1
|
Filaire F, Sécula A, Bessière P, Pagès-Homs M, Guérin JL, Violleau F, Till U. High and low pathogenicity avian influenza virus discrimination and prediction based on volatile organic compounds signature by SIFT-MS: a proof-of-concept study. Sci Rep 2024; 14:17051. [PMID: 39048690 PMCID: PMC11269574 DOI: 10.1038/s41598-024-67219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
High and low pathogenicity avian influenza viruses (HPAIV, LPAIV) are the primary causes of poultry diseases worldwide. HPAIV and LPAIV constitute a major threat to the global poultry industry. Therefore, early detection and well-adapted surveillance strategies are of the utmost importance to control the spread of these viruses. Volatile Organic Compounds (VOCs) released from living organisms have been investigated over the last decades as a diagnostic strategy. Mass spectrometry instruments can analyze VOCs emitted upon viral infection. Selected ion flow tube mass spectrometry (SIFT-MS) enables direct analysis of cell headspace in less than 20 min. As a proof-of-concept study, we investigated the ability of a SIFT-MS coupled sparse Partial Least Square-Discriminant Analysis analytical workflow to discriminate IAV-infected cells. Supernatants of HPAIV, LPAIV, and control cells were collected from 1 to 72 h post-infection and analyzed using our analytical workflow. At each collection point, VOCs' signatures were first identified based on four independent experiments and then used to discriminate the infectious status of external samples. Our results indicate that the identified VOCs signatures successfully discriminate, as early as 1-h post-infection, infected cells from the control cells and differentiated the HPAIV from the LPAIV infection. These results suggest a virus-dependent VOCs signature. Overall, the external samples' status was identified with 96.67% sensitivity, 100% specificity, and 97.78% general accuracy.
Collapse
Affiliation(s)
- Fabien Filaire
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
- Physiologie, Pathologie et Génétique Végétales PPGV, INP-PURPAN, Toulouse, France.
- THESEO France, Lanxess Biosecurity, LanXess Group, Laval, France.
| | - Aurélie Sécula
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Marielle Pagès-Homs
- Physiologie, Pathologie et Génétique Végétales PPGV, INP-PURPAN, Toulouse, France.
| | | | - Frederic Violleau
- Laboratoire de Chimie Agro-industrielle, LCA, Université de Toulouse, INP-PURPAN, Toulouse, France
| | - Ugo Till
- THESEO France, Lanxess Biosecurity, LanXess Group, Laval, France
| |
Collapse
|
2
|
Xie Z, Morris JD, Pan J, Cooke EA, Sutaria SR, Balcom D, Marimuthu S, Parrish LW, Aliesky H, Huang JJ, Rai SN, Arnold FW, Huang J, Nantz MH, Fu XA. Detection of COVID-19 by quantitative analysis of carbonyl compounds in exhaled breath. Sci Rep 2024; 14:14568. [PMID: 38914586 PMCID: PMC11196736 DOI: 10.1038/s41598-024-61735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 06/26/2024] Open
Abstract
COVID-19 has caused a worldwide pandemic, creating an urgent need for early detection methods. Breath analysis has shown great potential as a non-invasive and rapid means for COVID-19 detection. The objective of this study is to detect patients infected with SARS-CoV-2 and even the possibility to screen between different SARS-CoV-2 variants by analysis of carbonyl compounds in breath. Carbonyl compounds in exhaled breath are metabolites related to inflammation and oxidative stress induced by diseases. This study included a cohort of COVID-19 positive and negative subjects confirmed by reverse transcription polymerase chain reaction between March and December 2021. Carbonyl compounds in exhaled breath were captured using a microfabricated silicon microreactor and analyzed by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). A total of 321 subjects were enrolled in this study. Of these, 141 (85 males, 60.3%) (mean ± SD age: 52 ± 15 years) were COVID-19 (55 during the alpha wave and 86 during the delta wave) positive and 180 (90 males, 50%) (mean ± SD age: 45 ± 15 years) were negative. Panels of a total of 34 ketones and aldehydes in all breath samples were identified for detection of COVID-19 positive patients. Logistic regression models indicated high accuracy/sensitivity/specificity for alpha wave (98.4%/96.4%/100%), for delta wave (88.3%/93.0%/84.6%) and for all COVID-19 positive patients (94.7%/90.1%/98.3%). The results indicate that COVID-19 positive patients can be detected by analysis of carbonyl compounds in exhaled breath. The technology for analysis of carbonyl compounds in exhaled breath has great potential for rapid screening and detection of COVID-19 and for other infectious respiratory diseases in future pandemics.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA
| | - James D Morris
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA
| | - Jianmin Pan
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- The Cancer Data Science Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Biostatistics and Informatics Shared Resource, University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Elizabeth A Cooke
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY, USA
| | - Saurin R Sutaria
- Department of Chemistry, University of Louisville, Louisville, KY, USA
| | - Dawn Balcom
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Subathra Marimuthu
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Leslie W Parrish
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Holly Aliesky
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | | | - Shesh N Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- The Cancer Data Science Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Biostatistics and Informatics Shared Resource, University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Forest W Arnold
- Division of Infectious Diseases, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY, USA.
| | - Michael H Nantz
- Department of Chemistry, University of Louisville, Louisville, KY, USA.
| | - Xiao-An Fu
- Department of Chemical Engineering, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
3
|
Borras E, McCartney MM, Rojas DE, Hicks TL, Tran NK, Tham T, Juarez MM, Franzi L, Harper RW, Davis CE, Kenyon NJ. Oxylipin concentration shift in exhaled breath condensate (EBC) of SARS-CoV-2 infected patients. J Breath Res 2023; 17:10.1088/1752-7163/acea3d. [PMID: 37489864 PMCID: PMC10446499 DOI: 10.1088/1752-7163/acea3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Infection of airway epithelial cells with severe acute respiratory coronavirus 2 (SARS-CoV-2) can lead to severe respiratory tract damage and lung injury with hypoxia. It is challenging to sample the lower airways non-invasively and the capability to identify a highly representative specimen that can be collected in a non-invasive way would provide opportunities to investigate metabolomic consequences of COVID-19 disease. In the present study, we performed a targeted metabolomic approach using liquid chromatography coupled with high resolution chromatography (LC-MS) on exhaled breath condensate (EBC) collected from hospitalized COVID-19 patients (COVID+) and negative controls, both non-hospitalized and hospitalized for other reasons (COVID-). We were able to noninvasively identify and quantify inflammatory oxylipin shifts and dysregulation that may ultimately be used to monitor COVID-19 disease progression or severity and response to therapy. We also expected EBC-based biochemical oxylipin changes associated with COVID-19 host response to infection. The results indicated ten targeted oxylipins showing significative differences between SAR-CoV-2 infected EBC samples and negative control subjects. These compounds were prostaglandins A2 and D2, LXA4, 5-HETE, 12-HETE, 15-HETE, 5-HEPE, 9-HODE, 13-oxoODE and 19(20)-EpDPA, which are associated with specific pathways (i.e. P450, COX, 15-LOX) related to inflammatory and oxidative stress processes. Moreover, all these compounds were up-regulated by COVID+, meaning their concentrations were higher in subjects with SAR-CoV-2 infection. Given that many COVID-19 symptoms are inflammatory in nature, this is interesting insight into the pathophysiology of the disease. Breath monitoring of these and other EBC metabolites presents an interesting opportunity to monitor key indicators of disease progression and severity.
Collapse
Affiliation(s)
- Eva Borras
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, University of California Davis, CA
- These authors contributed equally: Eva Borras, Mitchell M. McCartney
| | - Mitchell M. McCartney
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, University of California Davis, CA
- VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA
- These authors contributed equally: Eva Borras, Mitchell M. McCartney
| | - Dante E. Rojas
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, University of California Davis, CA
| | - Tristan L Hicks
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, University of California Davis, CA
| | - Nam K Tran
- UC Davis Lung Center, University of California Davis, CA
- Department of Pathology and Laboratory Medicine, UC Davis, Sacramento CA, USA
| | - Tina Tham
- UC Davis Lung Center, University of California Davis, CA
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA
| | - Maya M Juarez
- UC Davis Lung Center, University of California Davis, CA
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA
| | - Lisa Franzi
- UC Davis Lung Center, University of California Davis, CA
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA
| | - Richart W. Harper
- UC Davis Lung Center, University of California Davis, CA
- VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA
- Department of Internal Medicine, 4150 V Street, Suite 3400, University of California, Davis, Sacramento, CA 95817, USA
| | - Cristina E. Davis
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, University of California Davis, CA
- VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA
| | - Nicholas J. Kenyon
- UC Davis Lung Center, University of California Davis, CA
- VA Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA
- Department of Pathology and Laboratory Medicine, UC Davis, Sacramento CA, USA
| |
Collapse
|
4
|
Fothergill DM, Borras E, McCartney MM, Schelegle E, Davis CE. Exhaled breath condensate profiles of U.S. Navy divers following prolonged hyperbaric oxygen (HBO) and nitrogen-oxygen (Nitrox) chamber exposures. J Breath Res 2023; 17:10.1088/1752-7163/acd715. [PMID: 37207635 PMCID: PMC11057948 DOI: 10.1088/1752-7163/acd715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/19/2023] [Indexed: 05/21/2023]
Abstract
Prolonged exposure to hyperbaric hyperoxia can lead to pulmonary oxygen toxicity (PO2tox). PO2tox is a mission limiting factor for special operations forces divers using closed-circuit rebreathing apparatus and a potential side effect for patients undergoing hyperbaric oxygen (HBO) treatment. In this study, we aim to determine if there is a specific breath profile of compounds in exhaled breath condensate (EBC) that is indicative of the early stages of pulmonary hyperoxic stress/PO2tox. Using a double-blind, randomized 'sham' controlled, cross-over design 14 U.S. Navy trained diver volunteers breathed two different gas mixtures at an ambient pressure of 2 ATA (33 fsw, 10 msw) for 6.5 h. One test gas consisted of 100% O2(HBO) and the other was a gas mixture containing 30.6% O2with the balance N2(Nitrox). The high O2stress dive (HBO) and low O2stress dive (Nitrox) were separated by at least seven days and were conducted dry and at rest inside a hyperbaric chamber. EBC samples were taken immediately before and after each dive and subsequently underwent a targeted and untargeted metabolomics analysis using liquid chromatography coupled to mass spectrometry (LC-MS). Following the HBO dive, 10 out of 14 subjects reported symptoms of the early stages of PO2tox and one subject terminated the dive early due to severe symptoms of PO2tox. No symptoms of PO2tox were reported following the nitrox dive. A partial least-squares discriminant analysis of the normalized (relative to pre-dive) untargeted data gave good classification abilities between the HBO and nitrox EBC with an AUC of 0.99 (±2%) and sensitivity and specificity of 0.93 (±10%) and 0.94 (±10%), respectively. The resulting classifications identified specific biomarkers that included human metabolites and lipids and their derivatives from different metabolic pathways that may explain metabolomic changes resulting from prolonged HBO exposure.
Collapse
Affiliation(s)
| | - Eva Borras
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, One Shields Avenue, University of California, Davis, Davis, California, USA
| | - Mitchell M. McCartney
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, One Shields Avenue, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| | - Edward Schelegle
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Cristina E. Davis
- Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, Davis, California, USA
- UC Davis Lung Center, One Shields Avenue, University of California, Davis, Davis, California, USA
- VA Northern California Health Care System, Mather, California, USA
| |
Collapse
|
5
|
McCartney MM, Borras E, Rojas DE, Hicks TL, Hamera KL, Tran NK, Tham T, Juarez MM, Lopez E, Kenyon NJ, Davis CE. Predominant SARS-CoV-2 variant impacts accuracy when screening for infection using exhaled breath vapor. COMMUNICATIONS MEDICINE 2022; 2:158. [PMID: 36482179 PMCID: PMC9731983 DOI: 10.1038/s43856-022-00221-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND New technologies with novel and ambitious approaches are being developed to diagnose or screen for SARS-CoV-2, including breath tests. The US FDA approved the first breath test for COVID-19 under emergency use authorization in April 2022. Most breath-based assays measure volatile metabolites exhaled by persons to identify a host response to infection. We hypothesized that the breathprint of COVID-19 fluctuated after Omicron became the primary variant of transmission over the Delta variant. METHODS We collected breath samples from 142 persons with and without a confirmed COVID-19 infection during the Delta and Omicron waves. Breath samples were analyzed by gas chromatography-mass spectrometry. RESULTS Here we show that based on 63 exhaled compounds, a general COVID-19 model had an accuracy of 0.73 ± 0.06, which improved to 0.82 ± 0.12 when modeling only the Delta wave, and 0.84 ± 0.06 for the Omicron wave. The specificity improved for the Delta and Omicron models (0.79 ± 0.21 and 0.74 ± 0.12, respectively) relative to the general model (0.61 ± 0.13). CONCLUSIONS We report that the volatile signature of COVID-19 in breath differs between the Delta-predominant and Omicron-predominant variant waves, and accuracies improve when samples from these waves are modeled separately rather than as one universal approach. Our findings have important implications for groups developing breath-based assays for COVID-19 and other respiratory pathogens, as the host response to infection may significantly differ depending on variants or subtypes.
Collapse
Affiliation(s)
- Mitchell M McCartney
- Mechanical and Aerospace Engineering, UC Davis, Davis, CA, USA
- UC Davis Lung Center, Davis, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
| | - Eva Borras
- Mechanical and Aerospace Engineering, UC Davis, Davis, CA, USA
- UC Davis Lung Center, Davis, CA, USA
| | - Dante E Rojas
- Mechanical and Aerospace Engineering, UC Davis, Davis, CA, USA
- UC Davis Lung Center, Davis, CA, USA
| | - Tristan L Hicks
- Mechanical and Aerospace Engineering, UC Davis, Davis, CA, USA
- UC Davis Lung Center, Davis, CA, USA
| | - Katherine L Hamera
- Mechanical and Aerospace Engineering, UC Davis, Davis, CA, USA
- UC Davis Lung Center, Davis, CA, USA
| | - Nam K Tran
- Department of Pathology and Laboratory Medicine, UC Davis, Sacramento, CA, USA
| | - Tina Tham
- Department of Internal Medicine, UC Davis, Sacramento, CA, USA
| | - Maya M Juarez
- Department of Internal Medicine, UC Davis, Sacramento, CA, USA
| | | | - Nicholas J Kenyon
- UC Davis Lung Center, Davis, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
- Department of Internal Medicine, UC Davis, Sacramento, CA, USA
| | - Cristina E Davis
- Mechanical and Aerospace Engineering, UC Davis, Davis, CA, USA.
- UC Davis Lung Center, Davis, CA, USA.
- VA Northern California Health Care System, Mather, CA, USA.
| |
Collapse
|