precedes neurodegeneration and cognitive impairment by several years, making the synapse a crucial entry point for the development of diagnostic and therapeutic strategies. Whereas high-resolution imaging and biochemical fractionations yield detailed insight into the molecular composition of the synapse, standardized assays are required to quickly gauge synaptic connectivity across large populations of cells under a variety of experimental conditions. Such screening capabilities have now become widely accessible with the advent of high-throughput, high-content microscopy. In this review, we discuss how microscopy-based approaches can be used to extract quantitative information about synaptic connectivity in primary neurons with deep coverage. We elaborate on microscopic readouts that may serve as a proxy for morphofunctional connectivity and we critically analyze their merits and limitations. Finally, we allude to the potential of alternative culture paradigms and integrative approaches to enable comprehensive profiling of synaptic connectivity.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Michiel Van Dyck
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Rony Nuydens
- Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Cell Systems and Imaging, Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Raz-Prag D, Beit-Yaakov G, Hanein Y. Electrical stimulation of different retinal components and the effect of asymmetric pulses. J Neurosci Methods 2017; 291:20-27. [DOI: 10.1016/j.jneumeth.2017.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 02/01/2023]
|
11
|
Jung H, Kang H, Nam Y. Digital micromirror based near-infrared illumination system for plasmonic photothermal neuromodulation. BIOMEDICAL OPTICS EXPRESS 2017; 8:2866-2878. [PMID: 28663912 PMCID: PMC5480435 DOI: 10.1364/boe.8.002866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/05/2017] [Accepted: 04/24/2017] [Indexed: 05/12/2023]
Abstract
Light-mediated neuromodulation techniques provide great advantages to investigate neuroscience due to its high spatial and temporal resolution. To generate a spatial pattern of neural activity, it is necessary to develop a system for patterned-light illumination to a specific area. Digital micromirror device (DMD) based patterned illumination system have been used for neuromodulation due to its simple configuration and design flexibility. In this paper, we developed a patterned near-infrared (NIR) illumination system for region specific photothermal manipulation of neural activity using NIR-sensitive plasmonic gold nanorods (GNRs). The proposed system had high power transmission efficiency for delivering power density up to 19 W/mm2. We used a GNR-coated microelectrode array (MEA) to perform biological experiments using E18 rat hippocampal neurons and showed that it was possible to inhibit neural spiking activity of specific area in neural circuits with the patterned NIR illumination. This patterned NIR illumination system can serve as a promising neuromodulation tool to investigate neuroscience in a wide range of physiological and clinical applications.
Collapse
|
12
|
Marom A, Shor E, Levenberg S, Shoham S. Spontaneous Activity Characteristics of 3D "Optonets". Front Neurosci 2017; 10:602. [PMID: 28119555 PMCID: PMC5220075 DOI: 10.3389/fnins.2016.00602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/16/2016] [Indexed: 11/13/2022] Open
Abstract
Sporadic spontaneous network activity emerges during early central nervous system (CNS) development and, as the number of neuronal connections rises, the maturing network displays diverse and complex activity, including various types of synchronized patterns. These activity patterns have major implications on both basic research and the study of neurological disorders, and their interplay with network morphology tightly correlates with developmental events such as neuronal differentiation, migration and establishment of neurotransmitter phenotypes. Although 2D neural cultures models have provided important insights into network activity patterns, these cultures fail to mimic the complex 3D architecture of natural CNS neural networks and its consequences on connectivity and activity. A 3D in-vitro model mimicking early network development while enabling cellular-resolution observations, could thus significantly advance our understanding of the activity characteristics in the developing CNS. Here, we longitudinally studied the spontaneous activity patterns of developing 3D in-vitro neural network “optonets,” an optically-accessible bioengineered CNS model with multiple cortex-like characteristics. Optonet activity was observed using the genetically encodable calcium indicator GCaMP6m and a 3D imaging solution based on a standard epi-fluorescence microscope equipped with a piezo-electric z-stage and image processing-based deconvolution. Our results show that activity patterns become more complex as the network matures, gradually exhibiting longer-duration events. This report characterizes the patterns over time, and discusses how environmental changes affect the activity patterns. The relatively high degree of similarity between the network's spontaneously generated activity patterns and the reported characteristics of in-vivo activity, suggests that this is a compelling model system for brain-in-a chip research.
Collapse
Affiliation(s)
- Anat Marom
- Department of Biomedical Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Erez Shor
- Department of Biomedical Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Shy Shoham
- Department of Biomedical Engineering, Technion - Israel Institute of Technology Haifa, Israel
| |
Collapse
|
13
|
Dermutz H, Thompson-Steckel G, Forró C, de Lange V, Dorwling-Carter L, Vörös J, Demkó L. Paper-based patterned 3D neural cultures as a tool to study network activity on multielectrode arrays. RSC Adv 2017. [DOI: 10.1039/c7ra00971b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-throughput platform targeting activity patterns of 3D neural cultures with arbitrary topology, by combining network-wide intracellular and local extracellular signals.
Collapse
Affiliation(s)
- Harald Dermutz
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Victoria de Lange
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Livie Dorwling-Carter
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - László Demkó
- Laboratory of Biosensors and Bioelectronics
- Institute for Biomedical Engineering
- ETH Zurich
- CH-8092 Zurich
- Switzerland
| |
Collapse
|
14
|
A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2016; 2016:8416237. [PMID: 27239191 PMCID: PMC4863096 DOI: 10.1155/2016/8416237] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/16/2016] [Accepted: 03/30/2016] [Indexed: 12/30/2022]
Abstract
Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting “building blocks” into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis.
Collapse
|
15
|
Suresh J, Radojicic M, Pesce LL, Bhansali A, Wang J, Tryba AK, Marks JD, van Drongelen W. Network burst activity in hippocampal neuronal cultures: the role of synaptic and intrinsic currents. J Neurophysiol 2016; 115:3073-89. [PMID: 26984425 DOI: 10.1152/jn.00995.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
The goal of this work was to define the contributions of intrinsic and synaptic mechanisms toward spontaneous network-wide bursting activity, observed in dissociated rat hippocampal cell cultures. This network behavior is typically characterized by short-duration bursts, separated by order of magnitude longer interburst intervals. We hypothesize that while short-timescale synaptic processes modulate spectro-temporal intraburst properties and network-wide burst propagation, much longer timescales of intrinsic membrane properties such as persistent sodium (Nap) currents govern burst onset during interburst intervals. To test this, we used synaptic receptor antagonists picrotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and 3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (CPP) to selectively block GABAA, AMPA, and NMDA receptors and riluzole to selectively block Nap channels. We systematically compared intracellular activity (recorded with patch clamp) and network activity (recorded with multielectrode arrays) in eight different synaptic connectivity conditions: GABAA + NMDA + AMPA, NMDA + AMPA, GABAA + AMPA, GABAA + NMDA, AMPA, NMDA, GABAA, and all receptors blocked. Furthermore, we used mixed-effects modeling to quantify the aforementioned independent and interactive synaptic receptor contributions toward spectro-temporal burst properties including intraburst spike rate, burst activity index, burst duration, power in the local field potential, network connectivity, and transmission delays. We found that blocking intrinsic Nap currents completely abolished bursting activity, demonstrating their critical role in burst onset within the network. On the other hand, blocking different combinations of synaptic receptors revealed that spectro-temporal burst properties are uniquely associated with synaptic functionality and that excitatory connectivity is necessary for the presence of network-wide bursting. In addition to confirming the critical contribution of direct excitatory effects, mixed-effects modeling also revealed distinct combined (nonlinear) contributions of excitatory and inhibitory synaptic activity to network bursting properties.
Collapse
Affiliation(s)
- Jyothsna Suresh
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Committee on Computational Neuroscience, The University of Chicago, Chicago, Illinois;
| | - Mihailo Radojicic
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Lorenzo L Pesce
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; The Computation Institute, The University of Chicago, Chicago, Illinois; and
| | - Anita Bhansali
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Janice Wang
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Andrew K Tryba
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Jeremy D Marks
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| | - Wim van Drongelen
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Committee on Computational Neuroscience, The University of Chicago, Chicago, Illinois; The Computation Institute, The University of Chicago, Chicago, Illinois; and Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
16
|
Detrez JR, Verstraelen P, Gebuis T, Verschuuren M, Kuijlaars J, Langlois X, Nuydens R, Timmermans JP, De Vos WH. Image Informatics Strategies for Deciphering Neuronal Network Connectivity. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 219:123-48. [PMID: 27207365 DOI: 10.1007/978-3-319-28549-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Amongst the neuronal structures that show morphological plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular communication and the associated calcium bursting behaviour. In vitro cultured neuronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardization of both image acquisition and image analysis, it has become possible to extract statistically relevant readouts from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies.
Collapse
Affiliation(s)
- Jan R Detrez
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Peter Verstraelen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Titia Gebuis
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Jacobine Kuijlaars
- Neuroscience Department, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
- Laboratory for Cell Physiology, Biomedical Research Institute (BIOMED), Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium
| | - Xavier Langlois
- Neuroscience Department, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Rony Nuydens
- Neuroscience Department, Janssen Research and Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- Cell Systems and Cellular Imaging, Department Molecular Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
17
|
Muthmann JO, Amin H, Sernagor E, Maccione A, Panas D, Berdondini L, Bhalla US, Hennig MH. Spike Detection for Large Neural Populations Using High Density Multielectrode Arrays. Front Neuroinform 2015; 9:28. [PMID: 26733859 PMCID: PMC4683190 DOI: 10.3389/fninf.2015.00028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/24/2015] [Indexed: 12/02/2022] Open
Abstract
An emerging generation of high-density microelectrode arrays (MEAs) is now capable of recording spiking activity simultaneously from thousands of neurons with closely spaced electrodes. Reliable spike detection and analysis in such recordings is challenging due to the large amount of raw data and the dense sampling of spikes with closely spaced electrodes. Here, we present a highly efficient, online capable spike detection algorithm, and an offline method with improved detection rates, which enables estimation of spatial event locations at a resolution higher than that provided by the array by combining information from multiple electrodes. Data acquired with a 4096 channel MEA from neuronal cultures and the neonatal retina, as well as synthetic data, was used to test and validate these methods. We demonstrate that these algorithms outperform conventional methods due to a better noise estimate and an improved signal-to-noise ratio (SNR) through combining information from multiple electrodes. Finally, we present a new approach for analyzing population activity based on the characterization of the spatio-temporal event profile, which does not require the isolation of single units. Overall, we show how the improved spatial resolution provided by high density, large scale MEAs can be reliably exploited to characterize activity from large neural populations and brain circuits.
Collapse
Affiliation(s)
- Jens-Oliver Muthmann
- Manipal UniversityManipal, India; Department of Neurobiology, National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangalore, India; School of Informatics, Institute for Adaptive and Neural Computation, University of EdinburghEdinburgh, UK
| | - Hayder Amin
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | | | - Alessandro Maccione
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Dagmara Panas
- School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh Edinburgh, UK
| | - Luca Berdondini
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Upinder S Bhalla
- Department of Neurobiology, National Centre for Biological Sciences, Tata Institute of Fundamental Research Bangalore, India
| | - Matthias H Hennig
- School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh Edinburgh, UK
| |
Collapse
|
18
|
Czeschik A, Rinklin P, Derra U, Ullmann S, Holik P, Steltenkamp S, Offenhäusser A, Wolfrum B. Nanostructured cavity devices for extracellular stimulation of HL-1 cells. NANOSCALE 2015; 7:9275-9281. [PMID: 25939765 DOI: 10.1039/c5nr01690h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network.
Collapse
Affiliation(s)
- Anna Czeschik
- Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich and JARA - Fundamentals of Future Information Technologies, 52425 Jülich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Goldshmit Y, Kanner S, Zacs M, Frisca F, Pinto AR, Currie PD, Pinkas-Kramarski R. Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury. Mol Cell Neurosci 2015; 68:82-91. [PMID: 25936601 DOI: 10.1016/j.mcn.2015.04.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/02/2015] [Accepted: 04/28/2015] [Indexed: 11/29/2022] Open
Abstract
Spinal cord injury (SCI) frequently leads to a permanent functional impairment as a result of the initial injury followed by secondary injury mechanism, which is characterised by increased inflammation, glial scarring and neuronal cell death. Finding drugs that may reduce inflammatory cell invasion and activation to reduce glial scarring and increase neuronal survival is of major importance for improving the outcome after SCI. In the present study, we examined the effect of rapamycin, an mTORC1 inhibitor and an inducer of autophagy, on recovery from spinal cord injury. Autophagy, a process that facilitates the degradation of cytoplasmic proteins, is also important for maintenance of neuronal homeostasis and plays a major role in neurodegeneration after neurotrauma. We examined rapamycin effects on the inflammatory response, glial scar formation, neuronal survival and regeneration in vivo using spinal cord hemisection model in mice, and in vitro using primary cortical neurons and human astrocytes. We show that a single injection of rapamycin, inhibited p62/SQSTM1, a marker of autophagy, inhibited mTORC1 downstream effector p70S6K, reduced macrophage/neutrophil infiltration into the lesion site, microglia activation and secretion of TNFα. Rapamycin inhibited astrocyte proliferation and reduced the number of GFAP expressing cells at the lesion site. Finally, it increased neuronal survival and axonogenesis towards the lesion site. Our study shows that rapamycin treatment increased significantly p-Akt levels at the lesion site following SCI. Similarly, rapamycin treatment of neurons and astrocytes induced p-Akt elevation under stress conditions. Together, these findings indicate that rapamycin is a promising candidate for treatment of acute SCI condition and may be a useful therapeutic agent.
Collapse
Affiliation(s)
- Yona Goldshmit
- Department of Neurobiology, Tel-Aviv University, Israel; Australian Regenerative Medicine Institute, Monash University, VIC, Australia.
| | - Sivan Kanner
- Department of Neurobiology, Tel-Aviv University, Israel
| | - Maria Zacs
- Department of Neurobiology, Tel-Aviv University, Israel
| | - Frisca Frisca
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Department of Ophthalmology, the University of Melbourne, East Melbourne VIC, Australia
| | - Alexander R Pinto
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, VIC, Australia
| | | |
Collapse
|
20
|
Kanner S, Bisio M, Cohen G, Goldin M, Tedesco M, Hanein Y, Ben-Jacob E, Barzilai A, Chiappalone M, Bonifazi P. Design, Surface Treatment, Cellular Plating, and Culturing of Modular Neuronal Networks Composed of Functionally Inter-connected Circuits. J Vis Exp 2015. [PMID: 25938894 DOI: 10.3791/52572] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The brain operates through the coordinated activation and the dynamic communication of neuronal assemblies. A major open question is how a vast repertoire of dynamical motifs, which underlie most diverse brain functions, can emerge out of a fixed topological and modular organization of brain circuits. Compared to in vivo studies of neuronal circuits which present intrinsic experimental difficulties, in vitro preparations offer a much larger possibility to manipulate and probe the structural, dynamical and chemical properties of experimental neuronal systems. This work describes an in vitro experimental methodology which allows growing of modular networks composed by spatially distinct, functionally interconnected neuronal assemblies. The protocol allows controlling the two-dimensional (2D) architecture of the neuronal network at different levels of topological complexity. A desired network patterning can be achieved both on regular cover slips and substrate embedded micro electrode arrays. Micromachined structures are embossed on a silicon wafer and used to create biocompatible polymeric stencils, which incorporate the negative features of the desired network architecture. The stencils are placed on the culturing substrates during the surface coating procedure with a molecular layer for promoting cellular adhesion. After removal of the stencils, neurons are plated and they spontaneously redirected to the coated areas. By decreasing the inter-compartment distance, it is possible to obtain either isolated or interconnected neuronal circuits. To promote cell survival, cells are co-cultured with a supporting neuronal network which is located at the periphery of the culture dish. Electrophysiological and optical recordings of the activity of modular networks obtained respectively by using substrate embedded micro electrode arrays and calcium imaging are presented. While each module shows spontaneous global synchronizations, the occurrence of inter-module synchronization is regulated by the density of connection among the circuits.
Collapse
Affiliation(s)
- Sivan Kanner
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University
| | - Marta Bisio
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia
| | - Gilad Cohen
- School of Electrical Engineering, Tel-Aviv University
| | - Miri Goldin
- School of Physics and Astronomy, Tel-Aviv University
| | - Marieteresa Tedesco
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova
| | - Yael Hanein
- School of Electrical Engineering, Tel-Aviv University
| | | | - Ari Barzilai
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University
| | - Michela Chiappalone
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia
| | - Paolo Bonifazi
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University; School of Physics and Astronomy, Tel-Aviv University;
| |
Collapse
|
21
|
Glutamate mediated astrocytic filtering of neuronal activity. PLoS Comput Biol 2014; 10:e1003964. [PMID: 25521344 PMCID: PMC4270452 DOI: 10.1371/journal.pcbi.1003964] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/06/2014] [Indexed: 02/02/2023] Open
Abstract
Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.
Collapse
|
22
|
Kim R, Joo S, Jung H, Hong N, Nam Y. Recent trends in microelectrode array technology for in vitro neural interface platform. Biomed Eng Lett 2014. [DOI: 10.1007/s13534-014-0130-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Verstraelen P, Pintelon I, Nuydens R, Cornelissen F, Meert T, Timmermans JP. Pharmacological characterization of cultivated neuronal networks: relevance to synaptogenesis and synaptic connectivity. Cell Mol Neurobiol 2014; 34:757-76. [PMID: 24748115 DOI: 10.1007/s10571-014-0057-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/01/2014] [Indexed: 12/23/2022]
Abstract
Mental disorders, such as schizophrenia or Alzheimer's disease, are associated with impaired synaptogenesis and/or synaptic communication. During development, neurons assemble into neuronal networks, the primary supracellular mediators of information processing. In addition to the orchestrated activation of genetic programs, spontaneous electrical activity and associated calcium signaling have been shown to be critically involved in the maturation of such neuronal networks. We established an in vitro model that recapitulates the maturation of neuronal networks, including spontaneous electrical activity. Upon plating, mouse primary hippocampal neurons grow neurites and interconnect via synapses to form a dish-wide neuronal network. Via live cell calcium imaging, we identified a limited period of time in which the spontaneous activity synchronizes across neurons, indicative of the formation of a functional network. After establishment of network activity, the neurons grow dendritic spines, the density of which was used as a morphological readout for neuronal maturity and connectivity. Hence, quantification of neurite outgrowth, synapse density, spontaneous neuronal activity, and dendritic spine density allowed to study neuronal network maturation from the day of plating until the presence of mature neuronal networks. Via acute pharmacological intervention, we show that synchronized network activity is mediated by the NMDA-R. The balance between kynurenic and quinolinic acid, both neuro-active intermediates in the tryptophan/kynurenine pathway, was shown to be decisive for the maintenance of network activity. Chronic modulation of the neurotrophic support influenced the network formation and revealed the extreme sensitivity of calcium imaging to detect subtle alterations in neuronal physiology. Given the reproducible cultivation in a 96-well setup in combination with fully automated analysis of the calcium recordings, this approach can be used to build a high-content screening assay usable for neurotoxicity screening, target identification/validation, or phenotypic drug screening.
Collapse
Affiliation(s)
- Peter Verstraelen
- Laboratory of Cell Biology & Histology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Cell adhesion promotion strategies for signal transduction enhancement in microelectrode array in vitro electrophysiology: An introductory overview and critical discussion. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Bonifazi P, Difato F, Massobrio P, Breschi GL, Pasquale V, Levi T, Goldin M, Bornat Y, Tedesco M, Bisio M, Kanner S, Galron R, Tessadori J, Taverna S, Chiappalone M. In vitro large-scale experimental and theoretical studies for the realization of bi-directional brain-prostheses. Front Neural Circuits 2013; 7:40. [PMID: 23503997 PMCID: PMC3596784 DOI: 10.3389/fncir.2013.00040] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/25/2013] [Indexed: 11/23/2022] Open
Abstract
Brain-machine interfaces (BMI) were born to control “actions from thoughts” in order to recover motor capability of patients with impaired functional connectivity between the central and peripheral nervous system. The final goal of our studies is the development of a new proof-of-concept BMI—a neuromorphic chip for brain repair—to reproduce the functional organization of a damaged part of the central nervous system. To reach this ambitious goal, we implemented a multidisciplinary “bottom-up” approach in which in vitro networks are the paradigm for the development of an in silico model to be incorporated into a neuromorphic device. In this paper we present the overall strategy and focus on the different building blocks of our studies: (i) the experimental characterization and modeling of “finite size networks” which represent the smallest and most general self-organized circuits capable of generating spontaneous collective dynamics; (ii) the induction of lesions in neuronal networks and the whole brain preparation with special attention on the impact on the functional organization of the circuits; (iii) the first production of a neuromorphic chip able to implement a real-time model of neuronal networks. A dynamical characterization of the finite size circuits with single cell resolution is provided. A neural network model based on Izhikevich neurons was able to replicate the experimental observations. Changes in the dynamics of the neuronal circuits induced by optical and ischemic lesions are presented respectively for in vitro neuronal networks and for a whole brain preparation. Finally the implementation of a neuromorphic chip reproducing the network dynamics in quasi-real time (10 ns precision) is presented.
Collapse
Affiliation(s)
- Paolo Bonifazi
- School of Physics and Astronomy, Tel Aviv University Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|