1
|
Sukul P, Richter A, Junghanss C, Schubert JK, Miekisch W. Origin of breath isoprene in humans is revealed via multi-omic investigations. Commun Biol 2023; 6:999. [PMID: 37777700 PMCID: PMC10542801 DOI: 10.1038/s42003-023-05384-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Plants, animals and humans metabolically produce volatile isoprene (C5H8). Humans continuously exhale isoprene and exhaled concentrations differ under various physio-metabolic and pathophysiological conditions. Yet unknown metabolic origin hinders isoprene to reach clinical practice as a biomarker. Screening 2000 individuals from consecutive mass-spectrometric studies, we herein identify five healthy German adults without exhaled isoprene. Whole exome sequencing in these adults reveals only one shared homozygous (European prevalence: <1%) IDI2 stop-gain mutation, which causes losses of enzyme active site and Mg2+-cofactor binding sites. Consequently, the conversion of isopentenyl diphosphate to dimethylallyl diphosphate (DMAPP) as part of the cholesterol metabolism is prevented in these adults. Targeted sequencing depicts that the IDI2 rs1044261 variant (p.Trp144Stop) is heterozygous in isoprene deficient blood-relatives and absent in unrelated isoprene normal adults. Wild-type IDI1 and cholesterol metabolism related serological parameters are normal in all adults. IDI2 determines isoprene production as only DMAPP sources isoprene and unlike plants, humans lack isoprene synthase and its enzyme homologue. Human IDI2 is expressed only in skeletal-myocellular peroxisomes and instant spikes in isoprene exhalation during muscle activity underpins its origin from muscular lipolytic cholesterol metabolism. Our findings translate isoprene as a clinically interpretable breath biomarker towards potential applications in human medicine.
Collapse
Affiliation(s)
- Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany.
| | - Anna Richter
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Strasse 6, 18057, Rostock, Germany
| | - Jochen K Schubert
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| | - Wolfram Miekisch
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Medicine Rostock, Schillingallee 35, 18057, Rostock, Germany
| |
Collapse
|
2
|
Brown AO, Green PJ, Frankham GJ, Stuart BH, Ueland M. Insights into the Effects of Violating Statistical Assumptions for Dimensionality Reduction for Chemical "-omics" Data with Multiple Explanatory Variables. ACS OMEGA 2023; 8:22042-22054. [PMID: 37360494 PMCID: PMC10286096 DOI: 10.1021/acsomega.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Biological volatilome analysis is inherently complex due to the considerable number of compounds (i.e., dimensions) and differences in peak areas by orders of magnitude, between and within compounds found within datasets. Traditional volatilome analysis relies on dimensionality reduction techniques which aid in the selection of compounds that are considered relevant to respective research questions prior to further analysis. Currently, compounds of interest are identified using either supervised or unsupervised statistical methods which assume the data residuals are normally distributed and exhibit linearity. However, biological data often violate the statistical assumptions of these models related to normality and the presence of multiple explanatory variables which are innate to biological samples. In an attempt to address deviations from normality, volatilome data can be log transformed. However, whether the effects of each assessed variable are additive or multiplicative should be considered prior to transformation, as this will impact the effect of each variable on the data. If assumptions of normality and variable effects are not investigated prior to dimensionality reduction, ineffective or erroneous compound dimensionality reduction can impact downstream analyses. It is the aim of this manuscript to assess the impact of single and multivariable statistical models with and without the log transformation to volatilome dimensionality reduction prior to any supervised or unsupervised classification analysis. As a proof of concept, Shingleback lizard (Tiliqua rugosa) volatilomes were collected across their species distribution and from captivity and were assessed. Shingleback volatilomes are suspected to be influenced by multiple explanatory variables related to habitat (Bioregion), sex, parasite presence, total body volume, and captive status. This work determined that the exclusion of relevant multiple explanatory variables from analysis overestimates the effect of Bioregion and the identification of significant compounds. The log transformation increased the number of compounds that were identified as significant, as did analyses that assumed that residuals were normally distributed. Among the methods considered in this work, the most conservative form of dimensionality reduction was achieved through analyzing untransformed data using Monte Carlo tests with multiple explanatory variables.
Collapse
Affiliation(s)
- Amber O. Brown
- Australian
Museum Research Institute, Australian Museum, Sydney 2001, NSW, Australia
- Centre
for Forensic Science, University of Technology
Sydney, Ultimo 2007, NSW, Australia
| | - Peter J. Green
- University
of Bristol, Bristol BS8 1UG, U.K.
- University
of Technology Sydney, Ultimo 2007, NSW, Australia
| | - Greta J. Frankham
- Australian
Museum Research Institute, Australian Museum, Sydney 2001, NSW, Australia
- Centre
for Forensic Science, University of Technology
Sydney, Ultimo 2007, NSW, Australia
| | - Barbara H. Stuart
- Australian
Museum Research Institute, Australian Museum, Sydney 2001, NSW, Australia
| | - Maiken Ueland
- Australian
Museum Research Institute, Australian Museum, Sydney 2001, NSW, Australia
| |
Collapse
|
3
|
Jakšić M, Mihajlović A, Vujić D, Giannoukos S, Brkić B. Membrane inlet mass spectrometry method for food intake impact assessment on specific volatile organic compounds in exhaled breath. Anal Bioanal Chem 2022; 414:6077-6091. [PMID: 35727330 PMCID: PMC9314300 DOI: 10.1007/s00216-022-04168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
This research work describes the development of a novel bioanalytical method for the assessment of food impact on selected exhaled breath volatile organic compounds (VOCs) using a fast and portable screening VOC prototype sensor based on membrane inlet mass spectrometry (MIMS). Method and sensor prototype functionality was verified by obtaining good response times, linearity in the examined concentration ranges, and sensitivity and repeatability for several breath VOCs—acetone, ethanol, n-pentane, and isoprene. A new VOC sensor prototype was also proven to be sensitive enough for selected breath VOC quantification with limits of detection at low part per billion (ppb) levels—5 ppb for n-pentane, 10 ppb for acetone and ethanol, and 25 ppb for isoprene. Food impact assessment was accomplished by tracking the levels of acetone, ethanol, n-pentane, and isoprene in exhaled breath samples collected from 50 healthy participants before the meal and 60 min and 120 min after the meal. For acetone, isoprene, and n-pentane, a larger impact was noticed 120 min after the meal, while for ethanol, it was after 60 min. Obtained VOC levels were in the expected concentration ranges. Mean values at all time points were ~ 500–900 ppb for acetone and ~ 400–600 ppb for ethanol. Most of the results for n-pentane were below 5 ppb, but the mean value for those which were detected was ~ 30 ppb. Along with samples, data about participants’ lifestyle were collected via a short questionnaire, which were compared against obtained VOC levels in order to reveal some significant correlations between habits of participants and their breath VOC levels.
Collapse
Affiliation(s)
- Milena Jakšić
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjića 1, 21000, Novi Sad, Serbia.
| | - Andrea Mihajlović
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjića 1, 21000, Novi Sad, Serbia
| | - Djordje Vujić
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjića 1, 21000, Novi Sad, Serbia
| | - Stamatios Giannoukos
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI D 317, Vladimir-Prelog-Weg 3, CH-8093, Zurich, Switzerland
| | - Boris Brkić
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjića 1, 21000, Novi Sad, Serbia.
| |
Collapse
|
4
|
Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry Analysis of Exhaled Breath Compounds after Whole Grain Diets. Molecules 2021; 26:molecules26092667. [PMID: 34063191 PMCID: PMC8125105 DOI: 10.3390/molecules26092667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Exhaled breath is a potential noninvasive matrix to give new information about metabolic effects of diets. In this pilot study, non-targeted analysis of exhaled breath volatile organic compounds (VOCs) was made by comprehensive two-dimensional gas chromatography-mass spectrometry (GCxGC-MS) to explore compounds relating to whole grain (WG) diets. Nine healthy subjects participated in the dietary intervention with parallel crossover design, consisting of two high-fiber diets containing whole grain rye bread (WGR) or whole grain wheat bread (WGW) and 1-week control diets with refined wheat bread (WW) before both diet periods. Large interindividual differences were detected in the VOC composition. About 260 VOCs were detected from exhaled breath samples, in which 40 of the compounds were present in more than half of the samples. Various derivatives of benzoic acid and phenolic compounds, as well as some furanones existed in exhaled breath samples only after the WG diets, making them interesting compounds to study further.
Collapse
|
5
|
Jaimes-Mogollón AL, Welearegay TG, Salumets A, Ionescu R. Review on Volatolomic Studies as a Frontier Approach in Animal Research. Adv Biol (Weinh) 2021; 5:e2000397. [PMID: 33844886 DOI: 10.1002/adbi.202000397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/24/2021] [Indexed: 11/06/2022]
Abstract
This paper presents a comprehensive review of the research studies in volatolomics performed on animals so far. At first, the procedures proposed for the collection, preconcentration, and storing of the volatile organic compounds emitted by various biological samples of different animals are presented and discussed. Next, the results obtained in the analysis of the collected volatile samples with analytical equipment are shown. The possible volatile biomarkers identified for various diseases are highlighted for different types of diseases, animal species, and biological samples analyzed. The chemical classes of these compounds, as well as the biomarkers found in a higher number of animal diseases, are indicated, and their possible origin is analyzed. The studies that dealt with the diagnosis of various diseases from sample measurement with electronic nose systems are also presented and discussed. The paper ends with a final remark regarding the necessity of optimization and standardization of sample collection and analysis procedures for obtaining meaningful results.
Collapse
Affiliation(s)
| | - Tesfalem G Welearegay
- The Ångström Laboratory, Department of Materials Science and Engineering, Uppsala University, Uppsala, 75103, Sweden
| | - Andres Salumets
- COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia.,Institute of Clinical Medicine, University of Tartu, Tartu, 51014, Estonia.,Competence Centre on Health Technologies, Tartu, 50411, Estonia
| | - Radu Ionescu
- COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, 51006, Estonia
| |
Collapse
|
6
|
Khoubnasabjafari M, Mogaddam MRA, Rahimpour E, Soleymani J, Saei AA, Jouyban A. Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications. Crit Rev Anal Chem 2021; 52:1461-1487. [PMID: 33691552 DOI: 10.1080/10408347.2021.1889961] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolomics research is rapidly gaining momentum in disease diagnosis, on top of other Omics technologies. Breathomics, as a branch of metabolomics is developing in various frontiers, for early and noninvasive monitoring of disease. This review starts with a brief introduction to metabolomics and breathomics. A number of important technical issues in exhaled breath collection and factors affecting the sampling procedures are presented. We review the recent progress in metabolomics approaches and a summary of their applications on the respiratory and non-respiratory diseases investigated by breath analysis. Recent reports on breathomics studies retrieved from Scopus and Pubmed were reviewed in this work. We conclude that analyzing breath metabolites (both volatile and nonvolatile) is valuable in disease diagnoses, and therefore believe that breathomics will turn into a promising noninvasive discipline in biomarker discovery and early disease detection in personalized medicine. The problem of wide variations in the reported metabolite concentrations from breathomics studies should be tackled by developing more accurate analytical methods and sophisticated numerical analytical alogorithms.
Collapse
Affiliation(s)
- Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center and Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Warncke G, Singer G, Windhaber J, Schabl L, Friehs E, Miekisch W, Gierschner P, Klymiuk I, Eber E, Zeder K, Pfleger A, Obermüller B, Till H, Castellani C. Volatile Organic Compounds, Bacterial Airway Microbiome, Spirometry and Exercise Performance of Patients after Surgical Repair of Congenital Diaphragmatic Hernia. Molecules 2021; 26:molecules26030645. [PMID: 33530644 PMCID: PMC7865878 DOI: 10.3390/molecules26030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to analyze the exhaled volatile organic compounds (VOCs) profile, airway microbiome, lung function and exercise performance in congenital diaphragmatic hernia (CDH) patients compared to healthy age and sex-matched controls. A total of nine patients (median age 9 years, range 6-13 years) treated for CDH were included. Exhaled VOCs were measured by GC-MS. Airway microbiome was determined from deep induced sputum by 16S rRNA gene sequencing. Patients underwent conventional spirometry and exhausting bicycle spiroergometry. The exhaled VOC profile showed significantly higher levels of cyclohexane and significantly lower levels of acetone and 2-methylbutane in CDH patients. Microbiome analysis revealed no significant differences for alpha-diversity, beta-diversity and LefSe analysis. CDH patients had significantly lower relative abundances of Pasteurellales and Pasteurellaceae. CDH patients exhibited a significantly reduced Tiffeneau Index. Spiroergometry showed no significant differences. This is the first study to report the VOCs profile and airway microbiome in patients with CDH. Elevations of cyclohexane observed in the CDH group have also been reported in cases of lung cancer and pneumonia. CDH patients had no signs of impaired physical performance capacity, fueling controversial reports in the literature.
Collapse
MESH Headings
- Acetone/analysis
- Adolescent
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Child
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Exercise
- Female
- Hernias, Diaphragmatic, Congenital/metabolism
- Hernias, Diaphragmatic, Congenital/physiopathology
- Hernias, Diaphragmatic, Congenital/surgery
- Herniorrhaphy/methods
- Humans
- Male
- Microbiota
- Pentanes/analysis
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Spirometry
- Vital Capacity
- Volatile Organic Compounds/analysis
Collapse
Affiliation(s)
- Gert Warncke
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
- Correspondence: ; Tel.: +43-316-385-83722
| | - Jana Windhaber
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| | - Lukas Schabl
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| | - Elena Friehs
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, 18057 Rostock, Germany; (W.M.); (P.G.)
| | - Peter Gierschner
- Department of Anesthesiology and Intensive Care Medicine, Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Rostock University Medical Centre, 18057 Rostock, Germany; (W.M.); (P.G.)
| | - Ingeborg Klymiuk
- Core Facility Molecular Biology, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria;
| | - Ernst Eber
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, 8036 Graz, Austria; (E.E.); (K.Z.); (A.P.)
| | - Katarina Zeder
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, 8036 Graz, Austria; (E.E.); (K.Z.); (A.P.)
| | - Andreas Pfleger
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, 8036 Graz, Austria; (E.E.); (K.Z.); (A.P.)
| | - Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University Graz, 8036 Graz, Austria; (G.W.); (J.W.); (L.S.); (E.F.); (B.O.); (H.T.); (C.C.)
| |
Collapse
|
8
|
Lee JH, Zhu J. Analyses of short-chain fatty acids and exhaled breath volatiles in dietary intervention trials for metabolic diseases. Exp Biol Med (Maywood) 2020; 246:778-789. [PMID: 33327781 DOI: 10.1177/1535370220979952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As an alternative to pharmacological treatment to diseases, lifestyle interventions, such as dietary changes and physical activities, can help maintain healthy metabolic conditions. Recently, the emerging analyses of volatile organic compounds (VOCs) from breath and short-chain fatty acids (SCFAs) from plasma/feces have been considered as useful tools for the diagnosis and mechanistic understanding of metabolic diseases. Furthermore, diet-induced changes of SCFAs in individuals with diagnosed metabolic abnormalities have been correlated with the composition changes of the gut microbiome. More interestingly, the analysis of exhaled breath (breathomics) has gained attention as a useful technique to measure the human VOC profile altered as a result of dietary interventions. In this mini-review, we examined recent clinical trials that performed promising dietary interventions, SCFAs analysis in plasma/feces, and VOC profile analysis in exhaling breath to understand the relationship between dietary intervention and metabolic health.
Collapse
Affiliation(s)
- Jisun Hj Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.,James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.,James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Poldy J. Volatile Cues Influence Host-Choice in Arthropod Pests. Animals (Basel) 2020; 10:E1984. [PMID: 33126768 PMCID: PMC7692281 DOI: 10.3390/ani10111984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023] Open
Abstract
Many arthropod pests of humans and other animals select their preferred hosts by recognising volatile odour compounds contained in the hosts' 'volatilome'. Although there is prolific literature on chemical emissions from humans, published data on volatiles and vector attraction in other species are more sporadic. Despite several decades since the identification of a small number of critical volatiles underpinning specific host-vector relationships, synthetic chemicals or mixtures still largely fail to reproduce the attractiveness of natural hosts to their disease vectors. This review documents allelochemicals from non-human terrestrial animals and considers where challenges in collection and analysis have left shortfalls in animal volatilome research. A total of 1287 volatile organic compounds were identified from 141 species. Despite comparable diversity of entities in each compound class, no specific chemical is ubiquitous in all species reviewed, and over half are reported as unique to a single species. This review provides a rationale for future enquiries by highlighting research gaps, such as disregard for the contribution of breath volatiles to the whole animal volatilome and evaluating the role of allomones as vector deterrents. New opportunities to improve vector surveillance and disrupt disease transmission may be unveiled by understanding the host-associated stimuli that drive vector-host interactions.
Collapse
Affiliation(s)
- Jacqueline Poldy
- Commonwealth Scientific and Industrial Research Organisation, Health & Biosecurity, Black Mountain Laboratory, Canberra, ACT 2601, Australia
| |
Collapse
|
10
|
Wingelaar TT, Brinkman P, Hoencamp R, van Ooij PJA, Maitland-van der Zee AH, Hollmann MW, van Hulst RA. Assessment of pulmonary oxygen toxicity in special operations forces divers under operational circumstances using exhaled breath analysis. Diving Hyperb Med 2020; 50:2-7. [PMID: 32187611 DOI: 10.28920/dhm50.1.2-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/12/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The Netherlands Maritime Special Operations Forces use closed circuit oxygen rebreathers (O₂-CCR), which can cause pulmonary oxygen toxicity (POT). Recent studies demonstrated that volatile organic compounds (VOCs) can be used to detect POT in laboratory conditions. It is unclear if similar VOCs can be identified outside the laboratory. This study hypothesised that similar VOCs can be identified after O₂-CCR diving in operational settings. METHODS Scenario one: 4 h O₂-CCR dive to 3 metres' seawater (msw) with rested divers. Scenario two: 3 h O₂-CCR dive to 3 msw following a 5 day physically straining operational scenario. Exhaled breath samples were collected 30 min before and 30 min and 2 h after diving under field conditions and analysed using gas chromatography-mass spectrometry (GC-MS) to reconstruct VOCs, whose levels were tested longitudinally using a Kruskal-Wallis test. RESULTS Eleven divers were included: four in scenario one and seven in scenario two. The 2 h post-dive sample could not be obtained in scenario two; therefore, 26 samples were collected. GC-MS analysis identified three relevant VOCs: cyclohexane, 2,4-dimethylhexane and 3-methylnonane. The intensities of 2,4-dimethylhexane and 3-methylnonane were significantly (P = 0.048 and P = 0.016, respectively) increased post-dive relative to baseline (range: 212-461%) in both scenarios. Cyclohexane was increased not significantly (P = 0.178) post-dive (range: 87-433%). CONCLUSIONS VOCs similar to those associated with POT in laboratory conditions were identified after operational O₂-CCR dives using GC-MS. Post-dive intensities were higher than in previous studies, and it remains to be determined if this is attributable to different dive profiles, diving equipment or other environmental factors.
Collapse
Affiliation(s)
- Thijs T Wingelaar
- Diving Medical Centre, Royal Netherlands Navy, Den Helder, the Netherlands.,Department of Anesthesiology, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands.,Corresponding author: Dr Thijs T Wingelaar, Royal Netherlands Navy Diving Medical Centre, Rijkszee en marinehaven, 1780 CA, Den Helder, the Netherlands,
| | - Paul Brinkman
- Department of Pulmonology, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands
| | - Rigo Hoencamp
- Department of Surgery, Alrijne Hospital, Leiderdorp, the Netherlands.,Defence Healthcare Organisation, Ministry of Defence, Utrecht, the Netherlands.,Leiden University Medical Centre, Leiden, the Netherlands
| | - Pieter-Jan Am van Ooij
- Diving Medical Centre, Royal Netherlands Navy, Den Helder, the Netherlands.,Department of Pulmonology, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands
| | | | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands
| | - Rob A van Hulst
- Department of Anesthesiology, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Elmassry MM, Piechulla B. Volatilomes of Bacterial Infections in Humans. Front Neurosci 2020; 14:257. [PMID: 32269511 PMCID: PMC7111428 DOI: 10.3389/fnins.2020.00257] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Sense of smell in humans has the capacity to detect certain volatiles from bacterial infections. Our olfactory senses were used in ancient medicine to diagnose diseases in patients. As humans are considered holobionts, each person's unique odor consists of volatile organic compounds (VOCs, volatilome) produced not only by the humans themselves but also by their beneficial and pathogenic micro-habitants. In the past decade it has been well documented that microorganisms (fungi and bacteria) are able to emit a broad range of olfactory active VOCs [summarized in the mVOC database (http://bioinformatics.charite.de/mvoc/)]. During microbial infection, the equilibrium between the human and its microbiome is altered, followed by a change in the volatilome. For several decades, physicians have been trying to utilize these changes in smell composition to develop fast and efficient diagnostic tools, particularly because volatiles detection is non-invasive and non-destructive, which would be a breakthrough in many therapies. Within this review, we discuss bacterial infections including gastrointestinal, respiratory or lung, and blood infections, focusing on the pathogens and their known corresponding volatile biomarkers. Furthermore, we cover the potential role of the human microbiota and their volatilome in certain diseases such as neurodegenerative diseases. We also report on discrete mVOCs that affect humans.
Collapse
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
12
|
Wingelaar TT, Brinkman P, de Vries R, van Ooij PJA, Hoencamp R, Maitland-van der Zee AH, Hollmann MW, van Hulst RA. Detecting Pulmonary Oxygen Toxicity Using eNose Technology and Associations between Electronic Nose and Gas Chromatography-Mass Spectrometry Data. Metabolites 2019; 9:metabo9120286. [PMID: 31766640 PMCID: PMC6950559 DOI: 10.3390/metabo9120286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Exposure to oxygen under increased atmospheric pressures can induce pulmonary oxygen toxicity (POT). Exhaled breath analysis using gas chromatography–mass spectrometry (GC–MS) has revealed that volatile organic compounds (VOCs) are associated with inflammation and lipoperoxidation after hyperbaric–hyperoxic exposure. Electronic nose (eNose) technology would be more suited for the detection of POT, since it is less time and resource consuming. However, it is unknown whether eNose technology can detect POT and whether eNose sensor data can be associated with VOCs of interest. In this randomized cross-over trial, the exhaled breath from divers who had made two dives of 1 h to 192.5 kPa (a depth of 9 m) with either 100% oxygen or compressed air was analyzed, at several time points, using GC–MS and eNose. We used a partial least square discriminant analysis, eNose discriminated oxygen and air dives at 30 min post dive with an area under the receiver operating characteristics curve of 79.9% (95%CI: 61.1–98.6; p = 0.003). A two-way orthogonal partial least square regression (O2PLS) model analysis revealed an R² of 0.50 between targeted VOCs obtained by GC–MS and eNose sensor data. The contribution of each sensor to the detection of targeted VOCs was also assessed using O2PLS. When all GC–MS fragments were included in the O2PLS model, this resulted in an R² of 0.08. Thus, eNose could detect POT 30 min post dive, and the correlation between targeted VOCs and eNose data could be assessed using O2PLS.
Collapse
Affiliation(s)
- Thijs T. Wingelaar
- Diving and Submarine Medical Center, Royal Netherlands Navy, Rijkszee en Marinehaven, 1780 CA Den Helder, The Netherlands
- Department of Anesthesiology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-889-510-480
| | - Paul Brinkman
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rianne de Vries
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Breathomix, Pascalstraat 13H, 2811 EL Reeuwijk, the Netherlands
| | - Pieter-Jan A.M. van Ooij
- Diving and Submarine Medical Center, Royal Netherlands Navy, Rijkszee en Marinehaven, 1780 CA Den Helder, The Netherlands
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rigo Hoencamp
- Department of Surgery, Alrijne Hospital, Simon Smitweg 1, 2353 GA Leiderdorp, The Netherlands
- Defense Healthcare Organisation, Ministry of Defence, Herculeslaan 1, 3584 AB Utrecht, The Netherlands
- Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Anke-Hilse Maitland-van der Zee
- Department of Pulmonology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rob A. van Hulst
- Department of Anesthesiology, Amsterdam University Medical Center, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
13
|
Sugar Beet Pectin Supplementation Did Not Alter Profiles of Fecal Microbiota and Exhaled Breath in Healthy Young Adults and Healthy Elderly. Nutrients 2019; 11:nu11092193. [PMID: 31547291 PMCID: PMC6770243 DOI: 10.3390/nu11092193] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 12/22/2022] Open
Abstract
Aging is accompanied with increased frailty and comorbidities, which is potentially associated with microbiome perturbations. Dietary fibers could contribute to healthy aging by beneficially impacting gut microbiota and metabolite profiles. We aimed to compare young adults with elderly and investigate the effect of pectin supplementation on fecal microbiota composition, short chain fatty acids (SCFAs), and exhaled volatile organic compounds (VOCs) while using a randomized, double-blind, placebo-controlled parallel design. Fifty-two young adults and 48 elderly consumed 15 g/day sugar beet pectin or maltodextrin for four weeks. Fecal and exhaled breath samples were collected before and after the intervention period. Fecal samples were used for microbiota profiling by 16S rRNA gene amplicon sequencing, and for analysis of SCFAs by gas chromatography (GC). Breath was used for VOC analysis by GC-tof-MS. Young adults and elderly showed similar fecal SCFA and exhaled VOC profiles. Additionally, fecal microbiota profiles were similar, with five genera significantly different in relative abundance. Pectin supplementation did not significantly alter fecal microbiota, SCFA or exhaled VOC profiles in elderly or young adults. In conclusion, aside from some minor differences in microbial composition, healthy elderly and young adults showed comparable fecal microbiota composition and activity, which were not altered by pectin supplementation.
Collapse
|
14
|
Wingelaar TT, Brinkman P, van Ooij PJAM, Hoencamp R, Maitland-van der Zee AH, Hollmann MW, van Hulst RA. Markers of Pulmonary Oxygen Toxicity in Hyperbaric Oxygen Therapy Using Exhaled Breath Analysis. Front Physiol 2019; 10:475. [PMID: 31068838 PMCID: PMC6491850 DOI: 10.3389/fphys.2019.00475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Introduction Although hyperbaric oxygen therapy (HBOT) has beneficial effects, some patients experience fatigue and pulmonary complaints after several sessions. The current limits of hyperbaric oxygen exposure to prevent pulmonary oxygen toxicity (POT) are based on pulmonary function tests (PFT), but the limitations of PFT are recognized worldwide. However, no newer modalities to detect POT have been established. Exhaled breath analysis in divers have shown volatile organic compounds (VOCs) of inflammation and methyl alkanes. This study hypothesized that similar VOCs might be detected after HBOT. Methods Ten healthy volunteers of the Royal Netherlands Navy underwent six HBOT sessions (95 min at 253 kPa, including three 5-min “air breaks”), i.e., on five consecutive days followed by another session after 2 days of rest. At 30 min before the dive, and at 30 min, 2 and 4 h post-dive, exhaled breath was collected and followed by PFT. Exhaled breath samples were analyzed using gas chromatography-mass spectrometry (GC-MS). After univariate tests and correlation of retention times, ion fragments could be identified using a reference database. Using these fragments VOCs could be reconstructed, which were clustered using principal component analysis. These clusters were tested longitudinally with ANOVA. Results After GC-MS analysis, eleven relevant VOCs were identified which could be clustered into two principal components (PC). PC1 consisted of VOCs associated with inflammation and showed no significant change over time. The intensities of PC2, consisting of methyl alkanes, showed a significant decrease (p = 0.001) after the first HBOT session to 50.8%, remained decreased during the subsequent days (mean 82%), and decreased even further after 2 days of rest to 58% (compared to baseline). PFT remained virtually unchanged. Discussion Although similar VOCs were found when compared to diving, the decrease of methyl alkanes (PC2) is in contrast to the increase seen in divers. It is unknown why emission of methyl alkanes (which could originate from the phosphatidylcholine membrane in the alveoli) are reduced after HBOT. This suggests that HBOT might not be as damaging to the pulmonary tract as previously assumed. Future research on POT should focus on the identified VOCs (inflammation and methyl alkanes).
Collapse
Affiliation(s)
- T T Wingelaar
- Diving Medical Centre, Royal Netherlands Navy, Den Helder, Netherlands.,Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - P Brinkman
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - P J A M van Ooij
- Diving Medical Centre, Royal Netherlands Navy, Den Helder, Netherlands.,Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - R Hoencamp
- Department of Surgery, Alrijne Hospital Leiderdorp, Leiderdorp, Netherlands.,Defense Healthcare Organisation, Ministry of Defence, Utrecht, Netherlands.,Leiden University Medical Center, Leiden, Netherlands
| | | | - M W Hollmann
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - R A van Hulst
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Wingelaar TT, van Ooij PJAM, Brinkman P, van Hulst RA. Pulmonary Oxygen Toxicity in Navy Divers: A Crossover Study Using Exhaled Breath Analysis After a One-Hour Air or Oxygen Dive at Nine Meters of Sea Water. Front Physiol 2019; 10:10. [PMID: 30740057 PMCID: PMC6355711 DOI: 10.3389/fphys.2019.00010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/08/2019] [Indexed: 12/23/2022] Open
Abstract
Introduction: Exposure to hyperbaric hyperoxic conditions can lead to pulmonary oxygen toxicity. Although a decrease in vital capacity has long been the gold standard, newer diagnostic modalities may be more accurate. In pulmonary medicine, much research has focussed on volatile organic compounds (VOCs) associated with inflammation in exhaled breath. In previous small studies after hyperbaric hyperoxic exposure several methyl alkanes were identified. This study aims to identify which VOCs mark the development of pulmonary oxygen toxicity. Methods: In this randomized crossover study, 12 divers of the Royal Netherlands Navy made two dives of one hour to 192.5 kPa (comparable to a depth of 9 msw) either with 100% oxygen or compressed air. At 30 min before the dive, and at 30 min and 1, 2, 3, and 4 h post-dive, exhaled breath was collected and followed by pulmonary function tests (PFT). Exhaled breath samples were analyzed using gas chromatography–mass spectrometry (GC–MS). After univariate tests and correlation of retention times, ion fragments could be identified using a standard reference database [National Institute of Standards and Technology (NIST)]. Using these fragments VOCs could be reconstructed, which were then tested longitudinally with analysis of variance. Results: After GC–MS analysis, seven relevant VOCs (generally methyl alkanes) were identified. Decane and decanal showed a significant increase after an oxygen dive (p = 0.020 and p = 0.013, respectively). The combined intensity of all VOCs showed a significant increase after oxygen diving (p = 0.040), which was at its peak (+35%) 3 h post-dive. Diffusion capacity of nitric oxide and alveolar membrane capacity showed a significant reduction after both dives, whereas no other differences in PFT were significant. Discussion: This study is the largest analysis of exhaled breath after in water oxygen dives to date and the first to longitudinally measure VOCs. The longitudinal setup showed an increase and subsequent decrease of exhaled components. The VOCs identified suggest that exposure to a one-hour dive with a partial pressure of oxygen of 192.5 kPa damages the phosphatidylcholine membrane in the alveoli, while the spirometry and diffusion capacity show little change. This suggests that exhaled breath analysis is a more accurate method to measure pulmonary oxygen toxicity.
Collapse
Affiliation(s)
- Thijs T Wingelaar
- Diving Medical Center, Royal Netherlands Navy, Den Helder, Netherlands.,Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Paul Brinkman
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rob A van Hulst
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Sniffer mice discriminate urine odours of patients with bladder cancer: A proof-of-principle study for non-invasive diagnosis of cancer-induced odours. Sci Rep 2017; 7:14628. [PMID: 29116175 PMCID: PMC5676727 DOI: 10.1038/s41598-017-15355-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/24/2017] [Indexed: 01/11/2023] Open
Abstract
Similar to fingerprints, humans have unique, genetically determined body odours. In case of urine, the odour can change due to variations in diet as well as upon infection or tumour formation. We investigated the use of mice in a manner similar to “sniffer dogs” to detect changes in urine odour in patients with bladder cancer. We measured the odour discrimination thresholds of mice in a Y-maze, using urine mixtures from patients with bladder cancer (Stage I) and healthy volunteers (dietary variations) as well as occult blood- or antibiotic drug metabolite-modulated samples. Threshold difference indicated that intensities of urinary olfactory cues increase in the following order: dietary variation < bladder cancer < occult blood < antibiotic drug metabolites. After training with patient urine mixtures, sniffer mice discriminated between urine odours of pre- and post-transurethral resection in individual patients with bladder cancer in an equal-occult blood diluted condition below the detection level of dietary variations, achieving a success rate of 100% (11/11). Furthermore, genetic ablation of all dorsal olfactory receptors elevated the discrimination thresholds of mice by ≥ 105-fold. The marked reduction in discrimination sensitivity indicates an essential role of the dorsal olfactory receptors in the recognition of urinary body odours in mice.
Collapse
|
17
|
Kasbohm E, Fischer S, Küntzel A, Oertel P, Bergmann A, Trefz P, Miekisch W, Schubert JK, Reinhold P, Ziller M, Fröhlich A, Liebscher V, Köhler H. Strategies for the identification of disease-related patterns of volatile organic compounds: prediction of paratuberculosis in an animal model using random forests. J Breath Res 2017; 11:047105. [PMID: 28768897 DOI: 10.1088/1752-7163/aa83bb] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Modern statistical methods which were developed for pattern recognition are increasingly being used for data analysis in studies on emissions of volatile organic compounds (VOCs). With the detection of disease-related VOC profiles, novel non-invasive diagnostic tools could be developed for clinical applications. However, it is important to bear in mind that not all statistical methods are equally suitable for the investigation of VOC profiles. In particular, univariate methods are not able to discover VOC patterns as they consider each compound separately. The present study demonstrates this fact in practice. Using VOC samples from a controlled animal study on paratuberculosis, the random forest classification method was applied for pattern recognition and disease prediction. This strategy was compared with a prediction approach based on single compounds. Both methods were framed within a cross-validation procedure. A comparison of both strategies based on these VOC data reveals that random forests achieves higher sensitivities and specificities than predictions based on single compounds. Therefore, it will most likely be more fruitful to further investigate VOC patterns instead of single biomarkers for paratuberculosis. All methods used are thoroughly explained to aid the transfer to other data analyses.
Collapse
Affiliation(s)
- Elisa Kasbohm
- Institute of Epidemiology, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany. Department of Mathematics and Computer Science, University of Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Redlberger S, Fischer S, Köhler H, Diller R, Reinhold P. Age-dependent physiological dynamics in acid-base balance, electrolytes, and blood metabolites in growing goats. Vet J 2017; 229:45-52. [PMID: 29183573 DOI: 10.1016/j.tvjl.2017.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 11/26/2022]
Abstract
There is a paucity of published data reporting acid-base equilibrium in goats, and no information is available on how the acid-base complexity changes when suckling goat kids become ruminants. The aims of this study were to evaluate young healthy goats for age-related changes in serum proteins, metabolites, and electrolytes; differences in results when the Henderson-Hasselbalch equation or strong ion approaches were used were also assessed. To assess biological variability and reproducibility, two consecutive long-term studies, each lasting from the 6th to 56th week of life (wl), were performed in 15 (Study 1) and 10 (Study 2) animals. Blood gas analysis, serum biochemical analysis, and electrophoresis were performed on venous blood, and acid-base information was obtained using the traditional Henderson-Hasselbalch approach, Stewart's strong ion model, and Constable's simplified strong ion model. In all goats within the first 4-5 months, serum concentrations of glucose, l-lactate, and inorganic phosphate decreased significantly, while serum concentrations of total protein, albumin, and gamma globulin increased. Consequently, nonvolatile weak acids (Atot Alb and Atot TP) increased. At the end of this 'adaptation period', i.e. when milk was replaced by purely plant-based food, significantly lower bicarbonate and base excess values were accompanied by blood pH that shifted towards acidosis. Electrolytes (Na+, K+, Ca2+, and Cl-), anion gap, strong ion difference, and strong ion gap did not show age-dependent trends. In conclusion, somatic growth and development of gastro-intestinal fermentation in growing goats act as complex sources of physiological variability on acid-base equilibrium that was not reflected by the Henderson-Hasselbalch equation only.
Collapse
Affiliation(s)
- S Redlberger
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - S Fischer
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - H Köhler
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - R Diller
- Workgroup Biomathematics at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany
| | - P Reinhold
- Institute of Molecular Pathogenesis at Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Naumburger Str. 96a, 07743 Jena, Germany.
| |
Collapse
|
19
|
Filipiak W, Mochalski P, Filipiak A, Ager C, Cumeras R, Davis CE, Agapiou A, Unterkofler K, Troppmair J. A Compendium of Volatile Organic Compounds (VOCs) Released By Human Cell Lines. Curr Med Chem 2017; 23:2112-31. [PMID: 27160536 PMCID: PMC5086670 DOI: 10.2174/0929867323666160510122913] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022]
Abstract
Volatile organic compounds (VOCs) offer unique insights into ongoing biochemical processes in healthy and diseased humans. Yet, their diagnostic use is hampered by the limited understanding of their biochemical or cellular origin and their frequently unclear link to the underlying diseases. Major advancements are expected from the analyses of human primary cells, cell lines and cultures of microorganisms. In this review, a database of 125 reliably identified VOCs previously reported for human healthy and diseased cells was assembled and their potential origin is discussed. The majority of them have also been observed in studies with other human matrices (breath, urine, saliva, feces, blood, skin emanations). Moreover, continuing improvements of qualitative and quantitative analyses, based on the recommendations of the ISO-11843 guidelines, are suggested for the necessary standardization of analytical procedures and better comparability of results. The data provided contribute to arriving at a more complete human volatilome and suggest potential volatile biomarkers for future validation. Dedication: This review is dedicated to the memory of Prof. Dr. Anton Amann, who sadly passed away on January 6, 2015. He was motivator and motor for the field of breath research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral-, Transplant- and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|