1
|
Cai F, Jiang B, He F. Formation and biological activities of foreign body giant cells in response to biomaterials. Acta Biomater 2024; 188:1-26. [PMID: 39245307 DOI: 10.1016/j.actbio.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The integration of biomaterials in medical applications triggers the foreign body response (FBR), a multi-stage immune reaction characterized by the formation of foreign body giant cells (FBGCs). Originating from the fusion of monocyte/macrophage lineage cells, FBGCs are pivotal participants during tissue-material interactions. This review provides an in-depth examination of the molecular processes during FBGC formation, highlighting signaling pathways and fusion mediators in response to both exogenous and endogenous stimuli. Moreover, a wide range of material-specific characteristics, such as surface chemical and physical properties, has been proven to influence the fusion of macrophages into FBGCs. Multifaceted biological activities of FBGCs are also explored, with emphasis on their phagocytic capabilities and extracellular secretory functions, which profoundly affect the vascularization, degradation, and encapsulation of the biomaterials. This review further elucidates the heterogeneity of FBGCs and their diverse roles during FBR, as demonstrated by their distinct behaviors in response to different materials. By presenting a comprehensive understanding of FBGCs, this review intends to provide strategies and insights into optimizing biocompatibility and the therapeutic potential of biomaterials for enhanced stability and efficacy in clinical applications. STATEMENT OF SIGNIFICANCE: As a hallmark of the foreign body response (FBR), foreign body giant cells (FBGCs) significantly impact the success of implantable biomaterials, potentially leading to complications such as chronic inflammation, fibrosis, and device failure. Understanding the role of FBGCs and modulating their responses are vital for successful material applications. This review provides a comprehensive overview of the molecules and signaling pathways guiding macrophage fusion into FBGCs. By elucidating the physical and chemical properties of materials inducing distinct levels of FBGCs, potential strategies of materials in modulating FBGC formation are investigated. Additionally, the biological activities of FBGCs and their heterogeneity in responses to different material categories in vivo are highlighted in this review, offering crucial insights for improving the biocompatibility and efficacy of biomaterials.
Collapse
Affiliation(s)
- Fangyuan Cai
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bulin Jiang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ren Y, Jung O, Batinic M, Burckhardt K, Görke O, Alkildani S, Köwitsch A, Najman S, Stojanovic S, Liu L, Prade I, Barbeck M. Biphasic bone substitutes coated with PLGA incorporating therapeutic ions Sr 2+ and Mg 2+: cytotoxicity cascade and in vivo response of immune and bone regeneration. Front Bioeng Biotechnol 2024; 12:1408702. [PMID: 38978719 PMCID: PMC11228333 DOI: 10.3389/fbioe.2024.1408702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
The incorporation of bioactive ions into biomaterials has gained significant attention as a strategy to enhance bone tissue regeneration on the molecular level. However, little knowledge exists about the effects of the addition of these ions on the immune response and especially on the most important cellular regulators, the macrophages. Thus, this study aimed to investigate the in vitro cytocompatibility and in vivo regulation of bone remodeling and material-related immune responses of a biphasic bone substitute (BBS) coated with metal ions (Sr2+/Mg2+) and PLGA, using the pure BBS as control group. Initially, two cytocompatible modified material variants were identified according to the in vitro results obtained following the DIN EN ISO 10993-5 protocol. The surface structure and ion release of both materials were characterized using SEM-EDX and ICP-OES. The materials were then implanted into Wistar rats for 10, 30, and 90 days using a cranial defect model. Histopathological and histomorphometrical analyses were applied to evaluate material degradation, bone regeneration, osteoconductivity, and immune response. The findings revealed that in all study groups comparable new bone formation were found. However, during the early implantation period, the BBS_Sr2+ group exhibited significantly faster regeneration compared to the other two groups. Additionally, all materials induced comparable tissue and immune responses involving high numbers of both pro-inflammatory macrophages and multinucleated giant cells (MNGCs). In conclusion, this study delved into the repercussions of therapeutic ion doping on bone regeneration patterns and inflammatory responses, offering insights for the advancement of a new generation of biphasic calcium phosphate materials with potential clinical applicability.
Collapse
Affiliation(s)
- Yanru Ren
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Milijana Batinic
- Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technical University Berlin, Berlin, Germany
| | - Kim Burckhardt
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Oliver Görke
- Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technical University Berlin, Berlin, Germany
| | | | | | - Stevo Najman
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Sanja Stojanovic
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Niš, Serbia
- Scientific Research Center for Biomedicine, Department for Cell and Tissue Engineering, Faculty of Medicine, University of Niš, Niš, Serbia
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ina Prade
- FILK Freiberg Institute, Freiberg, Germany
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
- BerlinAnalytix GmbH, Berlin, Germany
| |
Collapse
|
3
|
Minaychev VV, Teterina AY, Smirnova PV, Menshikh KA, Senotov AS, Kobyakova MI, Smirnov IV, Pyatina KV, Krasnov KS, Fadeev RS, Komlev VS, Fadeeva IS. Composite Remineralization of Bone-Collagen Matrices by Low-Temperature Ceramics and Serum Albumin: A New Approach to the Creation of Highly Effective Osteoplastic Materials. J Funct Biomater 2024; 15:27. [PMID: 38391880 PMCID: PMC10889756 DOI: 10.3390/jfb15020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
This study examined the effectiveness of coating demineralized bone matrix (DBM) with amorphous calcium phosphate (DBM + CaP), as well as a composite of DBM, calcium phosphate, and serum albumin (DBM + CaP + BSA). The intact structure of DBM promotes the transformation of amorphous calcium phosphate (CaP) into dicalcium phosphate dihydrate (DCPD) with a characteristic plate shape and particle size of 5-35 µm. The inclusion of BSA in the coating resulted in a better and more uniform distribution of CaP on the surface of DBM trabeculae. MG63 cells showed that both the obtained forms of CaP and its complex with BSA did not exhibit cytotoxicity up to a concentration of 10 mg/mL in vitro. Ectopic (subcutaneous) implantation in rats revealed pronounced biocompatibility, as well as strong osteoconductive, osteoinductive, and osteogenic effects for both DBM + CaP and DBM + CaP + BSA, but more pronounced effects for DBM + CaP + BSA. In addition, for the DBM + CaP + BSA samples, there was a pronounced full physiological intrafibrillar biomineralization and proangiogenic effect with the formation of bone-morrow-like niches, accompanied by pronounced processes of intramedullary hematopoiesis, indicating a powerful osteogenic effect of this composite.
Collapse
Affiliation(s)
- Vladislav V Minaychev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia
| | - Anastasia Yu Teterina
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia
| | - Polina V Smirnova
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia
| | - Ksenia A Menshikh
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Anatoliy S Senotov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Margarita I Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - Igor V Smirnov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia
| | - Kira V Pyatina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kirill S Krasnov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vladimir S Komlev
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia
| | - Irina S Fadeeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia
| |
Collapse
|
4
|
Xiao W, Yang Y, Chu C, Rung SA, Wang Z, Man Y, Lin J, Qu Y. Macrophage response mediated by extracellular matrix: recent progress. Biomed Mater 2023; 18. [PMID: 36595269 DOI: 10.1088/1748-605x/aca946] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Biomaterials are one of efficient treatment options for tissue defects in regenerative medicine. Compared to synthetic materials which tend to induce chronic inflammatory response and fibrous capsule, extracellular matrix (ECM) scaffold materials composed of biopolymers are thought to be capable of inducing a pro-regenerative immune microenvironment and facilitate wound healing. Immune cells are the first line of response to implanted biomaterials. In particular, macrophages greatly affect cell behavior and the ultimate treatment outcome based on multiple cell phenotypes with various functions. The macrophage polarization status is considered as a general reflection of the characteristics of the immune microenvironment. Since numerous reports has emphasized the limitation of classical M1/M2 nomenclature, high-resolution techniques such as single-cell sequencing has been applied to recognize distinct macrophage phenotypes involved in host responses to biomaterials. After reviewing latest literatures that explored the immune microenvironment mediated by ECM scaffolds, this paper describe the behaviors of highly heterogeneous and plastic macrophages subpopulations which affect the tissue regeneration. The mechanisms by which ECM scaffolds interact with macrophages are also discussed from the perspectives of the ECM ultrastructure along with the nucleic acid, protein, and proteoglycan compositions, in order to provide targets for potential therapeutic modulation in regenerative medicine.
Collapse
Affiliation(s)
- Wenlan Xiao
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yang Yang
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Chenyu Chu
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Sheng-An Rung
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhanqi Wang
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yi Man
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jie Lin
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Yili Qu
- Department of Oral Implantology & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
5
|
Wang Z, Zhang J, Hu J, Yang G. Gene-activated titanium implants for gene delivery to enhance osseointegration. BIOMATERIALS ADVANCES 2022; 143:213176. [PMID: 36327825 DOI: 10.1016/j.bioadv.2022.213176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Osseointegration is the direct and intimate contact between mineralized tissue and titanium implant at the bone-implant interface. Early establishment and stable maintenance of osseointegration is the key to long-term implant success. However, in patients with compromised conditions such as osteoporosis and patients beginning early load-bearing activities such as walking, lower osseointegration around titanium implants is often observed, which might result in implant early failure. Gene-activated implants show an exciting prospect of combining gene delivery and biomedical implants to solve the problems of poor osseointegration formation, overcoming the shortcomings of protein therapy, including rapid degradation and overdose adverse effects. The conception of gene-activated titanium implants is based on "gene-activated matrix" (GAM), which means scaffolds using non-viral vectors for in situ gene delivery to achieve a long-term and efficient transfection of target cells. Current preclinical studies in animal models have shown that plasmid DNA (pDNA), microRNA (miRNA), and small interference RNA (siRNA) functionalized titanium implants can enhance osseointegration with safety and efficiency, leading to the expectation of applying this technique in dental and orthopedic clinical scenarios. This review aims to comprehensively summarize fabrication strategies, current applications, and futural outlooks of gene-activated implants, emphasizing nucleic acid targets, non-viral vectors, implant surface modification techniques, nucleic acid/vector complexes loading strategies.
Collapse
Affiliation(s)
- Zhikang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jinxing Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|