1
|
Nah SH, Kim JB, Chui HNT, Suh Y, Yang S. Enhanced Colorimetric Detection of Volatile Organic Compounds Using a Dye-Incorporated Photonic Crystal-Based Sensor Array. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409297. [PMID: 39252667 DOI: 10.1002/adma.202409297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/29/2024] [Indexed: 09/11/2024]
Abstract
Chemoresponsive dyes offer the potential to selectively detect volatile organic compounds (VOCs) unique to certain disease states. Among different VOC sensing techniques, colorimetric sensing offers the advantage of facile recognition. However, it is often challenging to discern the color changes by the naked eye. Here, highly sensitive colorimetric VOC sensor arrays from dye-incorporated colloidal photonic crystals (dye-cPhCs) are reported. cPhCs are scalably fabricated on a 4-inch wafer by spin-coating of silica nanoparticles (NPs) dispersed in a photo-cross-linkable monomer, where the gradient shear flow along the film thickness creates densely-packed square arrays of NPs in the top layers, whereas the bulk is quasi-amorphous with larger periodicities. The broadened reflection peak allows for augmented dye absorption originating from the overlap between the photonic bandgap edge of the cPhC and the dye absorption peak, leading to a more noticeable color change upon exposure to VOCs. The sensor array generates distinct color difference maps for acetaldehyde, acetone, and acetic acid, respectively, without any data amplification. The limit of detection for acetaldehyde, acetone, and acetic acid is 1, 0.1, and 0.02 ppm, respectively. Moreover, VOC can be diagonalized by visually intuitive pattern recognition, and principal component analysis at reduced dimensionality is demonstrated.
Collapse
Affiliation(s)
- So Hee Nah
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Jong Bin Kim
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Hiu Ning Tiffany Chui
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Yeonjoon Suh
- Department of Electrical and Systems Engineering, University of Pennsylvania, 209 S 33rd Street, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Żuchowska K, Filipiak W. Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria: Current state of the art. J Pharm Anal 2024; 14:100898. [PMID: 38634063 PMCID: PMC11022102 DOI: 10.1016/j.jpha.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 04/19/2024] Open
Abstract
Pathogenic microorganisms produce numerous metabolites, including volatile organic compounds (VOCs). Monitoring these metabolites in biological matrices (e.g., urine, blood, or breath) can reveal the presence of specific microorganisms, enabling the early diagnosis of infections and the timely implementation of targeted therapy. However, complex matrices only contain trace levels of VOCs, and their constituent components can hinder determination of these compounds. Therefore, modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed. In this paper, we discuss bacterial VOC analysis under in vitro conditions, in animal models and disease diagnosis in humans, including techniques for offline and online analysis in clinical settings. We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis, in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species interactions, the kinetics of VOC metabolism, and species- and drug-resistance specificity.
Collapse
Affiliation(s)
- Karolina Żuchowska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| | - Wojciech Filipiak
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland
| |
Collapse
|
3
|
Wang K, Lin Z, Dou J, Jiang M, Shen N, Feng J. Identification and Surveys of Promoting Plant Growth VOCs from Biocontrol Bacteria Paenibacillus peoriae GXUN15128. Microbiol Spectr 2023; 11:e0434622. [PMID: 36988498 PMCID: PMC10269716 DOI: 10.1128/spectrum.04346-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/25/2023] [Indexed: 03/30/2023] Open
Abstract
The role of microbial volatile organic compounds (MVOCs) in promoting plant growth has received much attention. We isolated Paenibacillus peoriae from mangrove rhizosphere soil, which can produce VOCs to promote the growth of Arabidopsis thaliana seedlings, increase the aboveground biomass of A. thaliana, and increase the number of lateral roots of A. thaliana. The effects of different inoculation amounts and different media on the composition of MVOCs were studied by solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and headspace sampler/GC-MS. We found that the growth medium influences the function and composition of MVOCs. To survey the growth-promoting functions, the transcriptome of the receptor A. thaliana was then determined. We also verified the inhibitory effect of the soluble compounds produced by P. peoriae on the growth of 10 pathogenic fungi. The ability of P. peoriae to produce volatile and soluble compounds to promote plant growth and disease resistance has shown great potential for application in the sustainability of agricultural production. IMPORTANCE Microbial volatile organic compounds (MVOCs) have great potential as "gas fertilizers" for agricultural applications, and it is a promising research direction for the utilization of microbial resources. This study is part of the field of interactions between microorganisms and plants. To study the function and application of microorganisms from the perspective of VOCs is helpful to break the bottleneck of traditional microbial application. At present, the study of MVOCs is lacking; there is a lack of functional strains, especially with plant-protective functions and nonpathogenic application value. The significance of this study is that it provides Paenibacillus peoriae, which produces VOCs with plant growth-promoting effects and broad-spectrum antifungal activity against plant-pathogenic fungi. Our study provides a more comprehensive, new VOC component analysis method and explains how MVOCs promote plant growth through transcriptome analysis. This will greatly increase our understanding of MVOC applications as a model for other MVOC research.
Collapse
Affiliation(s)
- Kun Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ziyan Lin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Jin Dou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Jing Feng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
4
|
Ahmed WM, Fenn D, White IR, Dixon B, Nijsen TME, Knobel HH, Brinkman P, Van Oort PMP, Schultz MJ, Dark P, Goodacre R, Felton T, Bos LDJ, Fowler SJ. Microbial Volatiles as Diagnostic Biomarkers of Bacterial Lung Infection in Mechanically Ventilated Patients. Clin Infect Dis 2023; 76:1059-1066. [PMID: 36310531 PMCID: PMC10029988 DOI: 10.1093/cid/ciac859] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Early and accurate recognition of respiratory pathogens is crucial to prevent increased risk of mortality in critically ill patients. Microbial-derived volatile organic compounds (mVOCs) in exhaled breath could be used as noninvasive biomarkers of infection to support clinical diagnosis. METHODS In this study, we investigated the diagnostic potential of in vitro-confirmed mVOCs in the exhaled breath of patients under mechanical ventilation from the BreathDx study. Samples were analyzed by thermal desorption-gas chromatography-mass spectrometry. RESULTS Pathogens from bronchoalveolar lavage (BAL) cultures were identified in 45 of 89 patients and Staphylococcus aureus was the most commonly identified pathogen (n = 15). Of 19 mVOCs detected in the in vitro culture headspace of 4 common respiratory pathogens (S. aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli), 14 were found in exhaled breath samples. Higher concentrations of 2 mVOCs were found in the exhaled breath of patients infected with S. aureus compared to those without (3-methylbutanal: P < .01, area under the receiver operating characteristic curve [AUROC] = 0.81-0.87; and 3-methylbutanoic acid: P = .01, AUROC = 0.79-0.80). In addition, bacteria identified from BAL cultures that are known to metabolize tryptophan (E. coli, Klebsiella oxytoca, and Haemophilus influenzae) were grouped and found to produce higher concentrations of indole compared to breath samples with culture-negative (P = .034) and other pathogen-positive (P = .049) samples. CONCLUSIONS This study demonstrates the capability of using mVOCs to detect the presence of specific pathogen groups with potential to support clinical diagnosis. Although not all mVOCs were found in patient samples within this small pilot study, further targeted and qualitative investigation is warranted using multicenter clinical studies.
Collapse
Affiliation(s)
- Waqar M Ahmed
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and National Institute for Health Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Dominic Fenn
- Department of Respiratory Medicine, Amsterdam UMC-location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam University Medical Center (UMC), Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Iain R White
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and National Institute for Health Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Laboratory for Environmental and Life Science, University of Nova Gorica, Nova Gorica, Slovenia
| | - Breanna Dixon
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and National Institute for Health Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | | | - Hugo H Knobel
- Eurofins Materials Science Netherlands BV, High Tech Campus, Eindhoven, The Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam UMC-location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pouline M P Van Oort
- Department of Anaesthesiology, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Intensive Care, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Clinical Affairs, Hamilton Medical AG, Chur, Switzerland
| | - Paul Dark
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and National Institute for Health Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Critical Care Unit, Salford Royal NHS Foundation Trust, Northern Care Alliance NHS Group, Manchester, United Kingdom
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Timothy Felton
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and National Institute for Health Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Lieuwe D J Bos
- Department of Respiratory Medicine, Amsterdam UMC-location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam University Medical Center (UMC), Academic Medical Center (AMC), Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and National Institute for Health Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | | |
Collapse
|
5
|
Ahmed W, Bardin E, Davis MD, Sermet-Gaudelus I, Grassin Delyle S, Fowler SJ. Volatile metabolites differentiate air-liquid interface cultures after infection with Staphylococcus aureus. Analyst 2023; 148:618-627. [PMID: 36597770 DOI: 10.1039/d2an01205g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Early detection of lung infection is critical to clinical diagnosis, treatment, and monitoring. Measuring volatile organic compounds (VOCs) in exhaled breath has shown promise as a rapid and accurate method of evaluating disease metabolism and phenotype. However, further investigations of the role and function of VOCs in bacterial-host-stress response is required and this can only be realised through representative in vitro models. In this study we sampled VOCs from the headspace of A549 cells at an air-liquid interface (ALI). We hypothesised VOC sampling from ALI cultures could be used to profile potential biomarkers of S. aureus lung infection. VOCs were collected using thin film microextraction (TFME) and were analysed by thermal desorption-gas chromatography-mass spectrometry. After optimising ALI cultures, we observed seven VOCs changed between A549 and media control samples. After infecting cells with S. aureus, supervised principal component-discriminant function analysis revealed 22 VOCs were found to be significantly changed in infected cells compared to uninfected cells (p < 0.05), five of which were also found in parallel axenic S. aureus cultures. We have demonstrated VOCs that could be used to identify S. aureus in ALI cultures, supporting further investigation of VOC analysis as a highly sensitive and specific test for S. aureus lung infection.
Collapse
Affiliation(s)
- Waqar Ahmed
- Division of Immunology, Immunity to infection & Respiratory Medicine, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Emmanuelle Bardin
- Institut Necker-Enfants Malades, Paris, France.,Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Montigny le Bretonneux, France
| | - Michael D Davis
- Herman B Wells Center for Pediatric Research, Pediatric Pulmonology, Allergy, and Sleep Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Isabelle Sermet-Gaudelus
- Institut Necker-Enfants Malades, Paris, France.,Service de Pneumo-Pédiatrie, Université René Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | - Stanislas Grassin Delyle
- Université Paris-Saclay, UVSQ, INSERM, Infection et inflammation, Montigny le Bretonneux, France.,Hôpital Foch, Exhalomics, Département des maladies des voies respiratoires, Suresnes, France
| | - Stephen J Fowler
- Division of Immunology, Immunity to infection & Respiratory Medicine, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Education and Research Centre, W ythenshawe Hospital, Manchester, M23 9LT, UK.
| |
Collapse
|
6
|
Jenkins CL, Bean HD. Current Limitations of Staph Infection Diagnostics, and the Role for VOCs in Achieving Culture-Independent Detection. Pathogens 2023; 12:pathogens12020181. [PMID: 36839453 PMCID: PMC9963134 DOI: 10.3390/pathogens12020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Staphylococci are broadly adaptable and their ability to grow in unique environments has been widely established, but the most common and clinically relevant staphylococcal niche is the skin and mucous membranes of mammals and birds. S. aureus causes severe infections in mammalian tissues and organs, with high morbidities, mortalities, and treatment costs. S. epidermidis is an important human commensal but is also capable of deadly infections. Gold-standard diagnostic methods for staph infections currently rely upon retrieval and characterization of the infectious agent through various culture-based methods. Yet, obtaining a viable bacterial sample for in vitro identification of infection etiology remains a significant barrier in clinical diagnostics. The development of volatile organic compound (VOC) profiles for the detection and identification of pathogens is an area of intensive research, with significant efforts toward establishing breath tests for infections. This review describes the limitations of existing infection diagnostics, reviews the principles and advantages of VOC-based diagnostics, summarizes the analytical tools for VOC discovery and clinical detection, and highlights examples of how VOC biomarkers have been applied to diagnosing human and animal staph infections.
Collapse
Affiliation(s)
- Carrie L. Jenkins
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85287, USA
| | - Heather D. Bean
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Tempe, AZ 85287, USA
- Correspondence:
| |
Collapse
|
7
|
Marriott PJ, Wong YF, Hill JE. Whither Gas Chromatography? New Tools ~ New Solutions. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.sb8579x8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We might well ask “Where is gas chromatography (GC) heading?” For many analysts, the answer may be just “more of the same,” reflecting that GC is mature and that most analysis tasks and sample types have been tried and tested. In this scenario, any changes to the basic method may be marginal—sample introduction, and maybe a new detector? But beneath this status quo is an undercurrent of passion, excitement, and power.
Collapse
|
8
|
Multi-Strain and -Species Investigation of Volatile Metabolites Emitted from Planktonic and Biofilm Candida Cultures. Metabolites 2022; 12:metabo12050432. [PMID: 35629935 PMCID: PMC9146923 DOI: 10.3390/metabo12050432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Candida parapsiliosis is a prevalent neonatal pathogen that attains its virulence through its strain-specific ability to form biofilms. The use of volatilomics, the profiling of volatile metabolites from microbes is a non-invasive, simple way to identify and classify microbes; it has shown great potential for pathogen identification. Although C. parapsiliosis is one of the most common clinical fungal pathogens, its volatilome has never been characterised. In this study, planktonic volatilomes of ten clinical strains of C. parapsilosis were analysed, along with a single strain of Candida albicans. Headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry were employed to analyse the samples. Species-, strain-, and media- influences on the fungal volatilomes were investigated. Twenty-four unique metabolites from the examined Candida spp. (22 from C. albicans; 18 from C. parapsilosis) were included in this study. Chemical classes detected across the samples included alcohols, fatty acid esters, acetates, thiols, sesquiterpenes, and nitrogen-containing compounds. C. albicans volatilomes were most clearly discriminated from C. parapsilosis based on the detection of unique sesquiterpene compounds. The effect of biofilm formation on the C. parapsilosis volatilomes was investigated for the first time by comparing volatilomes of a biofilm-positive strain and a biofilm-negative strain over time (0–48 h) using a novel sampling approach. Volatilomic shifts in the profiles of alcohols, ketones, acids, and acetates were observed specifically in the biofilm-forming samples and attributed to biofilm maturation. This study highlights species-specificity of Candida volatilomes, and also marks the clinical potential for volatilomics for non-invasively detecting fungal pathogens. Additionally, the range of biofilm-specificity across microbial volatilomes is potentially far-reaching, and therefore characterising these volatilomic changes in pathogenic fungal and bacterial biofilms could lead to novel opportunities for detecting severe infections early.
Collapse
|
9
|
Fitzgerald S, Holland L, Morrin A. An Investigation of Stability and Species and Strain-Level Specificity in Bacterial Volatilomes. Front Microbiol 2021; 12:693075. [PMID: 34721314 PMCID: PMC8549763 DOI: 10.3389/fmicb.2021.693075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Microbial volatilomics is a rapidly growing field of study and has shown great potential for applications in food, farming, and clinical sectors in the future. Due to the varying experimental methods and growth conditions employed in microbial volatilomic studies as well as strain-dependent volatilomic differences, there is limited knowledge regarding the stability of microbial volatilomes. Consequently, cross-study comparisons and validation of results and data can be challenging. In this study, we investigated the stability of the volatilomes of multiple strains of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli across three frequently used nutrient-rich growth media. Volatilomic stability was assessed based on media-, time- and strain-dependent variation across the examined bacterial volatilomes. Strain-level specificity of the observed volatilomes of E. coli and P. aeruginosa strains was further investigated by comparing the emission of selected compounds at varying stages of cell growth. Headspace solid phase microextraction (HS-SPME) sampling coupled with gas chromatography mass spectrometry (GC-MS) was used to analyze the volatilome of each strain. The whole volatilomes of the examined strains demonstrate a high degree of stability across the three examined growth media. At the compound-level, media dependent differences were observed particularly when comparing the volatilomes obtained in glucose-containing brain heart infusion (BHI) and tryptone soy broth (TSB) growth media with the volatilomes obtained in glucose-free Lysogeny broth (LB) media. These glucose-dependent volatilomic differences were primarily seen in the emission of primary metabolites such as alcohols, ketones, and acids. Strain-level differences in the emission of specific compounds in E. coli and P. aeruginosa samples were also observed across the media. These strain-level volatilomic differences were also observed across varying phases of growth of each strain, therefore confirming that these strains had varying core and accessory volatilomes. Our results demonstrate that, at the species-level, the examined bacteria have a core volatilome that exhibits a high-degree of stability across frequently-used growth media. Media-dependent differences in microbial volatilomes offer valuable insights into identifying the cellular origin of individual metabolites. The observed differences in the core and accessory volatilomes of the examined strains illustrate the complexity of microbial volatilomics as a study while also highlighting the need for more strain-level investigations to ultimately elucidate the whole volatilomic capabilities of microbial species in the future.
Collapse
Affiliation(s)
- Shane Fitzgerald
- School of Chemical Sciences, National Center for Sensor Research, SFI Insight Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | - Linda Holland
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Aoife Morrin
- School of Chemical Sciences, National Center for Sensor Research, SFI Insight Centre for Data Analytics, Dublin City University, Dublin, Ireland
| |
Collapse
|
10
|
Multi-strain volatile profiling of pathogenic and commensal cutaneous bacteria. Sci Rep 2020; 10:17971. [PMID: 33087843 PMCID: PMC7578783 DOI: 10.1038/s41598-020-74909-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
The detection of volatile organic compounds (VOC) emitted by pathogenic bacteria has been proposed as a potential non-invasive approach for characterising various infectious diseases as well as wound infections. Studying microbial VOC profiles in vitro allows the mechanisms governing VOC production and the cellular origin of VOCs to be deduced. However, inter-study comparisons of microbial VOC data remains a challenge due to the variation in instrumental and growth parameters across studies. In this work, multiple strains of pathogenic and commensal cutaneous bacteria were analysed using headspace solid phase micro-extraction coupled with gas chromatography-mass spectrometry. A kinetic study was also carried out to assess the relationship between bacterial VOC profiles and the growth phase of cells. Comprehensive bacterial VOC profiles were successfully discriminated at the species-level, while strain-level variation was only observed in specific species and to a small degree. Temporal emission kinetics showed that the emission of particular compound groups were proportional to the respective growth phase for individual S. aureus and P. aeruginosa samples. Standardised experimental workflows are needed to improve comparability across studies and ultimately elevate the field of microbial VOC profiling. Our results build on and support previous literature and demonstrate that comprehensive discriminative results can be achieved using simple experimental and data analysis workflows.
Collapse
|
11
|
Jenkins CL, Bean HD. Dependence of the Staphylococcal Volatilome Composition on Microbial Nutrition. Metabolites 2020; 10:metabo10090347. [PMID: 32867100 PMCID: PMC7569959 DOI: 10.3390/metabo10090347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/23/2020] [Indexed: 01/09/2023] Open
Abstract
In vitro cultivation of staphylococci is fundamental to both clinical and research microbiology, but few studies, to-date, have investigated how the differences in rich media can influence the volatilome of cultivated bacteria. The objective of this study was to determine the influence of rich media composition on the chemical characteristics of the volatilomes of Staphylococcus aureus and Staphylococcus epidermidis. S. aureus (ATCC 12600) and S. epidermidis (ATCC 12228) were cultured in triplicate in four rich complex media (brain heart infusion (BHI), lysogeny broth (LB), Mueller Hinton broth (MHB), and tryptic soy broth (TSB)), and the volatile metabolites produced by each culture were analyzed using headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography—time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS). When comparing the chemical compositions of the staph volatilomes by the presence versus absence of volatiles produced in each medium, we observed few differences. However, when the relative abundances of volatiles were included in the analyses, we observed that culturing staph in media containing free glucose (BHI and TSB) resulted in volatilomes dominated by acids and esters (67%). The low-glucose media (LB and MHB) produced ketones in greatest relative abundances, but the volatilome compositions in these two media were highly dissimilar. We conclude that the staphylococcal volatilome is strongly influenced by the nutritional composition of the growth medium, especially the availability of free glucose, which is much more evident when the relative abundances of the volatiles are analyzed, compared to the presence versus absence.
Collapse
Affiliation(s)
- Carrie L. Jenkins
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Heather D. Bean
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA;
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- Correspondence:
| |
Collapse
|
12
|
Hahn A, Whiteson K, Davis TJ, Phan J, Sami I, Koumbourlis AC, Freishtat RJ, Crandall KA, Bean HD. Longitudinal Associations of the Cystic Fibrosis Airway Microbiome and Volatile Metabolites: A Case Study. Front Cell Infect Microbiol 2020; 10:174. [PMID: 32411616 PMCID: PMC7198769 DOI: 10.3389/fcimb.2020.00174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/01/2020] [Indexed: 01/15/2023] Open
Abstract
The identification of 16S rDNA biomarkers from respiratory samples to describe the continuum of clinical disease states within persons having cystic fibrosis (CF) has remained elusive. We sought to combine 16S, metagenomics, and metabolomics data to describe multiple transitions between clinical disease states in 14 samples collected over a 12-month period in a single person with CF. We hypothesized that each clinical disease state would have a unique combination of bacterial genera and volatile metabolites as a potential signature that could be utilized as a biomarker of clinical disease state. Taxonomy identified by 16S sequencing corroborated clinical culture results, with the majority of the 109 PCR amplicons belonging to the bacteria grown in clinical cultures (Escherichia coli and Staphylococcus aureus). While alpha diversity measures fluctuated across disease states, no significant trends were present. Principle coordinates analysis showed that treatment samples trended toward a different community composition than baseline and exacerbation samples. This was driven by the phylum Bacteroidetes (less abundant in treatment, log2 fold difference -3.29, p = 0.015) and the genus Stenotrophomonas (more abundant in treatment, log2 fold difference 6.26, p = 0.003). Across all sputum samples, 466 distinct volatile metabolites were identified with total intensity varying across clinical disease state. Baseline and exacerbation samples were rather uniform in chemical composition and similar to one another, while treatment samples were highly variable and differed from the other two disease states. When utilizing a combination of the microbiome and metabolome data, we observed associations between samples dominated Staphylococcus and Escherichia and higher relative abundances of alcohols, while samples dominated by Achromobacter correlated with a metabolomics shift toward more oxidized volatiles. However, the microbiome and metabolome data were not tightly correlated; examining both the metagenomics and metabolomics allows for more context to examine changes across clinical disease states. In our study, combining the sputum microbiome and metabolome data revealed stability in the sputum composition through the first exacerbation and treatment episode, and into the second exacerbation. However, the second treatment ushered in a prolonged period of instability, which after three additional exacerbations and treatments culminated in a new lung microbiome and metabolome.
Collapse
Affiliation(s)
- Andrea Hahn
- Division of Infectious Diseases, Children's National Health System, Washington, DC, United States
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Center for Genetic Medicine Research, The Children's Research Institute, Washington, DC, United States
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA, United States
| | - Trenton J. Davis
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Joann Phan
- Department of Molecular Biology and Biochemistry, University of California at Irvine, Irvine, CA, United States
| | - Iman Sami
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, United States
| | - Anastassios C. Koumbourlis
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, United States
| | - Robert J. Freishtat
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Division of Emergency Medicine, Children's National Health System, Washington, DC, United States
| | - Keith A. Crandall
- Computational Biology Institute and Department of Biostatistics & Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Heather D. Bean
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|