1
|
Snyder Y, Jana S. Innovative Substrate Design with Basement Membrane Components for Enhanced Endothelial Cell Function and Endothelization. Adv Healthc Mater 2024; 13:e2401150. [PMID: 39021293 DOI: 10.1002/adhm.202401150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Enhancing endothelial cell growth on small-diameter vascular grafts produced from decellularized tissues or synthetic substrates is pivotal for preventing thrombosis. While optimized decellularization protocols can preserve the structure and many components of the extracellular matrix (ECM), the process can still lead to the loss of crucial basement membrane proteins, such as laminin, collagen IV, and perlecan, which are pivotal for endothelial cell adherence and functional growth. This loss can result in poor endothelialization and endothelial cell activation causing thrombosis and intimal hyperplasia. To address this, the basement membrane's ECM is emulated on fiber substrates, providing a more physiological environment for endothelial cells. Thus, fibroblasts are cultured on fiber substrates to produce an ECM membrane substrate (EMMS) with basement membrane proteins. The EMMS then underwent antigen removal (AR) treatment to eliminate antigens from the membrane while preserving essential proteins and producing an AR-treated membrane substrate (AMS). Subsequently, human endothelial cells cultured on the AMS exhibited superior proliferation, nitric oxide production, and increased expression of endothelial markers of quiescence/homeostasis, along with autophagy and antithrombotic factors, compared to those on the decellularized aortic tissue. This strategy showed the potential of pre-endowing fiber substrates with a basement membrane to enable better endothelization.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Liu Y, Sun Y, Cheng S. Advances in the use of organoids in endometrial diseases. Int J Gynaecol Obstet 2024; 166:502-511. [PMID: 38391201 DOI: 10.1002/ijgo.15422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
The endometrium undergoes cyclical changes in response to hormones and there is a certain degree of heterogeneity among individuals. In vivo identification of the physiologic changes of the endometrium and the pathologic process of related diseases is challenging. There have been recent advances in the use of organoids that mimic the characteristics of the corresponding organs and the morphologic, functional, and personalized characteristics involved in different stages of diseases. In this paper, we discuss the process of creating endometrial organoids, cell sources, types of extracellular matrices, and their application in the study of physiologic endometrial states and various diseases.
Collapse
Affiliation(s)
- Yaofang Liu
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Sun
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shaolong Cheng
- Department of Reproductive Technology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Xu Y, Liu X, Ahmad MA, Ao Q, Yu Y, Shao D, Yu T. Engineering cell-derived extracellular matrix for peripheral nerve regeneration. Mater Today Bio 2024; 27:101125. [PMID: 38979129 PMCID: PMC11228803 DOI: 10.1016/j.mtbio.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Extracellular matrices (ECMs) play a key role in nerve repair and are recognized as the natural source of biomaterials. In parallel to extensively studied tissue-derived ECMs (ts-ECMs), cell-derived ECMs (cd-ECMs) also have the capability to partially recapitulate the complicated regenerative microenvironment of native nerve tissues. Notably, cd-ECMs can avoid the shortcomings of ts-ECMs. Cd-ECMs can be prepared by culturing various cells or even autologous cells in vitro under pathogen-free conditions. And mild decellularization can achieve efficient removal of immunogenic components in cd-ECMs. Moreover, cd-ECMs are more readily customizable to achieve the desired functional properties. These advantages have garnered significant attention for the potential of cd-ECMs in neuroregenerative medicine. As promising biomaterials, cd-ECMs bring new hope for the effective treatment of peripheral nerve injuries. Herein, this review comprehensively examines current knowledge about the functional characteristics of cd-ECMs and their mechanisms of interaction with cells in nerve regeneration, with a particular focus on the preparation, engineering optimization, and scalability of cd-ECMs. The applications of cd-ECMs from distinct cell sources reported in peripheral nerve tissue engineering are highlighted and summarized. Furthermore, current limitations that should be addressed and outlooks related to clinical translation are put forward as well.
Collapse
Affiliation(s)
- Yingxi Xu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianbo Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | | | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yu
- Health Sciences Institute, Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, China Medical University, Shenyang, China
| | - Dan Shao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, Guangzhou, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
4
|
Golebiowska AA, Intravaia JT, Sathe VM, Kumbar SG, Nukavarapu SP. Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects. Bioact Mater 2024; 32:98-123. [PMID: 37927899 PMCID: PMC10622743 DOI: 10.1016/j.bioactmat.2023.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Tissue engineering and regenerative medicine have shown potential in the repair and regeneration of tissues and organs via the use of engineered biomaterials and scaffolds. However, current constructs face limitations in replicating the intricate native microenvironment and achieving optimal regenerative capacity and functional recovery. To address these challenges, the utilization of decellularized tissues and cell-derived extracellular matrix (ECM) has emerged as a promising approach. These biocompatible and bioactive biomaterials can be engineered into porous scaffolds and grafts that mimic the structural and compositional aspects of the native tissue or organ microenvironment, both in vitro and in vivo. Bioactive dECM materials provide a unique tissue-specific microenvironment that can regulate and guide cellular processes, thereby enhancing regenerative therapies. In this review, we explore the emerging frontiers of decellularized tissue-derived and cell-derived biomaterials and bio-inks in the field of tissue engineering and regenerative medicine. We discuss the need for further improvements in decellularization methods and techniques to retain structural, biological, and physicochemical characteristics of the dECM products in a way to mimic native tissues and organs. This article underscores the potential of dECM biomaterials to stimulate in situ tissue repair through chemotactic effects for the development of growth factor and cell-free tissue engineering strategies. The article also identifies the challenges and opportunities in developing sterilization and preservation methods applicable for decellularized biomaterials and grafts and their translation into clinical products.
Collapse
Affiliation(s)
| | - Jonathon T. Intravaia
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Vinayak M. Sathe
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| | - Syam P. Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, 06032, USA
| |
Collapse
|
5
|
Chen W, Zhang W, Zhang N, Chen S, Huang T, You H. Pipeline for precise insoluble matrisome coverage in tissue extracellular matrices. Front Bioeng Biotechnol 2023; 11:1135936. [PMID: 37284237 PMCID: PMC10239929 DOI: 10.3389/fbioe.2023.1135936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The extracellular matrix (ECM) is assembled by hundreds of proteins orchestrating tissue patterning and surrounding cell fates via the mechanical-biochemical feedback loop. Aberrant ECM protein production or assembly usually creates pathological niches eliciting lesions that mainly involve fibrogenesis and carcinogenesis. Yet, our current knowledge about the pathophysiological ECM compositions and alterations in healthy or diseased tissues is limited since the methodology for precise insoluble matrisome coverage in the ECM is a "bottleneck." Our current study proposes an enhanced sodium dodecyl sulfonate (E-SDS) workflow for thorough tissue decellularization and an intact pipeline for the accurate identification and quantification of highly insoluble ECM matrisome proteins. We tested this pipeline in nine mouse organs and highlighted the full landscape of insoluble matrisome proteins in the decellularized ECM (dECM) scaffolds. Typical experimental validations and mass spectrometry (MS) analysis confirmed very little contamination of cellular debris remaining in the dECM scaffolds. Our current study will provide a low-cost, simple, reliable, and effective pipeline for tissue insoluble matrisome analysis in the quest to comprehend ECM discovery proteomic studies.
Collapse
Affiliation(s)
- Wei Chen
- Beijing Clinical Research Institute, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wen Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Ning Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tao Huang
- Beijing Clinical Research Institute, Beijing, China
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| |
Collapse
|
6
|
Brown M, Zhu S, Taylor L, Tabrizian M, Li-Jessen NY. Unraveling the Relevance of Tissue-Specific Decellularized Extracellular Matrix Hydrogels for Vocal Fold Regenerative Biomaterials: A Comprehensive Proteomic and In Vitro Study. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200095. [PMID: 37547672 PMCID: PMC10398787 DOI: 10.1002/anbr.202200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Decellularized extracellular matrix (dECM) is a promising material for tissue engineering applications. Tissue-specific dECM is often seen as a favorable material that recapitulates a native-like microenvironment for cellular remodeling. However, the minute quantity of dECM derivable from small organs like the vocal fold (VF) hampers manufacturing scalability. Small intestinal submucosa (SIS), a commercial product with proven regenerative capacity, may be a viable option for VF applications. This study aims to compare dECM hydrogels derived from SIS or VF tissue with respect to protein content and functionality using mass spectrometry-based proteomics and in vitro studies. Proteomic analysis reveals that VF and SIS dECM share 75% of core matrisome proteins. Although VF dECM proteins have greater overlap with native VF, SIS dECM shows less cross-sample variability. Following decellularization, significant reductions of soluble collagen (61%), elastin (81%), and hyaluronan (44%) are noted in VF dECM. SIS dECM contains comparable elastin and hyaluronan but 67% greater soluble collagen than VF dECM. Cells deposit more neo-collagen on SIS than VF-dECM hydrogels, whereas neo-elastin (~50 μg/scaffold) and neo-hyaluronan (~ 6 μg/scaffold) are comparable between the two hydrogels. Overall, SIS dECM possesses reasonably similar proteomic profile and regenerative capacity to VF dECM. SIS dECM is considered a promising alternative for dECM-derived biomaterials for VF regeneration.
Collapse
Affiliation(s)
- Mika Brown
- Department of Biomedical Engineering, McGill University 3655 Promenade Sir-William-Osler, Room 1003, Montreal, QC H3A 1A3, Canada
| | - Shirley Zhu
- Department of Microbiology and Immunology 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
| | - Lorne Taylor
- The Proteomics Platform, McGill University Health Center 1001 Decarie Boulevard Montreal Suite E01.5056 Montreal, Quebec, H4A 3J1, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University 3655 Promenade Sir-William-Osler, Room 1003, Montreal, QC H3A 1A3, Canada
- Department of Bioengineering, McGill University 740 Avenue Dr. Penfield, Room 4300, Montreal, QC H3A 0G1, Canada
- Faculty of Dentistry, McGill University 740 Avenue Dr. Penfield, Room 4300, Montreal, QC H3A 0G1, Canada
| | - Nicole Y.K. Li-Jessen
- Department of Biomedical Engineering, McGill University 3655 Promenade Sir-William-Osler, Room 1003, Montreal, QC H3A 1A3, Canada
- School of Communication Sciences and Disorders, McGill University 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
- Department of Otolaryngology - Head and Neck Surgery, McGill University 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
- Research Institute of McGill University Health Center, McGill University 2001 McGill College Ave, 8th Floor, Montreal, Quebec, H3A 1G1, Canada
| |
Collapse
|
7
|
Biehl A, Gracioso Martins AM, Davis ZG, Sze D, Collins L, Mora-Navarro C, Fisher MB, Freytes DO. Towards a standardized multi-tissue decellularization protocol for the derivation of extracellular matrix materials. Biomater Sci 2023; 11:641-654. [PMID: 36504129 PMCID: PMC9844390 DOI: 10.1039/d2bm01012g] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
The goal of tissue decellularization is to efficiently remove unwanted cellular components, such as DNA and cellular debris, while retaining the complex structural and molecular milieu within the extracellular matrix (ECM). Decellularization protocols to date are centered on customized tissue-specific and lab-specific protocols that involve consecutive manual steps which results in variable and protocol-specific ECM material. The differences that result from the inconsistent protocols between decellularized ECMs affect consistency across batches, limit comparisons between results obtained from different laboratories, and could limit the transferability of the material for consistent laboratory or clinical use. The present study is the first proof-of-concept towards the development of a standardized protocol that can be used to derive multiple ECM biomaterials (powders and hydrogels) via a previously established automated system. The automated decellularization method developed by our group was used due to its short decellularization time (4 hours) and its ability to reduce batch-to-batch variability. The ECM obtained using this first iteration of a unified protocol was able to produce ECM hydrogels from skin, lung, muscle, tendons, cartilage, and laryngeal tissues. All hydrogels formed in this study were cytocompatible and showed gelation and rheological properties consistent with previous ECM hydrogels. The ECMs also showed unique proteomic composition. The present study represents the first step towards developing standardized protocols that can be used on multiple tissues in a fast, scalable, and reproducible manner.
Collapse
Affiliation(s)
- Andreea Biehl
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| | - Ana M Gracioso Martins
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| | - Zachary G Davis
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| | - Daphne Sze
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| | - Leonard Collins
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Dabney Hall, 2620 Yarbrough Drive, Raleigh, NC 27607, USA
| | - Camilo Mora-Navarro
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
- Department of Orthopaedics, University of North Carolina School of Medicine, 102 Mason Farm Road Second Floor, Chapel Hill, NC 27514, USA
| | - Donald O Freytes
- Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina-Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC 27695, USA.
- Comparative Medicine Institute, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27606, USA
| |
Collapse
|
8
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
9
|
Sarker P, Nalband DM, Freytes DO, Rojas OJ, Khan SA. High-Axial-Aspect Tannic Acid Microparticles Facilitate Gelation and Injectability of Collagen-Based Hydrogels. Biomacromolecules 2022; 23:4696-4708. [PMID: 36198084 DOI: 10.1021/acs.biomac.2c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Injectable collagen-based hydrogels offer great promise for tissue engineering and regeneration, but their use is limited by poor mechanical strength. Herein, we incorporate tannic acid (TA) to tailor the rheology of the corresponding hydrogels while simultaneously adding the therapeutic benefits inherent to this polyphenolic component. TA in the solution form and needle-shaped TA microparticles are combined with collagen and the respective systems studied for their time-dependent sol-gel transitions (from storage to body temperatures, 4-37 °C) as a function of TA concentration. Compared to systems incorporating TA microparticles, those with dissolved TA, applied at a similar concentration, generate a less significant enhancement of the elastic modulus. Premature gelation at a low temperature and associated colloidal arrest of the system are proposed as a main factor explaining this limited performance. A higher yield stress (elastic stress method) is determined for systems loaded with TA microparticles compared to the system with dissolved TA. These results are interpreted in terms of the underlying interactions of TA with collagen, as probed by spectroscopy and isothermal titration calorimetry. Importantly, hydrogels containing TA microparticles show high cell viability (human dermal fibroblasts) and comparative cellular activity relative to the collagen-only hydrogel. Overall, composite hydrogels incorporating TA microparticles demonstrate a new, simple, and better-performance alternative to cell culturing and difficult implantation scenarios.
Collapse
Affiliation(s)
- Prottasha Sarker
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Danielle M Nalband
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Donald O Freytes
- Joint Department of Biomedical Engineering, North Carolina State University/ University of North Carolina-Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlando J Rojas
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Saad A Khan
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|