• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4636016)   Today's Articles (642)   Subscriber (50089)
For: He J, Xia P, Li D. Development of melt electrohydrodynamic 3D printing for complex microscale poly ( ε -caprolactone) scaffolds. Biofabrication 2016;8:035008. [DOI: 10.1088/1758-5090/8/3/035008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Number Cited by Other Article(s)
1
Mohammed A, Jiménez A, Bidare P, Elshaer A, Memic A, Hassanin H, Essa K. Review on Engineering of Bone Scaffolds Using Conventional and Additive Manufacturing Technologies. 3D PRINTING AND ADDITIVE MANUFACTURING 2024;11:1418-1440. [PMID: 39360139 PMCID: PMC11443118 DOI: 10.1089/3dp.2022.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
2
Lai X, Huang J, Huang S, Wang J, Zheng Y, Luo Y, Tang L, Gao B, Tang Y. Antibacterial and Osteogenic Dual-Functional Micronano Composite Scaffold Fabricated via Melt Electrowriting and Solution Electrospinning for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024;16:37707-37721. [PMID: 39001812 DOI: 10.1021/acsami.4c07400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
3
Liu Z, Jia J, Lei Q, Wei Y, Hu Y, Lian X, Zhao L, Xie X, Bai H, He X, Si L, Livermore C, Kuang R, Zhang Y, Wang J, Yu Z, Ma X, Huang D. Electrohydrodynamic Direct-Writing Micro/Nanofibrous Architectures: Principle, Materials, and Biomedical Applications. Adv Healthc Mater 2024:e2400930. [PMID: 38847291 DOI: 10.1002/adhm.202400930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Indexed: 07/05/2024]
4
Federici AS, Tornifoglio B, Lally C, Garcia O, Kelly DJ, Hoey DA. Melt electrowritten scaffold architectures to mimic tissue mechanics and guide neo-tissue orientation. J Mech Behav Biomed Mater 2024;150:106292. [PMID: 38109813 DOI: 10.1016/j.jmbbm.2023.106292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023]
5
Salehi Abar E, Vandghanooni S, Torab A, Jaymand M, Eskandani M. A comprehensive review on nanocomposite biomaterials based on gelatin for bone tissue engineering. Int J Biol Macromol 2024;254:127556. [PMID: 37884249 DOI: 10.1016/j.ijbiomac.2023.127556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
6
von Witzleben M, Hahn J, Richter RF, de Freitas B, Steyer E, Schütz K, Vater C, Bernhardt A, Elschner C, Gelinsky M. Tailoring the pore design of embroidered structures by melt electrowriting to enhance the cell alignment in scaffold-based tendon reconstruction. BIOMATERIALS ADVANCES 2024;156:213708. [PMID: 38029698 DOI: 10.1016/j.bioadv.2023.213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
7
Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J. Conductive fibers for biomedical applications. Bioact Mater 2023;22:343-364. [PMID: 36311045 PMCID: PMC9588989 DOI: 10.1016/j.bioactmat.2022.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022]  Open
8
Zhang G, Li W, Yu M, Huang H, Wang Y, Han Z, Shi K, Ma L, Yu Z, Zhu X, Peng Z, Xu Y, Li X, Hu S, He J, Li D, Xi Y, Lan H, Xu L, Tang M, Xiao M. Electric-Field-Driven Printed 3D Highly Ordered Microstructure with Cell Feature Size Promotes the Maturation of Engineered Cardiac Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023;10:e2206264. [PMID: 36782337 PMCID: PMC10104649 DOI: 10.1002/advs.202206264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
9
Ding L, Liu C, Yin S, Zhou Z, Chen J, Chen X, Chen L, Wang D, Liu B, Liu Y, Wei J, Li J. Engineering a dynamic three-dimensional cell culturing microenvironment using a "sandwich" structure-liked microfluidic device with 3D printing scaffold. Biofabrication 2022;14. [PMID: 35973411 DOI: 10.1088/1758-5090/ac8a19] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/16/2022] [Indexed: 11/12/2022]
10
Experimental Analysis of Wax Micro-Droplet 3D Printing Based on a High-Voltage Electric Field-Driven Jet Deposition Technology. CRYSTALS 2022. [DOI: 10.3390/cryst12020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
11
Tip-Viscid Electrohydrodynamic Jet 3D Printing of Composite Osteochondral Scaffold. NANOMATERIALS 2021;11:nano11102694. [PMID: 34685135 PMCID: PMC8539201 DOI: 10.3390/nano11102694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023]
12
Chen T, Jiang H, Zhu Y, Chen X, Zhang D, Li X, Shen F, Xia H, Min Y, Xie K. Highly Ordered 3D Tissue Engineering Scaffolds as a Versatile Culture Platform for Nerve Cells Growth. Macromol Biosci 2021;21:e2100047. [PMID: 33893711 DOI: 10.1002/mabi.202100047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/11/2021] [Indexed: 12/14/2022]
13
Li Y, Zhou J, Wu C, Yu Z, Zhang W, Li W, Zhang X. Development of Cryogenic Electrohydrodynamic Jet Printing for Fabrication of Fine Scaffolds with Extra Filament Surface Topography. 3D PRINTING AND ADDITIVE MANUFACTURING 2020;7:230-236. [PMID: 36654919 PMCID: PMC9586236 DOI: 10.1089/3dp.2019.0182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
14
Lin W, Chen M, Qu T, Li J, Man Y. Three‐dimensional electrospun nanofibrous scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2020;108:1311-1321. [PMID: 31436374 DOI: 10.1002/jbm.b.34479] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/13/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023]
15
Gao Q, Xie C, Wang P, Xie M, Li H, Sun A, Fu J, He Y. 3D printed multi-scale scaffolds with ultrafine fibers for providing excellent biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020;107:110269. [DOI: 10.1016/j.msec.2019.110269] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/08/2019] [Accepted: 09/30/2019] [Indexed: 01/10/2023]
16
Li K, Wang D, Zhao K, Song K, Liang J. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture. Talanta 2020;211:120750. [PMID: 32070610 DOI: 10.1016/j.talanta.2020.120750] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
17
Park YS, Kim J, Oh JM, Park S, Cho S, Ko H, Cho YK. Near-Field Electrospinning for Three-Dimensional Stacked Nanoarchitectures with High Aspect Ratios. NANO LETTERS 2020;20:441-448. [PMID: 31763856 DOI: 10.1021/acs.nanolett.9b04162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
18
Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair. Int J Pharm 2019;576:118941. [PMID: 31881261 DOI: 10.1016/j.ijpharm.2019.118941] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022]
19
Biomimicry in Bio-Manufacturing: Developments in Melt Electrospinning Writing Technology Towards Hybrid Biomanufacturing. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
20
Application of Three-Dimensional Printing Technology for Improved Orbital-Maxillary-Zygomatic Reconstruction. J Craniofac Surg 2019;30:e127-e131. [PMID: 30531282 DOI: 10.1097/scs.0000000000005031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]  Open
21
Lei Q, He J, Li D. Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering. NANOSCALE 2019;11:15195-15205. [PMID: 31380883 DOI: 10.1039/c9nr04989d] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
22
Jain A, Bansal KK, Tiwari A, Rosling A, Rosenholm JM. Role of Polymers in 3D Printing Technology for Drug Delivery - An Overview. Curr Pharm Des 2019;24:4979-4990. [PMID: 30585543 DOI: 10.2174/1381612825666181226160040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 02/08/2023]
23
Research center of biomanufacturing in Xi’an Jiaotong University. Biodes Manuf 2018. [DOI: 10.1007/s42242-018-0026-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
24
Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 2018;80:1-30. [PMID: 30248515 DOI: 10.1016/j.actbio.2018.09.031] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
25
Bourdon L, Maurin JC, Gritsch K, Brioude A, Salles V. Improvements in Resolution of Additive Manufacturing: Advances in Two-Photon Polymerization and Direct-Writing Electrospinning Techniques. ACS Biomater Sci Eng 2018;4:3927-3938. [DOI: 10.1021/acsbiomaterials.8b00810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
26
Eichholz KF, Hoey DA. Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing. Acta Biomater 2018;75:140-151. [PMID: 29857129 DOI: 10.1016/j.actbio.2018.05.048] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023]
27
Hrynevich A, Elçi BŞ, Haigh JN, McMaster R, Youssef A, Blum C, Blunk T, Hochleitner G, Groll J, Dalton PD. Dimension-Based Design of Melt Electrowritten Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018;14:e1800232. [PMID: 29707891 DOI: 10.1002/smll.201800232] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/02/2018] [Indexed: 05/17/2023]
28
Jun I, Han HS, Edwards JR, Jeon H. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. Int J Mol Sci 2018;19:E745. [PMID: 29509688 PMCID: PMC5877606 DOI: 10.3390/ijms19030745] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/26/2018] [Accepted: 03/03/2018] [Indexed: 12/23/2022]  Open
29
Chang J, He J, Mao M, Zhou W, Lei Q, Li X, Li D, Chua CK, Zhao X. Advanced Material Strategies for Next-Generation Additive Manufacturing. MATERIALS (BASEL, SWITZERLAND) 2018;11:E166. [PMID: 29361754 PMCID: PMC5793664 DOI: 10.3390/ma11010166] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
30
He J, Zhao X, Chang J, Li D. Microscale Electro-Hydrodynamic Cell Printing with High Viability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017;13. [PMID: 29094473 DOI: 10.1002/smll.201702626] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/31/2017] [Indexed: 05/11/2023]
31
Mao M, He J, Li X, Zhang B, Lei Q, Liu Y, Li D. The Emerging Frontiers and Applications of High-Resolution 3D Printing. MICROMACHINES 2017. [PMCID: PMC6190223 DOI: 10.3390/mi8040113] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
32
Haigh JN, Dargaville TR, Dalton PD. Additive manufacturing with polypropylene microfibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017;77:883-887. [PMID: 28532105 DOI: 10.1016/j.msec.2017.03.286] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA