1
|
Lamparelli EP, Casagranda V, Pressato D, Maffulli N, Della Porta G, Bellini D. Synthesis and Characterization of a Novel Composite Scaffold Based on Hyaluronic Acid and Equine Type I Collagen. Pharmaceutics 2022; 14:pharmaceutics14091752. [PMID: 36145500 PMCID: PMC9505875 DOI: 10.3390/pharmaceutics14091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, the synthesis and characterization of a novel composite biopolymer scaffold—based on equine type I collagen and hyaluronic acid—were described by using a reaction in heterogeneous phase. The resulting biomimetic structure was characterized in terms of chemical, physical, and cytotoxicity properties using human-derived lymphocytes and chondrocytes. Firstly, FT-IR data proved a successful reticulation of hyaluronic acid within collagen structure with the appearance of a new peak at a wavenumber of 1735 cm−1 associated with ester carbonyl stretch. TGA and DSC characterizations confirmed different thermal stability of cross-linked scaffolds while morphological analysis by scanning electron microscopy (SEM) suggested the presence of a highly porous structure with open and interconnected void areas suitable for hosting cells. The enzymatic degradation profile confirmed scaffold higher endurance with collagenase as compared with collagen alone. However, it was particularly interesting that the mechanical behavior of the composite scaffold showed an excellent shape memory, especially when it was hydrated, with an improved Young’s modulus of 9.96 ± 0.53 kPa (p ≤ 0.001) as well as a maximum load at 97.36 ± 3.58 kPa compared to the simple collagen scaffold that had a modulus of 1.57 ± 0.08 kPa and a maximum load of 36.91 ± 0.24 kPa. Finally, in vitro cytotoxicity confirmed good product safety with human lymphocytes (viability of 81.92 ± 1.9 and 76.37 ± 1.2 after 24 and 48 h, respectively), whereas excellent gene expression profiles of chondrocytes with a significant upregulation of SOX9 and ACAN after 10 days of culture indicated our scaffold’s ability of preserving chondrogenic phenotype. The described material could be considered a potential tool to be implanted in patients with cartilage defects.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | | | | | - Nicola Maffulli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London E1 4NL, UK
| | - Giovanna Della Porta
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Research Centre for Biomaterials BIONAM, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: ; Tel./Fax: +39-089965234
| | - Davide Bellini
- Novagenit Srl, Viale Trento 115/117, 38017 Mezzolombardo, Italy
| |
Collapse
|
2
|
Cassimjee H, Kumar P, Ubanako P, Choonara YE. Genipin-Crosslinked, Proteosaccharide Scaffolds for Potential Neural Tissue Engineering Applications. Pharmaceutics 2022; 14:441. [PMID: 35214173 PMCID: PMC8874445 DOI: 10.3390/pharmaceutics14020441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injuries (TBIs) are still a challenge for the field of modern medicine. Many treatment options such as autologous grafts and stem cells show limited promise for the treatment and the reversibility of damage caused by TBIs. Injury beyond the critical size necessitates the implementation of scaffolds that function as surrogate extracellular matrices. Two scaffolds were synthesised utilising polysaccharides, chitosan and hyaluronic acid in conjunction with gelatin. Both scaffolds were chemically crosslinked using a naturally derived crosslinker, Genipin. The polysaccharides increased the mechanical strength of each scaffold, while gelatin provided the bioactive sequence, which promoted cellular interactions. The effect of crosslinking was investigated, and the crosslinked hydrogels showed higher thermal decomposition temperatures, increased resistance to degradation, and pore sizes ranging from 72.789 ± 16.85 µm for the full interpenetrating polymer networks (IPNs) and 84.289 ± 7.658 μm for the semi-IPN. The scaffolds were loaded with Dexamethasone-21-phosphate to investigate their efficacy as a drug delivery vehicle, and the full IPN showed a 100% release in 10 days, while the semi-IPN showed a burst release in 6 h. Both scaffolds stimulated the proliferation of rat pheochromocytoma (PC12) and human glioblastoma multiforme (A172) cell cultures and also provided signals for A172 cell migration. Both scaffolds can be used as potential drug delivery vehicles and as artificial extracellular matrices for potential neural regeneration.
Collapse
Affiliation(s)
| | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (H.C.); (P.K.); (P.U.)
| |
Collapse
|
3
|
Lei Y, Bortolin L, Benesch-Lee F, Oguntolu T, Dong Z, Bondah N, Billiar K. Hyaluronic acid regulates heart valve interstitial cell contraction in fibrin-based scaffolds. Acta Biomater 2021; 136:124-136. [PMID: 34592445 DOI: 10.1016/j.actbio.2021.09.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
Heart valve disease is associated with high morbidity and mortality worldwide resulting in hundreds of thousands of heart valve replacements each year. Tissue engineered heart valves (TEHVs) have the potential to overcome the major limitations of traditional replacement valves; however, leaflet retraction has led to the failure of TEHVs in preclinical studies. As native unmodified hyaluronic acid (HA) is known to promote healthy tissue development in native heart valves, we hypothesize that adding unmodified HA to fibrin-based scaffolds common to tissue engineering will reduce retraction by increasing cell-scaffold interactions and density of the scaffolds. Using a custom high-throughput culture system, we found that incorporating HA into millimeter-scale fibrin-based cell-populated scaffolds increases initial fiber diameter and cell-scaffold interactions, causing a cascade of mechanical, morphological, and cellular responses. These changes lead to higher levels of scaffold compaction and stiffness, increased cell alignment, and less bundling of fibrin fibers by the cells during culture. These effects significantly reduce scaffold retraction and total contractile force each by around 25%. These findings increase our understanding of how HA alters tissue remodeling and could inform the design of the next generation of tissue engineered heart valves to help reduce retraction. STATEMENT OF SIGNIFICANCE: Tissue engineered heart valves (TEHVs) have the potential to overcome the major limitations of traditional replacement valves; however, leaflet retraction induced by excessive myofibroblast activation has led to failure in preclinical studies. Developing valves are rich in hyaluronic acid (HA), which helps maintain a physiological environment for tissue remodeling without retraction. We hypothesized that adding unmodified HA to TEHVs would reduce retraction by increasing cell-scaffold interactions and density of the scaffolds. Using a high-throughput tissue culture platform, we demonstrate that HA incorporation into a fibrin-based scaffold can significantly reduce tissue retraction and total contractile force by increasing fiber bundling and altering cell-mediated matrix remodeling, therefore increasing gel density and stiffness. These finding increase our knowledge of native HA's effects within the extracellular matrix, and provide a new tool for TEHV design.
Collapse
Affiliation(s)
- Ying Lei
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Luciano Bortolin
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Frank Benesch-Lee
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Teniola Oguntolu
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Zhijie Dong
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Narda Bondah
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Kristen Billiar
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Prionace glauca skin collagen bioengineered constructs as a promising approach to trigger cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111587. [DOI: 10.1016/j.msec.2020.111587] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
|
5
|
Hinsenkamp A, Ézsiás B, Pál É, Hricisák L, Fülöp Á, Besztercei B, Somkuti J, Smeller L, Pinke B, Kardos D, Simon M, Lacza Z, Hornyák I. Crosslinked Hyaluronic Acid Gels with Blood-Derived Protein Components for Soft Tissue Regeneration. Tissue Eng Part A 2020; 27:806-820. [PMID: 32854588 DOI: 10.1089/ten.tea.2020.0197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hyaluronic acid (HA) is an ideal initial material for preparing hydrogels, which may be used as scaffolds in soft tissue engineering based on their advantageous physical and biological properties. In this study, two crosslinking agents, divinyl sulfone (DVS) and butanediol diglycidyl ether, were used to investigate their effect on the properties of HA hydrogels. As HA hydrogels alone do not promote cell adhesion on the scaffold, fibrin and serum from platelet-rich fibrin (SPRF) were combined with the scaffold; the aim was to create a material intended to be used as soft tissue implant that facilitates new tissue formation, and degrades over time. The chemical changes were characterized and cell attachment capacity of the protein-containing gels was examined using human mesenchymal stem cells, and viability was assessed using live-dead staining. Fourier-transform infrared measurements revealed that linking fibrin into the gel was more effective than linking SPRF. The scaffolds were found to be able to support cell adherence onto the hydrogels, and the best result was achieved when HA was crosslinked with DVS and contained fibrin. The most promising derivative, 5% DVS-crosslinked fibrin-containing hydrogel, was injected subcutaneously into C57BL/6 mice for 12 weeks. The scaffold was proven to be biocompatible, remodeling, and vascularization occurred, while shape and integrity were maintained. Impact statement Fibrin was combined with crosslinked hyaluronic acid (HA) for regenerative application, the structure of the combination of crosslinked HA with blood-derived protein was analyzed and effective coating was proven. It was observed that the fibrin content led to better mesenchymal stem cell attachment in vitro. The compositions showed biocompatibility, connective tissue and vascularization took place when implanted in vivo. Thus, a biocompatible, injectable gel was produced, which is a potential candidate for soft tissue implantation.
Collapse
Affiliation(s)
- Adél Hinsenkamp
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Bence Ézsiás
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Éva Pál
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Judit Somkuti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Balázs Pinke
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Dorottya Kardos
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Melinda Simon
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zsombor Lacza
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Orthosera GmbH, Krems an der Donau, Austria.,Institute of Sport and Health Sciences, University of Physical Education, Budapest, Hungary
| | - István Hornyák
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.,Orthosera GmbH, Krems an der Donau, Austria
| |
Collapse
|
6
|
Huang Y, Seitz D, Chevalier Y, Müller PE, Jansson V, Klar RM. Synergistic interaction of hTGF-β 3 with hBMP-6 promotes articular cartilage formation in chitosan scaffolds with hADSCs: implications for regenerative medicine. BMC Biotechnol 2020; 20:48. [PMID: 32854680 PMCID: PMC7457281 DOI: 10.1186/s12896-020-00641-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/20/2020] [Indexed: 12/31/2022] Open
Abstract
Background Human TGF-β3 has been used in many studies to induce genes coding for typical cartilage matrix components and accelerate chondrogenic differentiation, making it the standard constituent in most cultivation media used for the assessment of chondrogenesis associated with various stem cell types on carrier matrices. However, in vivo data suggests that TGF-β3 and its other isoforms also induce endochondral and intramembranous osteogenesis in non-primate species to other mammals. Based on previously demonstrated improved articular cartilage induction by a using hTGF-β3 and hBMP-6 together on hADSC cultures and the interaction of TGF- β with matrix in vivo, the present study investigates the interaction of a chitosan scaffold as polyanionic polysaccharide with both growth factors. The study analyzes the difference between chondrogenic differentiation that leads to stable hyaline cartilage and the endochondral ossification route that ends in hypertrophy by extending the usual panel of investigated gene expression and stringent employment of quantitative PCR. Results By assessing the viability, proliferation, matrix formation and gene expression patterns it is shown that hTGF-β3 + hBMP-6 promotes improved hyaline articular cartilage formation in a chitosan scaffold in which ACAN with Col2A1 and not Col1A1 nor Col10A1 where highly expressed both at a transcriptional and translational level. Inversely, hTGF-β3 alone tended towards endochondral bone formation showing according protein and gene expression patterns. Conclusion These findings demonstrate that clinical therapies should consider using hTGF-β3 + hBMP-6 in articular cartilage regeneration therapies as the synergistic interaction of these morphogens seems to ensure and maintain proper hyaline articular cartilage matrix formation counteracting degeneration to fibrous tissue or ossification. These effects are produced by interaction of the growth factors with the polysaccharide matrix.
Collapse
Affiliation(s)
- Yijiang Huang
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital of Munich, 81377, Munich, Germany
| | - Daniel Seitz
- BioMed Center Innovation gGmbh, 95448, Bayreuth, Germany
| | - Yan Chevalier
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital of Munich, 81377, Munich, Germany
| | - Peter E Müller
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital of Munich, 81377, Munich, Germany
| | - Volkmar Jansson
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital of Munich, 81377, Munich, Germany
| | - Roland M Klar
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital of Munich, 81377, Munich, Germany.
| |
Collapse
|
7
|
Ghorbani F, Zamanian A, Behnamghader A, Daliri Joupari M. Bioactive and biostable hyaluronic acid-pullulan dermal hydrogels incorporated with biomimetic hydroxyapatite spheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110906. [DOI: 10.1016/j.msec.2020.110906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
|
8
|
Cassimjee H, Kumar P, Choonara YE, Pillay V. Proteosaccharide combinations for tissue engineering applications. Carbohydr Polym 2020; 235:115932. [DOI: 10.1016/j.carbpol.2020.115932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
|
9
|
Assessment of biological properties of recombinant collagen-hyaluronic acid composite scaffolds. Int J Biol Macromol 2020; 149:1275-1284. [DOI: 10.1016/j.ijbiomac.2020.02.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/13/2023]
|
10
|
Structural changes and crosslinking modulated functional properties of oxi-HA/ADH hydrogels useful for regenerative purposes. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Induction of Articular Chondrogenesis by Chitosan/Hyaluronic-Acid-Based Biomimetic Matrices Using Human Adipose-Derived Stem Cells. Int J Mol Sci 2019; 20:ijms20184487. [PMID: 31514329 PMCID: PMC6770472 DOI: 10.3390/ijms20184487] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
Cartilage repair using tissue engineering is the most advanced clinical application in regenerative medicine, yet available solutions remain unsuccessful in reconstructing native cartilage in its proprietary form and function. Previous investigations have suggested that the combination of specific bioactive elements combined with a natural polymer could generate carrier matrices that enhance activities of seeded stem cells and possibly induce the desired matrix formation. The present study sought to clarify this by assessing whether a chitosan-hyaluronic-acid-based biomimetic matrix in conjunction with adipose-derived stem cells could support articular hyaline cartilage formation in relation to a standard chitosan-based construct. By assessing cellular development, matrix formation, and key gene/protein expressions during in vitro cultivation utilizing quantitative gene and immunofluorescent assays, results showed that chitosan with hyaluronic acid provides a suitable environment that supports stem cell differentiation towards cartilage matrix producing chondrocytes. However, on the molecular gene expression level, it has become apparent that, without combinations of morphogens, in the chondrogenic medium, hyaluronic acid with chitosan has a very limited capacity to stimulate and maintain stem cells in an articular chondrogenic state, suggesting that cocktails of various growth factors are one of the key features to regenerate articular cartilage, clinically.
Collapse
|
12
|
Watanabe A, Mainil-Varlet P, Decambron A, Aschinger C, Schiavinato A. Efficacy of HYADD®4-G single intra-discal injections in a rabbit model of intervertebral disc degeneration. Biomed Mater Eng 2019; 30:403-417. [PMID: 31498118 DOI: 10.3233/bme-191062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Various biomaterials/technologies have been tested for treatment of intervertebral disc (IVD) degeneration (IDD). Only few non-surgical options exist. OBJECTIVE Assessment of efficacy and safety of the hyaluronic acid derivative hydrogel HYADD®4-G in IDD using a well-established rabbit annular puncture model. METHODS Rabbits were punctured at two IVDs to induce IDD. Thirty days after, IVDs were injected with HYADD®4-G or saline. IVD hydration, height, appearance and tissue organization were assessed by radiographs, MRI and histopathology. Safety of HYADD®4-G injection was evaluated in non-punctured IVDs. RESULTS HYADD®4-G injection restored disc height to over 75% of the pre-punctured disc, saline injections led to 50% of initial disc height. Compared to saline, HYADD®4-G treatment resulted in improved water retention as revealed by MRI quantification. 83.3% of HYADD®4-G injected discs had normal appearance and reached grade I of the Pfirrmann scale. Regarding tissue organization and cellularity, HYADD®4-G treatment resulted in significantly lower IDD scores than saline (p < 0.01). HYADD®4-G injected into healthy IVDs did not induce inflammation or foreign body reactions. CONCLUSIONS Intra-discal HYADD®4-G injection is safe and has therapeutic benefits: IDD could be limited through restoration of disc height and hydration and maintenance of normal IVD tissue organization.
Collapse
Affiliation(s)
- Atsuya Watanabe
- Department of General Medical Sciences, Chiba University, Chiba, Japan
| | | | - Adeline Decambron
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Surgery Unit CHUVA, Maisons-Alfort Cedex, France
| | | | | |
Collapse
|
13
|
Petrova VA, Chernyakov DD, Poshina DN, Gofman IV, Romanov DP, Mishanin AI, Golovkin AS, Skorik YA. Electrospun Bilayer Chitosan/Hyaluronan Material and Its Compatibility with Mesenchymal Stem Cells. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2016. [PMID: 31238491 PMCID: PMC6631200 DOI: 10.3390/ma12122016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Abstract
A bilayer nonwoven material for tissue regeneration was prepared from chitosan (CS) and hyaluronic acid (HA) by needleless electrospinning wherein 10-15 wt% (with respect to polysaccharide) polyethylene oxide was added as spinning starter. A fiber morphology study confirmed the material's uniform defect-free structure. The roughness of the bilayer material was in the range of 1.5-3 μm, which is favorable for cell growth. Electrospinning resulted in the higher orientation of the polymer structure compared with that of corresponding films, and this finding may be related to the orientation of the polymer chains during the spinning process. These structural changes increased the intermolecular interactions. Thus, despite a high swelling degree of 1.4-2.8 g/g, the bilayer matrix maintained its shape due to the large quantity of polyelectrolyte contacts between the chains of oppositely charged polymers. The porosity of the bilayer CS-HA nonwoven material was twice lower, while the Young's modulus and break stress were twice higher than that of a CS monolayer scaffold. Therefore, during the electrospinning of the second layer, HA may have penetrated into the pores of the CS layer, thereby increasing the polyelectrolyte contacts between the two polymers. The bilayer CS-HA scaffold exhibited good compatibility with mesenchymal stem cells. This characteristic makes the developed material promising for tissue engineering applications.
Collapse
Affiliation(s)
- Valentina A Petrova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
| | - Daniil D Chernyakov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
| | - Iosif V Gofman
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
| | - Dmitry P Romanov
- Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarova emb. 2, 199034 St. Petersburg, Russia.
| | - Alexander I Mishanin
- Almazov National Medical Research Centre, Akkuratova str. 2., 197341 St. Petersburg, Russia.
| | - Alexey S Golovkin
- Almazov National Medical Research Centre, Akkuratova str. 2., 197341 St. Petersburg, Russia.
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
- Almazov National Medical Research Centre, Akkuratova str. 2., 197341 St. Petersburg, Russia.
| |
Collapse
|
14
|
Zhang X, Zhai C, Fei H, Liu Y, Wang Z, Luo C, Zhang J, Ding Y, Xu T, Fan W. Composite Silk-Extracellular Matrix Scaffolds for Enhanced Chondrogenesis of Mesenchymal Stem Cells. Tissue Eng Part C Methods 2018; 24:645-658. [PMID: 30351193 DOI: 10.1089/ten.tec.2018.0199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenjun Zhai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Yixing People's Hospital, Yixing, China
| | - Hao Fei
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunyang Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiyong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanzi Ding
- Department of Cardiovascular, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Acta Biomater 2017; 52:130-144. [PMID: 28131943 DOI: 10.1016/j.actbio.2017.01.064] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/08/2017] [Accepted: 01/23/2017] [Indexed: 01/14/2023]
Abstract
Clinical success on cartilage regeneration could be achieved by using available biomaterials and cell-based approaches. In this study, we have developed a composite gel based on collagen/hyaluronic acid (Coll-HA) as ideal, physiologically representative 3D support for in vitro chondrogenesis of human adipose-derived mesenchymal stem cells (hAMSCs) co-cultured with human articular chondrocytes (hAC). The incorporation of hyaluronic acid (HA) attempted to provide an additional stimulus to the hAMSCs for chondrogenesis and extracellular matrix deposition. Coll-HA gels were fabricated by directly mixing different amounts of HA (0-5%) into collagen solution before gelation. hACs and hAMSCs were co-cultured at different ratios from 100% to 0% in steps of 25%. Thus, five different co-culture groups were tested in the various Coll-HA 3D matrices. HA greatly impacted the cell viability and proliferation as well as the mechanical properties of the Coll-HA gel. The effective Young's modulus changed from 5.8 to 9.0kPa with increasing concentrations of HA in the gel. In addition, significantly higher amounts of glycosaminoglycan (GAG) were detected that seemed to be dependent on HA content. The highest HA concentration used (5%) resulted in the lowest Collagen type X (Col10) expression for most of the cell culture groups. Unexpectedly, culturing in these gels was also associated with decreased SOX9 and Collagen type II (Col2) expression, while Collagen type III (Col3) and metalloproteinase 13 notably increased. By using 1% HA, a positive effect on SOX9 expression was observed in the co-culture groups. In addition, a significant increase in GAGs production was also detected. Regarding co-culturing, the group with 25% hAMSCs+75% hACs was the most chondrogenic one considering SOX9 and Col2 expression as well as GAGs production. This group showed negligible Col10 expression after 35days of culture independently of the gel used. It also featured the highest effective Young's modulus (9.9kPa) when cultivated in the 1% HA matrix. Concerning the level of dissolved oxygen in situ, the groups with a higher amount of hAMSCs showed lower oxygen levels (40-58% O2) compared to hACs (63-74% O2). This might be attributed to the higher cellular metabolism and proliferation rate of the hAMSCs. Interestingly, lower oxygen was detected in the HA-containing gels when compared to plain collagen. This may contribute to the better chondrogenesis observed in these groups. Altogether, our results indicated that HA may favor chondrogenesis, but its effect highly depends on the concentration used. Additionally, co-culture of hACs with hAMSCs also favors chondrogenesis and especially increases extracellular matrix production and decreases hypertrophy. STATEMENT OF SIGNIFICANCE In the clinical situation, large cartilage defects can be treated with MACT. However, this is a two-stage procedure, which increases the risk for the patient. Moreover, culturing chondrocytes leads to dedifferentiation. The matrix used for MACT is a collagen-based scaffold. In this study, it was demonstrated that hyaluronic acid, a natural component of the extracellular matrix, supplementation to a collagen hydrogel stimulates chondrogenic differentiation in a dose dependent manner. 1% HA showed the best overall results. Furthermore, exchanging 25% of human articular chondrocytes with adipose-derived mesenchymal stem cells didn't change the chondrogenic potential, but reduced going in unwanted pathways and improved biomechanical properties. This could translate to a one-step procedure and shows the potential of inducing differentiation by natural biomaterials.
Collapse
|
16
|
Ferroni C, Sotgiu G, Sagnella A, Varchi G, Guerrini A, Giuri D, Polo E, Orlandi VT, Marras E, Gariboldi M, Monti E, Aluigi A. Wool Keratin 3D Scaffolds with Light-Triggered Antimicrobial Activity. Biomacromolecules 2016; 17:2882-90. [PMID: 27463471 DOI: 10.1021/acs.biomac.6b00697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photoactivatable keratin sponges were prepared from protein aqueous solutions by the freeze-drying method, followed by photofunctionalization with two different photosensitizers (PS): Azure A (AzA) and 5,10,15,20-tetrakis [4-(2-N,N,N-trimethylethylthio)-2,3,5,6-tetrafluorophenyl]porphyrin tetraiodide salt (TTFAP). The prepared sponges have a porosity between 49% and 80% and a mean pore size in the 37-80 μm range. As compared to AzA, TTFAP interacts more strongly with the sponges as demonstrated by a lower PS release (6% vs 20%), a decreased swelling ratio (1.6 vs 7.4), and a slower biodegradation rate. Nevertheless, AzA-loaded sponges showed the highest photoactivity, as also demonstrated by their higher antibactericidal activity toward both Gram-positive and Gram-negative bacteria. The obtained results suggest that the antimicrobial photodynamic effect can be finely triggered through a proper selection of the amount and type of photosensitizer, as well as through the irradiation time. Finally, all the prepared sponges support human fibroblast cells growth, while no significant cell viability impairment is observed upon light irradiation.
Collapse
Affiliation(s)
- Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Giovanna Sotgiu
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Anna Sagnella
- MIST E-R Laboratory, via P. Gobetti 101, 40129 Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Andrea Guerrini
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Demetra Giuri
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Eleonora Polo
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, UOS Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Viviana Teresa Orlandi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università degli Studi dell'Insubria, Via Dunant 3, Varese, Italy
| | - Emanuela Marras
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università degli Studi dell'Insubria, Via Dunant 3, Varese, Italy
| | - Marzia Gariboldi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università degli Studi dell'Insubria, Via Dunant 3, Varese, Italy
| | - Elena Monti
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università degli Studi dell'Insubria, Via Dunant 3, Varese, Italy
| | - Annalisa Aluigi
- Institute of Organic Synthesis and Photoreactivity - Italian National Research Council, Via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
17
|
Jeong SH, Fan YF, Baek JU, Song J, Choi TH, Kim SW, Kim HE. Long-lasting and bioactive hyaluronic acid-hydroxyapatite composite hydrogels for injectable dermal fillers: Physical properties and in vivo durability. J Biomater Appl 2016; 31:464-74. [DOI: 10.1177/0885328216648809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyaluronic acid (HAc)–hydroxyapatite (HAp) composite hydrogels were developed to improve the biostability and bioactivity of HAc for dermal filler applications. Two kinds of HAc-HAp composite fillers were generated: HAcmicroHAp and HAc-nanoHAp composites. HAc-microHAp was fabricated by mixing HAp microspheres with HAc hydrogels, and HAc-nanoHAp was made by in situ precipitation of nano-sized HAp particles in HAc hydrogels. Emphasis was placed on the effect of HAp on the durability and bioactivity of the fillers. Compared with the pure HAc filler, all of the HAc-HAp composite fillers exhibited significant improvements in volumetric maintenance based on in vivo tests owing to their reduced water content and higher degree of biointegration between the filler and surrounding tissues. HAc-HAp composite fillers also showed noticeable enhancement in dermis recovery, promoting collagen and elastic fiber formation. Based on their long-lasting durability and bioactivity, HAc-HAp composite fillers have great potential for soft tissue augmentation with multifunctionality.
Collapse
Affiliation(s)
- Seol-Ha Jeong
- Department of Materials Science and Engineering, Seoul National University, South Korea
| | - Ying-Fang Fan
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, South Korea
| | - Jae-Uk Baek
- Department of Materials Science and Engineering, Seoul National University, South Korea
| | - Juha Song
- Department of Materials Science and Engineering, Seoul National University, South Korea
- Biomedical Implant Convergence Research Center, Advanced Institutes of Convergence Technology, South Korea
| | - Tae-Hyun Choi
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, South Korea
| | - Suk-Wha Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, South Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, South Korea
- Biomedical Implant Convergence Research Center, Advanced Institutes of Convergence Technology, South Korea
| |
Collapse
|
18
|
Performance of PRP associated with porous chitosan as a composite scaffold for regenerative medicine. ScientificWorldJournal 2015; 2015:396131. [PMID: 25821851 PMCID: PMC4363634 DOI: 10.1155/2015/396131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/08/2015] [Indexed: 12/01/2022] Open
Abstract
This study aimed to evaluate the in vitro performance of activated platelet-rich plasma associated with porous sponges of chitosan as a composite scaffold for proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The sponges were prepared by controlled freezing (−20, −80, or −196°C) and lyophilization of chitosan solutions (1, 2, or 3% w/v). The platelet-rich plasma was obtained from controlled centrifugation of whole blood and activated with calcium and autologous serum. The composite scaffolds were prepared by embedding the sponges with the activated platelet-rich plasma. The results showed the performance of the scaffolds was superior to that of activated platelet-rich plasma alone, in terms of delaying the release of growth factors and increased proliferation of the stem cells. The best preparation conditions of chitosan composite scaffolds that coordinated the physicochemical and mechanical properties and cell proliferation were 3% (w/v) chitosan and a −20°C freezing temperature, while −196°C favored osteogenic differentiation. Although the composite scaffolds are promising for regenerative medicine, the structures require stabilization to prevent the collapse observed after five days.
Collapse
|
19
|
Caliari SR, Harley BAC. Collagen-GAG scaffold biophysical properties bias MSC lineage choice in the presence of mixed soluble signals. Tissue Eng Part A 2014; 20:2463-72. [PMID: 24568607 DOI: 10.1089/ten.tea.2013.0400] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biomaterial strategies for regenerating multitissue structures require unique approaches. One strategy is to design scaffolds so that their local biophysical properties can enhance site-specific effects of an otherwise heterogeneous biomolecular environment. This investigation examined the role of biomaterial physical properties (relative density, mineral content) on the human mesenchymal stem cell phenotype in the presence of mixed soluble signals to drive osteogenesis or chondrogenesis. We tested a series of three-dimensional collagen-glycosaminoglycan scaffolds with properties inspired by extracellular matrix characteristics across the osteotendinous interface (tendon, cartilage, and bone). We found that selective scaffold mineralization induced a depressed chondrogenic response compared with nonmineralized groups as demonstrated by gene expression and histological analyses. Interestingly, the greatest chondrogenic response was found in a higher density, nonmineralized scaffold variant despite increased contraction and cellular condensation in lower density nonmineralized scaffolds. In fact, the lower density scaffolds demonstrated a significantly higher expression of osteogenic transcripts as well as ample mineralization after 21 days of culture. This effect may be due to local stiffening of the scaffold microenvironment as the scaffold contracts, leading to increased cell density, accelerated differentiation, and possible endochondral ossification as evidenced by a transition from a glycosaminoglycan (GAG)-rich milieu to higher mineralization at later culture times. These findings will help shape the design rules for graded biomaterials to regenerate distinct fibrillar, fibrocartilagenous, and mineralized regions of orthopedic interfaces.
Collapse
Affiliation(s)
- Steven R Caliari
- 1 Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois
| | | |
Collapse
|
20
|
Yeh HY, Lin TY, Lin CH, Yen BL, Tsai CL, Hsu SH. Neocartilage formation from mesenchymal stem cells grown in type II collagen-hyaluronan composite scaffolds. Differentiation 2014; 86:171-83. [PMID: 24462469 DOI: 10.1016/j.diff.2013.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/11/2022]
Abstract
Three-dimensional (3D) collagen type II-hyaluronan (HA) composite scaffolds (CII-HA) which mimics the extracellular environment of natural cartilage were fabricated in this study. Rheological measurements demonstrated that the incorporation of HA increased the compression modulus of the scaffolds. An initial in vitro evaluation showed that scaffolds seeded with porcine chondrocytes formed cartilaginous-like tissue after 8 weeks, and HA functioned to promote the growth of chondrocytes into scaffolds. Placenta-derived multipotent cells (PDMC) and gingival fibroblasts (GF) were seeded on tissue culture polystyrene (TCPS), CII-HA films, and small intestinal submucosa (SIS) sheets for comparing their chondrogenesis differentiation potentials with those of adipose-derived adult stem cells (ADAS) and bone marrow-derived mesenchymal stem cells (BMSC). Among different cells, PDMC showed the greatest chondrogenic differentiation potential on both CII-HA films and SIS sheets upon TGF-β3 induction, followed by GF. This was evidenced by the up-regulation of chondrogenic genes (Sox9, aggrecan, and collagen type II), which was not observed for cells grown on TCPS. This finding suggested the essential role of substrate materials in the chondrogenic differentiation of PDMC and GF. Neocartilage formation was more obvious in both PDMC and GF cells plated on CII-HA composite scaffolds vs. 8-layer SIS at 28 days in vitro. Finally, implantation of PDMC/CII-HA constructs into NOD-SCID mice confirmed the formation of tissue-engineered cartilage in vivo.
Collapse
Affiliation(s)
- Hsi-Yi Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Huan Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - B Linju Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Lin Tsai
- Department of Orthopaedics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
21
|
Mercuri JJ, Patnaik S, Dion G, Gill SS, Liao J, Simionescu DT. Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies. Tissue Eng Part A 2013; 19:952-66. [PMID: 23140227 DOI: 10.1089/ten.tea.2012.0088] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nucleus pulposus (NP) tissue regeneration has been proposed as an early stage interventional therapy to combat intervertebral disc degeneration. We have previously reported on the development and characterization of a novel biomimetic acellular porcine NP (APNP) hydrogel. Herein, we aimed to evaluate this material for use as a suitable scaffold for NP tissue regeneration. Human-adipose-derived stem cells (hADSCs) were cultured for 14 days on APNP hydrogels in chemically defined differentiation media and were analyzed for an NP-cell-like mRNA expression profile, evidence of hydrogel remodeling including hydrogel contraction measurements, extracellular matrix production, and compressive dynamic mechanical properties. The innate capacity of the hydrogel itself to induce stem cell differentiation was also examined via culture in media lacking soluble differentiation factors. Additionally, the in vivo biocompatibility of non-crosslinked and ethyldimethylaminopropyl carbodiimide/N-hydroxysuccinimide and pentagalloyl glucose crosslinked hydrogels was evaluated in a rat subdermal model. Results indicated that hADSCs expressed putative NP-cell-positive gene transcript markers when cultured on APNP hydrogels. Additionally, glycosaminoglycan and collagen content of hADSC-seeded hydrogels was significantly greater than nonseeded controls and cell-seeded hydrogels exhibited evidence of contraction and tissue inhibitors of metalloproteinase-1 production. The dynamic mechanical properties of the hADSC-seeded hydrogels increased with time in culture in comparison to noncell-seeded controls and approached values reported for native NP tissue. Immunohistochemical analysis of explants illustrated the presence of mononuclear cells, including macrophages and fibroblasts, as well as blood vessel infiltration and collagen deposition within the implant interstices after 4 weeks of implantation. Taken together, these results suggest that APNP hydrogels, in concert with autologous ADSCs, may serve as a suitable scaffold for NP tissue regeneration.
Collapse
Affiliation(s)
- Jeremy J Mercuri
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | | | |
Collapse
|
22
|
Foss C, Merzari E, Migliaresi C, Motta A. Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules 2012; 14:38-47. [PMID: 23134349 DOI: 10.1021/bm301174x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In spite of commercially available products, the complete and sustained repair of damaged articular cartilage still presents various challenges. Among biomaterials proposed for cartilage repair, silk fibroin (SF) has been recently proposed as a material template for porous scaffolds cultured with chondrocytes and investigated in static and dynamic conditions. In addition to fibroin-based constructs, literature has reported that the combination of hyaluronic acid (HA) with other scaffold materials can protect the chondral phenotype and the cells in vitro response to the scaffold. In this study, the effect of the addition of HA on the physical properties of SF sponges, with and without cross-linking with genipin, was investigated. Salt-leached scaffolds were characterized in terms of morphology and structural and physical properties, as well as mechanical performance. Un-cross-linked sponges resulted in the physical separation of highly hydrophilic HA from the SF, while cross-linking prevented this phenomenon, resulting in a homogeneous blend. The presence of HA also influenced fibroin crystallinity and tended to decrease the cross-linking degree of the scaffolds when compared to the pure SF material.
Collapse
Affiliation(s)
- Cristina Foss
- BIOtech, Department of Industrial Engineering, University of Trento, via delle Regole 101, 38123 Mattarello, Trento, Italy
| | | | | | | |
Collapse
|
23
|
Cheng NC, Estes BT, Young TH, Guilak F. Genipin-crosslinked cartilage-derived matrix as a scaffold for human adipose-derived stem cell chondrogenesis. Tissue Eng Part A 2012; 19:484-96. [PMID: 23088537 DOI: 10.1089/ten.tea.2012.0384] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autologous cell-based tissue engineering using three-dimensional scaffolds holds much promise for the repair of cartilage defects. Previously, we reported on the development of a porous scaffold derived solely from native articular cartilage, which can induce human adipose-derived stem cells (ASCs) to differentiate into a chondrogenic phenotype without exogenous growth factors. However, this ASC-seeded cartilage-derived matrix (CDM) contracts over time in culture, which may limit certain clinical applications. The present study aimed to investigate the ability of chemical crosslinking using a natural biologic crosslinker, genipin, to prevent scaffold contraction while preserving the chondrogenic potential of CDM. CDM scaffolds were crosslinked in various genipin concentrations, seeded with ASCs, and then cultured for 4 weeks to evaluate the influence of chemical crosslinking on scaffold contraction and ASC chondrogenesis. At the highest crosslinking degree of 89%, most cells failed to attach to the scaffolds and resulted in poor formation of a new extracellular matrix. Scaffolds with a low crosslinking density of 4% experienced cell-mediated contraction similar to our original report on noncrosslinked CDM. Using a 0.05% genipin solution, a crosslinking degree of 50% was achieved, and the ASC-seeded constructs exhibited no significant contraction during the culture period. Moreover, expression of cartilage-specific genes, synthesis, and accumulation of cartilage-related macromolecules and the development of mechanical properties were comparable to the original CDM. These findings support the potential use of a moderately (i.e., approximately one-half of the available lysine or hydroxylysine residues being crosslinked) crosslinked CDM as a contraction-free biomaterial for cartilage tissue engineering.
Collapse
Affiliation(s)
- Nai-Chen Cheng
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
24
|
Huang GS, Dai LG, Yen BL, Hsu SH. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 2011; 32:6929-45. [PMID: 21762982 DOI: 10.1016/j.biomaterials.2011.05.092] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/30/2011] [Indexed: 01/08/2023]
Abstract
Stem cells can lose their primitive properties during in vitro culture. The culture substrate may affect the behavior of stem cells as a result of cell-substrate interaction. The maintenance of self-renewal for adult human mesenchymal stem cells (MSCs) by a biomaterial substrate, however, has not been reported in literature. In this study, MSCs isolated from human adipose (hADAS) and placenta (hPDMC) were cultured on chitosan membranes and those further modified by hyaluronan (chitosan-HA). It was observed that the MSCs of either origin formed three-dimensional spheroids that kept attached on the membranes. Spheroid formation was associated with the increased MMP-2 expression. Cells on chitosan-HA formed spheroids more quickly and the size of spheroids were larger than on chitosan alone. The expression of stemness marker genes (Oct4, Sox2, and Nanog) for MSCs on the materials was analyzed by the real-time RT-PCR. It was found that formation of spheroids on chitosan and chitosan-HA membranes helped to maintain the expression of stemness marker genes of MSCs compared to culturing cells on polystyrene dish. The maintenance of stemness marker gene expression was especially remarkable in hPDMC spheroids (vs. hADAS spheroids). Blocking CD44 by antibodies prevented the spheroid formation and decreased the stemness gene expression moderately; while treatment by Y-27632 compound inhibited the spheroid formation and significantly decreased the stemness gene expression. Upon chondrogenic induction, the MSC spheroids showed higher levels of Sox9, aggrecan, and collagen type II gene expression and were stained positive for glycosaminoglycan and collagen type II. hPDMC had better chondrogenic differentiation potential than hADAS upon induction. Our study suggested that the formation of adhered spheroids on chitosan and chitosan-HA membranes may sustain the expression of stemness marker genes of MSCs and increase their chondrogenic differentiation capacity. The Rho/Rho-associated kinase (ROCK) signaling pathway may be involved in spheroid formation.
Collapse
Affiliation(s)
- Guo-Shiang Huang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
25
|
Collin EC, Grad S, Zeugolis DI, Vinatier CS, Clouet JR, Guicheux JJ, Weiss P, Alini M, Pandit AS. An injectable vehicle for nucleus pulposus cell-based therapy. Biomaterials 2011; 32:2862-70. [DOI: 10.1016/j.biomaterials.2011.01.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/06/2011] [Indexed: 12/25/2022]
|
26
|
Schwartz Z, Griffon DJ, Fredericks LP, Lee HB, Weng HY. Hyaluronic acid and chondrogenesis of murine bone marrow mesenchymal stem cells in chitosan sponges. Am J Vet Res 2011; 72:42-50. [PMID: 21194334 DOI: 10.2460/ajvr.72.1.42] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To establish the dose-dependent effects of high-molecular-weight hyaluronic acid (HA) supplementation on chondrogenesis by mesenchymal stem cells (MSCs) cultured on chitosan sponges and to determine the extent to which MSC matrix production (chondrogenesis) can be influenced by incorporation of high-molecular-weight HA into chitosan scaffolds. SAMPLE POPULATION Murine MSCs derived from a multipotent bone marrow stromal precursor. PROCEDURES MSCs were seeded on chitosan and chitosan-HA scaffolds in chondrogenic medium with various HA concentrations. Scanning electron microscopy, fluorescence microscopy (viability assay), and DNA quantification were used to assess cell attachment, distribution, and viability 48 hours after seeding. Constructs were cultured for 3 weeks prior to evaluation of cell distribution and chondrogenic differentiation via histologic evaluation and quantification of DNA, glycosaminoglycan, and collagen II. RESULTS 48 hours after MSC seeding, cell viability and DNA content were similar among groups. Three weeks after seeding, HA supplementation of the culture medium improved matrix production in a dose-dependent manner, as indicated by matrix glycosaminoglycan and collagen II concentrations. The scaffold composition, however, had no significant effect on matrix production. CONCLUSIONS AND CLINICAL RELEVANCE High-molecular-weight HA supplementation in culture medium had a dose-dependent effect on matrix production and thus chondrogenic differentiation of MSCs cultured on chitosan sponges. The addition of HA in the surrounding fluid during chondrogenesis should improve cartilage production and may be useful for producing engineered cartilage tissues.
Collapse
Affiliation(s)
- Zeev Schwartz
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA.
| | | | | | | | | |
Collapse
|
27
|
Cheng HLM, Loai Y, Beaumont M, Farhat WA. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study. Magn Reson Med 2011; 64:341-8. [PMID: 20665777 DOI: 10.1002/mrm.22404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bladder acellular matrices (ACMs) derived from natural tissue are gaining increasing attention for their role in tissue engineering and regeneration. Unlike conventional scaffolds based on biodegradable polymers or gels, ACMs possess native biomechanical and many acquired biologic properties. Efforts to optimize ACM-based scaffolds are ongoing and would be greatly assisted by a noninvasive means to characterize scaffold properties and monitor interaction with cells. MRI is well suited to this role, but research with MRI for scaffold characterization has been limited. This study presents initial results from quantitative MRI measurements for bladder ACM characterization and investigates the effects of incorporating hyaluronic acid, a natural biomaterial useful in tissue-engineering and regeneration. Measured MR relaxation times (T(1), T(2)) and diffusion coefficient were consistent with increased water uptake and glycosaminoglycan content observed on biochemistry in hyaluronic acid ACMs. Multicomponent MRI provided greater specificity, with diffusion data showing an acellular environment and T(2) components distinguishing the separate effects of increased glycosaminoglycans and hydration. These results suggest that quantitative MRI may provide useful information on matrix composition and structure, which is valuable in guiding further development using bladder ACMs for organ regeneration and in strategies involving the use of hyaluronic acid.
Collapse
|
28
|
Dutta RC, Dutta AK. Comprehension of ECM-Cell dynamics: A prerequisite for tissue regeneration. Biotechnol Adv 2010; 28:764-9. [DOI: 10.1016/j.biotechadv.2010.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/05/2010] [Accepted: 06/12/2010] [Indexed: 12/12/2022]
|
29
|
Collagen-hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater 2010; 6:3957-68. [PMID: 20466086 DOI: 10.1016/j.actbio.2010.05.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 12/24/2022]
Abstract
Three-dimensional (3-D) in vitro models of the mammary gland require a scaffold matrix that supports the development of adipose stroma within a robust freely permeable matrix. 3-D porous collagen-hyaluronic acid (HA: 7.5% and 15%) scaffolds were produced by controlled freeze-drying technique and crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride. All scaffolds displayed uniform, interconnected pore structure (total porosity approximately 85%). Physical and chemical analysis showed no signs of collagen denaturation during the formation process. The values of thermal characteristics indicated that crosslinking occurred and that its efficiency was enhanced by the presence of HA. Although the crosslinking reduced the swelling of the strut material in water, the collagen-HA matrix as a whole tended to swell more and show higher dissolution resistance than pure collagen samples. The compressive modulus and elastic collapse stress were higher for collagen-HA composites. All the scaffolds were shown to support the proliferation and differentiation 3T3-L1 preadipocytes while collagen-HA samples maintained a significantly increased proportion of cycling cells (Ki-67+). Furthermore, collagen-HA composites displayed significantly raised Adipsin gene expression with adipogenic culture supplementation for 8 days vs. control conditions. These results indicate that collagen-HA scaffolds may offer robust, freely permeable 3-D matrices that enhance mammary stromal tissue development in vitro.
Collapse
|
30
|
von der Mark K, Park J, Bauer S, Schmuki P. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res 2009; 339:131-53. [DOI: 10.1007/s00441-009-0896-5] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 10/08/2009] [Indexed: 11/29/2022]
|
31
|
Chen YG, Lee MW, Tu YH, Hung SC, Wang YJ. Surface coupling of long-chain hyaluronan to the fibrils of reconstituted type II collagen. ACTA ACUST UNITED AC 2009; 37:222-6. [PMID: 19722116 DOI: 10.1080/10731190903199036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of this study was to fabricate type II collagen fibrils with surface modified by long-chain hyaluronic acid. Monomeric type II collagen was isolated from bovine articular cartilage and reconstituted into collagen fibrils followed by a reaction with EDC (1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide)-activated long-chain hyaluronic acid. The existence of the hyaluronan molecules on the fibrillar surface was confirmed by the specific bindings of gold nanoparticles labeled with wheat germ agglutinin. The topographic pattern of type II collagen fibrils revealed by AFM scanning changed significantly after the surface coupling of hyaluronic acid. Beneath the hyaluronan, the characteristic D-bandings of the reconstituted collagen fibrils remained intact as shown by the results of TEM observation. The collagen fibrils became more resistant to collagenase digestion after surface coupling of hyaluronic acid as compared with that without hyaluronic acid immobilization. In addition, human mesenchymal stem cells encapsulated and cultured within the matrix of HA-collagen fibrils have a higher proliferation rate than cells grown within the unmodified type II collagen fibrils. The newly synthesized material of HA-collagen II fibrils has a great potential for use in constructing scaffold for tissue repair.
Collapse
Affiliation(s)
- Yong G Chen
- Institute of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R. Biofabrication: a 21st century manufacturing paradigm. Biofabrication 2009; 1:022001. [PMID: 20811099 DOI: 10.1088/1758-5082/1/2/022001] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biofabrication can be defined as the production of complex living and non-living biological products from raw materials such as living cells, molecules, extracellular matrices, and biomaterials. Cell and developmental biology, biomaterials science, and mechanical engineering are the main disciplines contributing to the emergence of biofabrication technology. The industrial potential of biofabrication technology is far beyond the traditional medically oriented tissue engineering and organ printing and, in the short term, it is essential for developing potentially highly predictive human cell- and tissue-based technologies for drug discovery, drug toxicity, environmental toxicology assays, and complex in vitro models of human development and diseases. In the long term, biofabrication can also contribute to the development of novel biotechnologies for sustainable energy production in the future biofuel industry and dramatically transform traditional animal-based agriculture by inventing 'animal-free' food, leather, and fur products. Thus, the broad spectrum of potential applications and rapidly growing arsenal of biofabrication methods strongly suggests that biofabrication can become a dominant technological platform and new paradigm for 21st century manufacturing. The main objectives of this review are defining biofabrication, outlining the most essential disciplines critical for emergence of this field, analysis of the evolving arsenal of biofabrication technologies and their potential practical applications, as well as a discussion of the common challenges being faced by biofabrication technologies, and the necessary conditions for the development of a global biofabrication research community and commercially successful biofabrication industry.
Collapse
Affiliation(s)
- V Mironov
- Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|