1
|
Lin M, Hu Y, An H, Guo T, Gao Y, Peng K, Zhao M, Zhang X, Zhou H. Silk fibroin-based biomaterials for disc tissue engineering. Biomater Sci 2023; 11:749-776. [PMID: 36537344 DOI: 10.1039/d2bm01343f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is the major cause of disability worldwide, and intervertebral disc degeneration (IVDD) is one of the most important causes of low back pain. Currently, there is no method to treat IVDD that can reverse or regenerate intervertebral disc (IVD) tissue, but the recent development of disc tissue engineering (DTE) offers a new means of addressing these disadvantages. Among numerous biomaterials for tissue engineering, silk fibroin (SF) is widely used due to its easy availability and excellent physical/chemical properties. SF is usually used in combination with other materials to construct biological scaffolds or bioactive substance delivery systems, or it can be used alone. The present article first briefly outlines the anatomical and physiological features of IVD, the associated etiology and current treatment modalities of IVDD, and the current status of DTE. Then, it highlights the characteristics of SF biomaterials and their latest research advances in DTE and discusses the prospects and challenges in the application of SF in DTE, with a view to facilitating the clinical process of developing interventions related to IVD-derived low back pain caused by IVDD.
Collapse
Affiliation(s)
- Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Haiying An
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Kaichen Peng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Meiling Zhao
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China.
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
2
|
Abdullah T, Su E, Memić A. Designing Silk-Based Cryogels for Biomedical Applications. Biomimetics (Basel) 2022; 8:5. [PMID: 36648791 PMCID: PMC9844337 DOI: 10.3390/biomimetics8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
There is a need to develop the next generation of medical products that require biomaterials with improved properties. The versatility of various gels has pushed them to the forefront of biomaterials research. Cryogels, a type of gel scaffold made by controlled crosslinking under subzero or freezing temperatures, have great potential to address many current challenges. Unlike their hydrogel counterparts, which are also able to hold large amounts of biologically relevant fluids such as water, cryogels are often characterized by highly dense and crosslinked polymer walls, macroporous structures, and often improved properties. Recently, one biomaterial that has garnered a lot of interest for cryogel fabrication is silk and its derivatives. In this review, we provide a brief overview of silk-based biomaterials and how cryogelation can be used for novel scaffold design. We discuss how various parameters and fabrication strategies can be used to tune the properties of silk-based biomaterials. Finally, we discuss specific biomedical applications of silk-based biomaterials. Ultimately, we aim to demonstrate how the latest advances in silk-based cryogel scaffolds can be used to address challenges in numerous bioengineering disciplines.
Collapse
Affiliation(s)
| | - Esra Su
- Department of Chemistry, Istanbul Technical University, Istanbul 34467, Turkey
- Faculty of Aquatic Sciences, Aquatic Biotechnology, Istanbul University, Istanbul 34134, Turkey
| | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Yang M, Xiang D, Chen Y, Cui Y, Wang S, Liu W. An Artificial PVA-BC Composite That Mimics the Biomechanical Properties and Structure of a Natural Intervertebral Disc. MATERIALS 2022; 15:ma15041481. [PMID: 35208022 PMCID: PMC8875496 DOI: 10.3390/ma15041481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
Disc herniation is one of the most ubiquitous healthcare problems in modern cities—severe patients eventually require surgical intervention. However, the existing operations—spinal fusion and artificial disc replacement—alter the biomechanics of the spine, leaving much room for improvement. The appropriateness of polyvinyl alcohol (PVA) for biomedical applications has been recognised due to its high water content, excellent biocompatibility, and versatile mechanical properties. In this study, a newly-designed PVA–bacterial cellulose (PVA-BC) composite was assembled to mimic both the biomechanics and annular structure of natural intervertebral discs (IVDs). PVA-BC composites of various concentrations were fabricated and tested under unconfined compression and compressive creep in order to acquire the values of the normalised compressive stiffness and whole normalised deformation. The normalised compressive stiffness increased considerably with an increasing PVA concentration, spanning from 1.82 (±0.18) to 3.50 (±0.14) MPa, and the whole normalised deformation decreased from 0.25 to 0.13. Formulations of 40% PVA provided the most accurate mimicry of natural human IVDs in normalised whole deformation, and demonstrated higher dimensional stability. The biocompatible results further confirmed that the materials had excellent biocompatibility. The novel bionic structure and formulations of the PVA-BC materials mimicked the biomechanics and structure of natural IVDs, and ensured dimensional stability under prolonged compression, reducing the risk of impingement on the surrounding tissue. The PVA-BC composite is a promising material for third-generation artificial IVDs with integrated construction.
Collapse
Affiliation(s)
- Mengying Yang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (M.Y.); (Y.C.); (Y.C.)
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Dingding Xiang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
- Correspondence: (D.X.); (S.W.); (W.L.)
| | - Yuru Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (M.Y.); (Y.C.); (Y.C.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Yangyang Cui
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (M.Y.); (Y.C.); (Y.C.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (D.X.); (S.W.); (W.L.)
| | - Weiqiang Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China; (M.Y.); (Y.C.); (Y.C.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
- Correspondence: (D.X.); (S.W.); (W.L.)
| |
Collapse
|
4
|
Savina IN, Zoughaib M, Yergeshov AA. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels 2021; 7:79. [PMID: 34203439 PMCID: PMC8293244 DOI: 10.3390/gels7030079] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cryogels obtained by the cryotropic gelation process are macroporous hydrogels with a well-developed system of interconnected pores and shape memory. There have been significant recent advancements in our understanding of the cryotropic gelation process, and in the relationship between components, their structure and the application of the cryogels obtained. As cryogels are one of the most promising hydrogel-based biomaterials, and this field has been advancing rapidly, this review focuses on the design of biodegradable cryogels as advanced biomaterials for drug delivery and tissue engineering. The selection of a biodegradable polymer is key to the development of modern biomaterials that mimic the biological environment and the properties of artificial tissue, and are at the same time capable of being safely degraded/metabolized without any side effects. The range of biodegradable polymers utilized for cryogel formation is overviewed, including biopolymers, synthetic polymers, polymer blends, and composites. The paper discusses a cryotropic gelation method as a tool for synthesis of hydrogel materials with large, interconnected pores and mechanical, physical, chemical and biological properties, adapted for targeted biomedical applications. The effect of the composition, cross-linker, freezing conditions, and the nature of the polymer on the morphology, mechanical properties and biodegradation of cryogels is discussed. The biodegradation of cryogels and its dependence on their production and composition is overviewed. Selected representative biomedical applications demonstrate how cryogel-based materials have been used in drug delivery, tissue engineering, regenerative medicine, cancer research, and sensing.
Collapse
Affiliation(s)
- Irina N. Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| | - Abdulla A. Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| |
Collapse
|
5
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
6
|
Freitas ED, Freitas VM, Rosa PC, da Silva MG, Vieira MG. Development and evaluation of naproxen-loaded sericin/alginate beads for delayed and extended drug release using different covalent crosslinking agents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111412. [DOI: 10.1016/j.msec.2020.111412] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/02/2023]
|
7
|
Schmitz TC, Salzer E, Crispim JF, Fabra GT, LeVisage C, Pandit A, Tryfonidou M, Maitre CL, Ito K. Characterization of biomaterials intended for use in the nucleus pulposus of degenerated intervertebral discs. Acta Biomater 2020; 114:1-15. [PMID: 32771592 DOI: 10.1016/j.actbio.2020.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/06/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Biomaterials for regeneration of the intervertebral disc must meet complex requirements conforming to biological, mechanical and clinical demands. Currently no consensus on their characterization exists. It is crucial to identify parameters and their method of characterization for accurate assessment of their potential efficacy, keeping in mind the translation towards clinical application. This review systematically analyses the characterization techniques of biomaterial systems that have been used for nucleus pulposus (NP) restoration and regeneration. Substantial differences in the approach towards assessment became evident, hindering comparisons between different materials with respect to their suitability for NP restoration and regeneration. We have analysed the current approaches and identified parameters necessary for adequate biomaterial characterization, with the clinical goal of functional restoration and biological regeneration of the NP in mind. Further, we provide guidelines and goals for their measurement. STATEMENT OF SIGNIFICANCE: Biomaterials intended for restoration of regeneration of the nucleus pulposus within the intervertebral disc must meet biological, biomechanical and clinical demands. Many materials have been investigated, but a lack of consensus on which parameters to evaluate leads to difficulties in comparing materials as well as mostly partial characterization of the materials in question. A gap between current methodology and clinically relevant and meaningful characterization is prevalent. In this article, we identify necessary methods and their implementation for complete biomaterial characterization in the context of clinical applicability. This will allow for a more unified approach to NP-biomaterials research within the field as a whole and enable comparative analysis of novel materials yet to be developed.
Collapse
Affiliation(s)
- Tara C Schmitz
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - Elias Salzer
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| | - Georgina Targa Fabra
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, 7WQJ+8F Galway, Ireland.
| | - Catherine LeVisage
- Université de Nantes, INSERM UMR 1229, Regenerative Medicine and Skeleton, RMeS School of Dental Surgery, University of Nantes, 1 Place Ricordeau, 44300 Nantes, France.
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, 7WQJ+8F Galway, Ireland.
| | - Marianna Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, Netherlands.
| | - Christine Le Maitre
- Biomolecular Sciences Research Centre Sheffield Hallam University, City Campus, Howard Street, S1 1WB Sheffield, United Kingdom.
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands.
| |
Collapse
|
8
|
Thakar H, Sebastian SM, Mandal S, Pople A, Agarwal G, Srivastava A. Biomolecule-Conjugated Macroporous Hydrogels for Biomedical Applications. ACS Biomater Sci Eng 2019; 5:6320-6341. [DOI: 10.1021/acsbiomaterials.9b00778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:5460-5491. [DOI: 10.1021/acsabm.9b00576] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Farokhi M, Mottaghitalab F, Fatahi Y, Saeb MR, Zarrintaj P, Kundu SC, Khademhosseini A. Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, Navare KJ, Mohammed HS, Bencherif SA. Latest Advances in Cryogel Technology for Biomedical Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800114] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adnan Memic
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Center for Biomedical EngineeringDepartment of MedicineBrigham and Women's HospitalHarvard Medical School Cambridge MA 02139 USA
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Thibault Colombani
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Loek J. Eggermont
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of Tumor ImmunologyOncode Institute, Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen 6500 The Netherlands
| | | | - Joseph Steingold
- Department of Pharmaceutical SciencesNortheastern University Boston MA 02115 USA
| | - Zach J. Rogers
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | | | | | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of BioengineeringNortheastern University Boston MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
- Sorbonne UniversityUTC CNRS UMR 7338Biomechanics and Bioengineering (BMBI)University of Technology of Compiègne Compiègne 60159 France
| |
Collapse
|
12
|
Wang J, Yang H. Superelastic and pH-Responsive Degradable Dendrimer Cryogels Prepared by Cryo-aza-Michael Addition Reaction. Sci Rep 2018; 8:7155. [PMID: 29740011 PMCID: PMC5940921 DOI: 10.1038/s41598-018-25456-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/11/2018] [Indexed: 12/15/2022] Open
Abstract
Dendrimers exhibit super atomistic features by virtue of their well-defined discrete quantized nanoscale structures. Here, we show that hyperbranched amine-terminated polyamidoamine (PAMAM) dendrimer G4.0 reacts with linear polyethylene glycol (PEG) diacrylate (575 g/mol) via the aza-Michael addition reaction at a subzero temperature (-20 °C), namely cryo-aza-Michael addition, to form a macroporous superelastic network, i.e., dendrimer cryogel. Dendrimer cryogels exhibit biologically relevant Young's modulus, high compression elasticity and super resilience at ambient temperature. Furthermore, the dendrimer cryogels exhibit excellent rebound performance and do not show significant stress relaxation under cyclic deformation over a wide temperature range (-80 to 100 °C). The obtained dendrimer cryogels are stable at acidic pH but degrade quickly at physiological pH through self-triggered degradation. Taken together, dendrimer cryogels represent a new class of scaffolds with properties suitable for biomedical applications.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, 23219, United States. .,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, 23298, United States. .,Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, 23298, United States.
| |
Collapse
|
13
|
Frauchiger DA, Heeb SR, May RD, Wöltje M, Benneker LM, Gantenbein B. Differentiation of MSC and annulus fibrosus cells on genetically engineered silk fleece-membrane-composites enriched for GDF-6 or TGF-β3. J Orthop Res 2018; 36:1324-1333. [PMID: 29058815 DOI: 10.1002/jor.23778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/13/2017] [Indexed: 02/04/2023]
Abstract
Intervertebral disc (IVD) repair is a high-priority topic in our active and increasingly ageing society. Since a high number of people are affected by low back pain treatment options that are able to restore the biological function of the IVD are highly warranted. Here, we investigated whether the feasibility of genetically engineered (GE)-silk from Bombyx mori containing specific growth factors to precondition human bone-marrow derived mesenchymal stem cells (hMSC) or to activate differentiated human annulus fibrosus cells (hAFC) prior transplantation or for direct repair on the IVD. Here, we tested the hypothesis that GE-silk fleece can thrive human hMSC towards an IVD-like phenotype. We aimed to demonstrate a possible translational application of good manufacturing practice (GMP)-compliant GE-silk scaffolds in IVD repair and regeneration. GE-silk with growth and differentiation factor 6 (GDF-6-silk) or transforming growth factor β3 (TGF-β3, TGF-β3-silk) and untreated silk (cSilk) were investigated by DNA content, cell activity assay and glycosaminoglycan (GAG) content and their differentiation potential by qPCR analysis. We found that all silk types demonstrated a very high biocompatibility for both cell types, that is, hMSC and hAFC, as revealed by cell activity, and DNA proliferation assay. Further, analyzing qPCR of marker genes revealed a trend to differentiation toward an NP-like phenotype looking at the Aggrecan/Collagen 2 ratio which was around 10:1. Our results support the conclusion that our GE-silk scaffold treatment approach can thrive hMSC towards a more IVD-like phenotype or can maintain the phenotype of native hAFC. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1324-1333, 2018.
Collapse
Affiliation(s)
- Daniela A Frauchiger
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, CH-3014 Bern, Switzerland
| | - Silvan R Heeb
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, CH-3014 Bern, Switzerland.,Department of Hematology and Central Hematology Laboratory, University of Bern, Inselspital, Bern University Hospital, CH-3010 Bern, Switzerland.,Department for BioMedical Research, University of Bern, CH-3010 Bern, Switzerland
| | - Rahel D May
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, CH-3014 Bern, Switzerland
| | - Michael Wöltje
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, DE-01069 Dresden, Germany
| | - Lorin M Benneker
- Department of Orthopaedic Surgery and Traumatology, University of Bern, Inselspital, Bern University Hospital, CH-3010 Bern, Switzerland
| | - Benjamin Gantenbein
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, CH-3014 Bern, Switzerland
| |
Collapse
|
14
|
Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering. Acta Biomater 2018; 65:123-136. [PMID: 29128534 DOI: 10.1016/j.actbio.2017.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/15/2017] [Accepted: 11/07/2017] [Indexed: 01/25/2023]
Abstract
To offer an ideal hospitable environment for corneal keratocyte growth, the carrier materials can be functionalized with incorporation of signaling molecules to regulate cell biological events. This study reports, for the first time, the development of gelatin/ascorbic acid (AA) cryogels for keratocyte carriers in vitro and in vivo. The cryogel samples were fabricated by blending of gelatin with varying amounts of AA (0-300 mg) and carbodiimide cross-linking via cryogelation technique. Hydrophilic AA content in the carriers was found to significantly affect cross-linking degree and pore dimension of cryogels, thereby dictating their mechanical and biological stability and AA release profile. The cryogel carriers with low-to-moderate AA loadings were well tolerated by rabbit keratocyte cultures and anterior segment eye tissues, demonstrating good ocular biocompatibility. Although higher incorporated AA level contributed to enhanced metabolic activity and biosynthetic capacity of keratocytes grown on cryogel matrices, the presence of excessive amounts of AA molecules could lead to toxic effect and limit cell proliferation and matrix production. The cytoprotective activity against oxidative stress was shown to be strongly dependent on AA release, which further determined cell culture performance and tissue reconstruction efficiency. With the optimum AA content in carrier materials, intrastromally implanted cell/cryogel constructs exhibited better capability to enhance tissue matrix regeneration and transparency maintenance as well as to mitigate corneal damage in an alkali burn-induced animal model. It is concluded that understanding of antioxidant molecule-mediated structure-property-function interrelationships in gelatin/AA cryogels is critical to designing carrier materials for potential use in corneal stromal tissue engineering. STATEMENT OF SIGNIFICANCE Multifunctional cryogel material can offer an ideal hospitable environment for cell-mediated tissue reconstruction. To our knowledge, this is the first report describing the use of gelatin/ascorbic acid (AA) cryogels as keratocyte carriers for corneal stromal tissue engineering. The AA loading during cryogel fabrication is found to have a significant effect on cross-linking degree and pore dimension, mechanical and biological stability, ocular biocompatibility, cell culture performance, and cytoprotective activity, giving comprehensive insight into fine-tuning the structure-property-function interrelationships of keratocyte carrier material. Using an alkali burn-induced animal model, we present evidence that with the optimum AA loading into cryogel materials, intrastromally implanted cell/carrier constructs exhibited better capability to enhance tissue matrix regeneration and transparency maintenance as well as to mitigate corneal damage.
Collapse
|
15
|
van Uden S, Silva-Correia J, Oliveira JM, Reis RL. Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities. Biomater Res 2017; 21:22. [PMID: 29085662 PMCID: PMC5651638 DOI: 10.1186/s40824-017-0106-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
Background Intervertebral disc degeneration has an annual worldwide socioeconomic impact masked as low back pain of over 70 billion euros. This disease has a high prevalence over the working age class, which raises the socioeconomic impact over the years. Acute physical trauma or prolonged intervertebral disc mistreatment triggers a biochemical negative tendency of catabolic-anabolic balance that progress to a chronic degeneration disease. Current biomedical treatments are not only ineffective in the long-run, but can also cause degeneration to spread to adjacent intervertebral discs. Regenerative strategies are desperately needed in the clinics, such as: minimal invasive nucleus pulposus or annulus fibrosus treatments, total disc replacement, and cartilaginous endplates decalcification. Main body Herein, it is reviewed the state-of-the-art of intervertebral disc regeneration strategies from the perspective of cells, scaffolds, or constructs, including both popular and unique tissue engineering approaches. The premises for cell type and origin selection or even absence of cells is being explored. Choice of several raw materials and scaffold fabrication methods are evaluated. Extensive studies have been developed for fully regeneration of the annulus fibrosus and nucleus pulposus, together or separately, with a long set of different rationales already reported. Recent works show promising biomaterials and processing methods applied to intervertebral disc substitutive or regenerative strategies. Facing the abundance of studies presented in the literature aiming intervertebral disc regeneration it is interesting to observe how cartilaginous endplates have been extensively neglected, being this a major source of nutrients and water supply for the whole disc. Conclusion Several innovative avenues for tackling intervertebral disc degeneration are being reported – from acellular to cellular approaches, but the cartilaginous endplates regeneration strategies remain unaddressed. Interestingly, patient-specific approaches show great promise in respecting patient anatomy and thus allow quicker translation to the clinics in the near future.
Collapse
Affiliation(s)
- Sebastião van Uden
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR Gandra, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga Portugal.,Present Address: Bioengineering Laboratories Srl, Viale Brianza 8, Meda, Italy.,Present Address: Politecnico di Milano, Piazza Leonardo da Vinci, 32 Milan, Italy
| | - Joana Silva-Correia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR Gandra, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR Gandra, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR Gandra, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco Guimarães, Portugal
| |
Collapse
|
16
|
Hixon KR, Lu T, Sell SA. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 2017; 62:29-41. [PMID: 28851666 DOI: 10.1016/j.actbio.2017.08.033] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/01/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023]
Abstract
The extracellular matrix is fundamental in providing an appropriate environment for cell interaction and signaling to occur. Replicating such a matrix is advantageous in the support of tissue ingrowth and regeneration through the field of tissue engineering. While scaffolds can be fabricated in many ways, cryogels have recently become a popular approach due to their macroporous structure and durability. Produced through the crosslinking of gel precursors followed by a subsequent controlled freeze/thaw cycle, the resulting cryogel provides a unique, sponge-like structure. Therefore, cryogels have proven advantageous for many tissue engineering applications including roles in bioreactor systems, cell separation, and scaffolding. Specifically, the matrix has been demonstrated to encourage the production of various molecules, such as antibodies, and has also been used for cryopreservation. Cryogels can pose as a bioreactor for the expansion of cell lines, as well as a vehicle for cell separation. Lastly, this matrix has shown excellent potential as a tissue engineered scaffold, encouraging regrowth at numerous damaged tissue sites in vivo. This review will briefly discuss the fabrication of cryogels, with an emphasis placed on their application in various facets of tissue engineering to provide an overview of this unique scaffold's past and future roles. STATEMENT OF SIGNIFICANCE Cryogels are unique scaffolds produced through the controlled freezing and thawing of a polymer solution. There is an ever-growing body of literature that demonstrates their applicability in the realm of tissue engineering as extracellular matrix analogue scaffolds; with extensive information having been provided regarding the fabrication, porosity, and mechanical integrity of the scaffolds. Additionally, cryogels have been reviewed with respect to their role in bioseparation and as cellular incubators. This all-inclusive view of the roles that cryogels can play is critical to advancing the technology and expanding its niche within biomaterials and tissue engineering research. To the best of the authors' knowledge, this is the first comprehensive review of cryogel applications in tissue engineering that includes specific looks at their growing roles as extracellular matrix analogues, incubators, and in bioseparation processes.
Collapse
|
17
|
Lee JM, Sultan MT, Kim SH, Kumar V, Yeon YK, Lee OJ, Park CH. Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel. Int J Mol Sci 2017; 18:E1707. [PMID: 28777314 PMCID: PMC5578097 DOI: 10.3390/ijms18081707] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 01/28/2023] Open
Abstract
Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel.
Collapse
Affiliation(s)
- Jung Min Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Vijay Kumar
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Yeung Kyu Yeon
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 200-702, Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon 200-704, Korea.
| |
Collapse
|
18
|
Ruan JL, Chen C, Shen JH, Zhao XL, Qian SH, Zhu ZG. A Gelated Colloidal Crystal Attached Lens for Noninvasive Continuous Monitoring of Tear Glucose. Polymers (Basel) 2017; 9:polym9040125. [PMID: 30970805 PMCID: PMC6432312 DOI: 10.3390/polym9040125] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 01/20/2023] Open
Abstract
Patients of diabetes mellitus urgently need noninvasive and continuous glucose monitoring in daily point-of-care. As the tear glucose concentration has a positive correlation with that in blood, the hydrogel colloidal crystal integrated into contact lens possesses promising potential for noninvasive monitoring of glucose in tears. This paper presents a new glucose-responsive sensor, which consists a crystalline colloidal array (CCA) embedded in hydrogel matrix, attached onto a rigid gas permeable (RGP) contact lens. This novel sensing lens is able to selectively diffract visible light, whose wavelength shifts between 567 and 468 nm according to the alternation of the glucose concentration between 0 and 50 mM and its visible color change between reddish yellow, green, and blue. The detection limit of responsive glucose concentration can be reduced to 0.05 mM. Its combination with a contact lens endows it with excellent biocompatibility and portability, which shows great possibility for it to push the development of glucose-detecting devices into new era.
Collapse
Affiliation(s)
- Jia-Li Ruan
- Department of Ophthalmology, EENT Hospital of Fudan University, Shanghai 200031, China.
| | - Cheng Chen
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Jian-Hua Shen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xue-Ling Zhao
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| | - Shao-Hong Qian
- Department of Ophthalmology, EENT Hospital of Fudan University, Shanghai 200031, China.
| | - Zhi-Gang Zhu
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China.
| |
Collapse
|
19
|
Yang Q, Xu HW, Hurday S, Xu BS. Construction Strategy and Progress of Whole Intervertebral Disc Tissue Engineering. Orthop Surg 2017; 8:11-8. [PMID: 27028376 DOI: 10.1111/os.12218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
Degenerative disc disease (DDD) is the major cause of low back pain, which usually leads to work absenteeism, medical visits and hospitalization. Because the current conservative procedures and surgical approaches to treatment of DDD only aim to relieve the symptoms of disease but not to regenerate the diseased disc, their long-term efficiency is limited. With the rapid developments in medical science, tissue engineering techniques have progressed markedly in recent years, providing a novel regenerative strategy for managing intervertebral disc disease. However, there are as yet no ideal methods for constructing tissue-engineered intervertebral discs. This paper reviews published reports pertaining to intervertebral disc tissue engineering and summarizes data concerning the seed cells and scaffold materials for tissue-engineered intervertebral discs, construction of tissue-engineered whole intervertebral discs, relevant animal experiments and effects of mechanics on the construction of tissue-engineered intervertebral disc and outlines the existing problems and future directions. Although the perfect regenerative strategy for treating DDD has not yet been developed, great progress has been achieved in the construction of tissue-engineered intervertebral discs. It is believed that ongoing research on intervertebral disc tissue engineering will result in revolutionary progress in the treatment of DDD.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Minimally Invasive Spine Surgery, Tianjin, China
| | - Hai-wei Xu
- Department of Minimally Invasive Spine Surgery, Tianjin, China
| | - Sookesh Hurday
- Department of Minimally Invasive Spine Surgery, Tianjin, China.,Tianjin Medical University, Tianjin Hospital, Tianjin, China
| | - Bao-shan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin, China
| |
Collapse
|
20
|
|
21
|
Caló E, Barros J, Ballamy L, Khutoryanskiy VV. Poly(vinyl alcohol)–Gantrez® AN cryogels for wound care applications. RSC Adv 2016. [DOI: 10.1039/c6ra24573k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cryotropic gelation is a low cost, well-known technique that has been used for decades for the preparation of cryogels based on poly(vinyl alcohol).
Collapse
Affiliation(s)
- Enrica Caló
- Reading School of Pharmacy
- University of Reading
- Reading
- UK
| | - Joao Barros
- Reading School of Pharmacy
- University of Reading
- Reading
- UK
| | | | | |
Collapse
|