1
|
Xu T, Rao J, Mo Y, Lam ACH, Yang Y, Wong SWF, Wong KH, Zhao X. 3D printing in musculoskeletal interface engineering: Current progress and future directions. Adv Drug Deliv Rev 2025; 219:115552. [PMID: 40032068 DOI: 10.1016/j.addr.2025.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
The musculoskeletal system relies on critical tissue interfaces for its function; however, these interfaces are often compromised by injuries and diseases. Restoration of these interfaces is complex by nature which renders traditional treatments inadequate. An emerging solution is three-dimensional printing, which allows for precise fabrication of biomimetic scaffolds to enhance tissue regeneration. This review summarizes the utility of 3D printing in creating scaffolds for musculoskeletal interfaces, mainly focusing on advanced techniques such as multi-material printing, bioprinting, and 4D printing. We emphasize the significance of mimicking natural tissue gradients and the selection of appropriate biomaterials to ensure scaffold success. The review outlines state-of-the-art 3D printing technologies, varying from extrusion, inkjet and laser-assisted bioprinting, which are crucial for producing scaffolds with tailored mechanical and biological properties. Applications in cartilage-bone, intervertebral disc, tendon/ligament-bone, and muscle-tendon junction engineering are discussed, highlighting the potential for improved integration and functionality. Furthermore, we address challenges in material development, printing resolution, and the in vivo performance of scaffolds, as well as the prospects for clinical translation. The review concludes by underscoring the transformative potential of 3D printing to advance orthopedic medicine, offering a roadmap for future research at the intersection of biomaterials, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Tianpeng Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Jingdong Rao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Yongyi Mo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Avery Chik-Him Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Sidney Wing-Fai Wong
- Industrial Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
2
|
Jeong HJ, Hoang LAP, Chen N, Zhu E, Wang A, Chen B, Wang EY, Ricupero CL, Lee CH. Engineering soft-hard tissue interfaces in dental and craniofacial system by spatially controlled bioactivities. Bioact Mater 2025; 45:246-256. [PMID: 39659726 PMCID: PMC11629151 DOI: 10.1016/j.bioactmat.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
The interface between soft and hard tissues is constituted by a gradient change of cell types and matrix compositions that are optimally designed for proper load transmission and injury protection. In the musculoskeletal system, the soft-hard tissue interfaces at tendon-bone, ligament-bone, and meniscus-bone have been extensively researched as regenerative targets. Similarly, extensive research efforts have been made to guide the regeneration of multi-tissue complexes in periodontium. However, the other soft-hard tissue interfaces in the dental and craniofacial system have been somewhat neglected. This review discusses the clinical significance of developing regenerative strategies for soft-hard tissue interfaces in the dental and craniofacial system. It also discusses the research progress in the field focused on bioengineering approaches using 3D scaffolds equipped with spatially controlled bioactivities. The remaining challenges, future perspectives, and considerations for the clinical translation of bioactive scaffolds are also discussed.
Collapse
Affiliation(s)
- Hun Jin Jeong
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Lan Anh P. Hoang
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Neeve Chen
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Elen Zhu
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Albert Wang
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Bozhi Chen
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Emma Y. Wang
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Christopher L. Ricupero
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| | - Chang H. Lee
- College of Dental Medicine, Columbia University Irving Medical Center, 630 W. 168 St. – VC12-212, New York, NY, 10032, USA
| |
Collapse
|
3
|
Chen K, Liu Z, Zhou X, Zheng W, Cao H, Yang Z, Wang Z, Ning C, Li Q, Zhao H. Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair. Biomater Res 2025; 29:0132. [PMID: 39844867 PMCID: PMC11751208 DOI: 10.34133/bmr.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Tendon/ligament-bone junctions (T/LBJs) are susceptible to damage during exercise, resulting in anterior cruciate ligament rupture or rotator cuff tear; however, their intricate hierarchical structure hinders self-regeneration. Multiphasic strategies have been explored to fuel heterogeneous tissue regeneration and integration. This review summarizes current multiphasic approaches for rejuvenating functional gradients in T/LBJ healing. Synthetic, natural, and organism-derived materials are available for in vivo validation. Both discrete and gradient layouts serve as sources of inspiration for organizing specific cues, based on the theories of biomaterial topology, biochemistry, mechanobiology, and in situ delivery therapy, which form interconnected network within the design. Novel engineering can be constructed by electrospinning, 3-dimensional printing, bioprinting, textiling, and other techniques. Despite these efforts being limited at present stage, multiphasic scaffolds show great potential for precise reproduction of native T/LBJs and offer promising solutions for clinical dilemmas.
Collapse
Affiliation(s)
- Kaiting Chen
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zezheng Liu
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Xinying Zhou
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Wanyu Zheng
- School of Pharmaceutical Sciences,
Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - He Cao
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zijian Yang
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Zhengao Wang
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510006, P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering,
South China University of Technology, Guangzhou 510006, P. R. China
| | - Qingchu Li
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| | - Huiyu Zhao
- Academy of Orthopedics, Guangdong Province, Orthopedic Hospital of Guangdong Province,
The Third Affiliated Hospital of Southern Medical University, Guangzhou 510665, P. R. China
| |
Collapse
|
4
|
Bai L, Kasimu A, Wang S, Qiu Z, Xu M, Qu X, Chen B, Liu Q, Ai Y, Li M, Xiu J, Liu K, Wen N, He J, Zhang J, Yin Z. Electrohydrodynamic-Printed Dual-Triphase Microfibrous Scaffolds Reshaping the Lipidomic Profile for Enthesis Healing in a Rat Rotator Cuff Repair Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406069. [PMID: 39580676 DOI: 10.1002/smll.202406069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Indexed: 11/26/2024]
Abstract
Rotator cuff injuries often result in chronic pain and functional limitations due to retears and scar formation at the enthesis. This study assess the efficacy of electrohydrodynamic-printed microfibrous dual-triphase scaffolds (DTSs), designed to optimize enthesis repair. These scaffolds, composed of polycaprolactone enhanced with nanohydroxyapatite, nano-magnesium-oxide, and kartogenin demonstrate significant biological advantages. In vitro, the scaffolds support over 95% stem cell viability and promote enhanced expression of critical markers such as tenomodulin (TNMD), sex-determining region Y-Box transcription factor 9 (SOX-9), and runt-related transcription factor 2 (RUNX-2). Enhanced expressions of tendon markers tenomodulin and scleraxis (SCX) are noted, alongside significant upregulation of chondrocyte and osteoblast markers. In vivo, these scaffolds significantly improve the biomechanical properties of the repaired enthesis, with a maximum failure load of 27.0 ± 4.2 N and ultimate stress of 5.5 ± 1.0 MPa at 6 weeks postimplantation. Lipidomic analysis indicates substantial regulation of phospholipids such as phosphatidylcholine and phosphatidylserine, highlighting the scaffold's capacity to modulate biochemical pathways critical for tissue repair and regeneration. This study underscores the potential of DTS to improve clinical outcomes in rotator cuff injury treatment by enhancing cellular differentiation, biomechanical properties, and biochemical environment, setting a foundation for personalized treatment strategies in tendon-bone repair.
Collapse
Affiliation(s)
- Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ayiguli Kasimu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Joint Surgery, Xi'an Aerospace General Hospital, Xi'an, 710100, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Qiaonan Liu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yixiang Ai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jintao Xiu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kai Liu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nuanyang Wen
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, 710069, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
5
|
Chen B, Zhao X, Xu M, Luo J, Bai L, Han Q, Gao Y, Guo B, Yin Z. Inflammation-Responsive Functional Core-Shell Micro-Hydrogels Promote Rotator Cuff Tendon-To-Bone Healing by Recruiting MSCs and Immuno-Modulating Macrophages in Rats. Adv Healthc Mater 2025; 14:e2404091. [PMID: 39526494 DOI: 10.1002/adhm.202404091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Rotator cuff injuries often necessitate surgical intervention, but the outcomes are often unsatisfactory. The underlying reasons can be attributed to multiple factors, with the intricate inflammatory activities and insufficient presence of stem cells being particularly significant. In this study, an innovative inflammation-responsive core-shell micro-hydrogel is designed for independent release of SDF-1 and IL-4 within a single delivery system to promote tendon-to-bone healing by recruiting MSCs and modulating M2 macrophages polarization. First, a MMP-2 responsive hydrogel loaded with IL-4 (GelMA-MMP/IL-4) is synthesized by cross-linking gelatin methacrylate (GelMA) with MMP-2 substrate peptide. Then, the resulting core particles are coated with a shell of chitosan /SDF-1/hyaluronic acid (CS/HA/SDF-1) using the layer-by-layer electrostatic deposition method to form a core-shell micro-hydrogel composite. The core-shell micro-hydrogel shows sustained release of SDF-1 and MMP-2-responsive release of IL-4 associated in situ MSCs homing and smart inflammation regulation by promoting M2 macrophages polarization. Additionally, by injecting these micro-hydrogels into a rat rotator cuff tear and repair model, notable improvements of fibrocartilage layer are observed between tendon and bone. Notably, this study presents a new and potentially powerful environment-responsive drug delivery strategy that offers valuable insights for regulating the intricate micro-environment associated with tissue regeneration.
Collapse
Affiliation(s)
- Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan Province Intelligent orthopedic technology innovation and transformation International Joint Laboratory, Henan Key Laboratory for intelligent precision orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xin Zhao
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinlong Luo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan Province Intelligent orthopedic technology innovation and transformation International Joint Laboratory, Henan Key Laboratory for intelligent precision orthopedics, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, and Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
6
|
Yang Z, Gordon D, Chen Y, Li H, Wu Y, Meng Z. Understanding the effects of mineralization and structure on the mechanical properties of tendon-bone insertion using mesoscale computational modeling. J Mech Behav Biomed Mater 2024; 160:106735. [PMID: 39288664 PMCID: PMC11560707 DOI: 10.1016/j.jmbbm.2024.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Tendon-bone fibrocartilaginous insertion, or enthesis, is a specialized interfacial region that connects tendon and bone, effectively transferring forces while minimizing stress concentrations. Previous studies have shown that insertion features gradient mineralization and branching fiber structure, which are believed to play critical roles in its excellent function. However, the specific structure-function relationship, particularly the effects of mineralization and structure at the mesoscale fiber level on the properties and function of insertion, remains poorly understood. In this study, we develop mesoscale computational models of the distinct fiber organization at tendon-bone insertions, capturing the branching network from tendon to interface fibers and the different mineralization scales. We specifically analyze three key descriptors: the mineralization scale of interface fibers, the mean, and relative standard deviation of the local branching angles of interface fibers. Tensile test simulations on insertion models with varying mineralization scales of interface fibers and structures are performed to mimic the primary loading condition applied to the insertion. We measure and analyze five representative mechanical properties: Young's modulus, strength, toughness, resilience, and failure strain. Our results reveal that mechanical properties are significantly influenced by the three key descriptors, with tradeoffs observed between mutually exclusive properties. For instance, strength and resilience plateau beyond a certain mineralization scale, while failure strain and Young's modulus exhibit monotonic decreasing and increasing trends, respectively. Consequently, there exists an optimal mineralization scale for toughness due to these tradeoffs. By analyzing the mesoscale deformation and failure mechanisms from simulation trajectories, we identify three fracture regimes closely related to the trends in mechanical properties, supporting the observed tradeoffs. Additionally, we examine in detail the effects of the mean and relative standard deviation of local branching angles on mechanical properties and deformation mechanisms. Overall, our study enhances the fundamental understanding of the composition-structure-function relationships at the tendon-bone insertion, complementing recent experimental studies. The mechanical insights from our work have the potential to guide the future biomimetic design of fibrillar adhesives and interfaces for joining soft and hard materials.
Collapse
Affiliation(s)
- Zhangke Yang
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Daniel Gordon
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Yitong Chen
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Hui Li
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Yongren Wu
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Zhaoxu Meng
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
7
|
Sarker M, Park S, Kumar V, Lee CH. Micro-thin hydrogel coating integrated in 3D printing for spatiotemporal delivery of bioactive small molecules. Biofabrication 2024; 17:015019. [PMID: 39437834 PMCID: PMC11552100 DOI: 10.1088/1758-5090/ad89fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Three-dimensional (3D) printing incorporated with controlled delivery is an effective tool for complex tissue regeneration. Here, we explored a new strategy for spatiotemporal delivery of bioactive cues by establishing a precise-controlled micro-thin coating of hydrogel carriers on 3D-printed scaffolds. We optimized the printing parameters for three hydrogel carriers, fibrin cross-linked with genipin, methacrylate hyaluronic acid, and multidomain peptides, resulting in homogenous micro-coating on desired locations in 3D printed polycaprolactone microfibers at each layer. Using the optimized multi-head printing technique, we successfully established spatial-controlled micro-thin coating of hydrogel layers containing profibrogenic small molecules (SMs), Oxotremorine M and PPBP maleate, and a chondrogenic cue, Kartogenin. The delivered SMs showed sustained releases up to 28 d and guided regional differentiation of mesenchymal stem cells, thus leading to fibrous and cartilaginous tissue matrix formation at designated scaffold regionsin vitroandin vivo. Our micro-coating of hydrogel carriers may serve as an efficient approach to achieve spatiotemporal delivery of various bioactive cues through 3D printed scaffolds for engineering complex tissues.
Collapse
Affiliation(s)
- Md Sarker
- Biomedical Engineering, University of Maryland Eastern Shore, 30665 Student Services Center, Princess Anne, MD 21853, United States of America
| | - Soomin Park
- Center for Dental and Craniofacial Research, College of Dental Medicine, Columbia University Medical Center, 630 W. 168th Street, VC12-210, New York, NY 10032, United States of America
| | - Vivek Kumar
- Department of Bio-Medical Engineering, New Jersey Institute of Technology, 138 Warren St., Room 316, Newark, NJ 07102, United States of America
| | - Chang H Lee
- Center for Dental and Craniofacial Research, College of Dental Medicine, Columbia University Medical Center, 630 W. 168th Street, VC12-210, New York, NY 10032, United States of America
| |
Collapse
|
8
|
Kent RN, Huang AH, Baker BM. Augmentation of Tendon and Ligament Repair with Fiber-Reinforced Hydrogel Composites. Adv Healthc Mater 2024; 13:e2400668. [PMID: 39135411 PMCID: PMC11582515 DOI: 10.1002/adhm.202400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Indexed: 11/24/2024]
Abstract
This review highlights the promise of fiber-reinforced hydrogel composites (FRHCs) for augmenting tendon and ligament repair and regeneration. Composed of reinforcing fibers embedded in a hydrogel, these scaffolds provide both mechanical strength and a conducive microenvironment for biological processes required for connective tissue regeneration. Typical properties of FRHCs are discussed, highlighting their ability to simultaneously fulfill essential mechanical and biological design criteria for a regenerative scaffold. Furthermore, features of FRHCs are described that improve specific biological aspects of tendon healing including mesenchymal progenitor cell recruitment, early polarization to a pro-regenerative immune response, tenogenic differentiation of recruited progenitor cells, and subsequent production of a mature, aligned collagenous matrix. Finally, the review offers a perspective on clinical translation of tendon FRHCs and outlines key directions for future work.
Collapse
Affiliation(s)
- Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Shen S, Lin Y, Sun J, Liu Y, Chen Y, Lu J. A New Tissue Engineering Strategy to Promote Tendon-bone Healing: Regulation of Osteogenic and Chondrogenic Differentiation of Tendon-derived Stem Cells. Orthop Surg 2024; 16:2311-2325. [PMID: 39043618 PMCID: PMC11456719 DOI: 10.1111/os.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
In the field of sports medicine, repair surgery for anterior cruciate ligament (ACL) and rotator cuff (RC) injuries are remarkably common. Despite the availability of relatively effective treatment modalities, outcomes often fall short of expectations. This comprehensive review aims to thoroughly examine current strategies employed to promote tendon-bone healing and analyze pertinent preclinical and clinical research. Amidst ongoing investigations, tendon-derived stem cells (TDSCs), which have comparatively limited prior exploration, have garnered increasing attention in the context of tendon-bone healing, emerging as a promising cell type for regenerative therapies. This review article delves into the potential of combining TDSCs with tissue engineering methods, with ACL reconstruction as the main focus. It comprehensively reviews relevant research on ACL and RC healing to address the issues of graft healing and bone tunnel integration. To optimize tendon-bone healing outcomes, our emphasis lies in not only reconstructing the original microstructure of the tendon-bone interface but also achieving proper bone tunnel integration, encompassing both cartilage and bone formation. In this endeavor, we thoroughly analyze the transcriptional and molecular regulatory variables governing TDSCs differentiation, incorporating a retrospective analysis utilizing single-cell sequencing, with the aim of unearthing relevant signaling pathways and processes. By presenting a novel strategy rooted in TDSCs-driven osteogenic and chondrogenic differentiation for tendon-bone healing, this study paves the way for potential future research avenues and promising therapeutic applications. It is anticipated that the findings herein will contribute to advancing the field of tendon-bone healing and foster the exploration of TDSCs as a viable option for regenerative therapies in the future.
Collapse
Affiliation(s)
- Sinuo Shen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yucheng Lin
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jiachen Sun
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuanhao Liu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Yuzhi Chen
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| | - Jun Lu
- School of MedicineSoutheast UniversityNanjingChina
- The Center of Joint and Sports Medicine, Orthopedics Department, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
10
|
He W, Jiang C, Zhou P, Hu X, Gu X, Zhang S. Role of tendon-derived stem cells in tendon and ligament repair: focus on tissue engineer. Front Bioeng Biotechnol 2024; 12:1357696. [PMID: 39175617 PMCID: PMC11338810 DOI: 10.3389/fbioe.2024.1357696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
This review offered a comprehensive analysis of tendon and ligament injuries, emphasizing the crucial role of tendon-derived stem cells (TDSCs) in tissue engineering as a potential solution for these challenging medical conditions. Tendon and ligament injuries, prevalent among athletes, the elderly, and laborers, often result in long-term disability and reduced quality of life due to the poor intrinsic healing capacity of these avascular structures. The formation of biomechanically inferior scar tissue and a high rate of reinjury underscore the need for innovative approaches to enhance and guide the regenerative process. This review delved into the complexities of tendon and ligament structure and function, types of injuries and their impacts, and the limitations of the natural repair process. It particularly focused on the role of TDSCs within the context of tissue engineering. TDSCs, with their ability to differentiate into tenocytes, are explored in various applications, including biocompatible scaffolds for cell tracking, co-culture systems to optimize tendon-bone healing, and graft healing techniques. The review also addressed the challenges of immunoreactivity post-transplantation, the importance of pre-treating TDSCs, and the potential of hydrogels and decellularized matrices in supporting tendon regeneration. It concluded by highlighting the essential roles of mechanical and molecular stimuli in TDSC differentiation and the current challenges in the field, paving the way for future research directions.
Collapse
Affiliation(s)
- Wei He
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Chao Jiang
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ping Zhou
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Xujun Hu
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - XiaoPeng Gu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Orthopedics, Zhoushan Guhechuan Hospital, Zhoushan, Zhejiang, China
| | - SongOu Zhang
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Orthopedics, Zhoushan Guhechuan Hospital, Zhoushan, Zhejiang, China
| |
Collapse
|
11
|
Kent RN, Jewett ME, Buck TP, Said M, Hold LA, Crawford EA, Killian ML, Abraham AC, Huang AH, Baker BM. Engineered Microenvironmental Cues from Fiber-Reinforced Hydrogel Composites Drive Tenogenesis and Aligned Collagen Deposition. Adv Healthc Mater 2024; 13:e2400529. [PMID: 38441411 PMCID: PMC11281874 DOI: 10.1002/adhm.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Indexed: 03/25/2024]
Abstract
Effective tendon regeneration following injury is contingent on appropriate differentiation of recruited cells and deposition of mature, aligned, collagenous extracellular matrix that can withstand the extreme mechanical demands placed on the tissue. As such, myriad biomaterial approaches have been explored to provide biochemical and physical cues that encourage tenogenesis and template aligned matrix deposition in lieu of dysfunctional scar tissue formation. Fiber-reinforced hydrogels present an ideal biomaterial system toward this end given their transdermal injectability, tunable stiffness over a range amenable to tenogenic differentiation of progenitors, and capacity for modular inclusion of biochemical cues. Here, tunable and modular, fiber-reinforced, synthetic hydrogels are employed to elucidate salient microenvironmental determinants of tenogenesis and aligned collagen deposition by tendon progenitor cells. Transforming growth factor β3 drives a cell fate switch toward pro-regenerative or pro-fibrotic phenotypes, which can be biased toward the former by culture in softer microenvironments or inhibition of the RhoA/ROCK activity. Furthermore, studies demonstrate that topographical anisotropy in fiber-reinforced hydrogels critically mediates the alignment of de novo collagen fibrils, reflecting native tendon architecture. These findings inform the design of cell-free, injectable, synthetic hydrogels for tendon tissue regeneration and, likely, that of a range of load-bearing connective tissues.
Collapse
Affiliation(s)
- Robert N. Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Maggie E. Jewett
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Trevor P. Buck
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Mohamed Said
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - LeeAnn A. Hold
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Eileen A. Crawford
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Megan L. Killian
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Adam C. Abraham
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI 48109
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10027
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
12
|
Zhang X, Wu Y, Han K, Fang Z, Cho E, Hu Y, Huangfu X, Zhao J. 3-Dimensional Bioprinting of a Tendon Stem Cell-Derived Exosomes Loaded Scaffold to Bridge the Unrepairable Massive Rotator Cuff Tear. Am J Sports Med 2024; 52:2358-2371. [PMID: 38904220 DOI: 10.1177/03635465241255918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
BACKGROUND Unrepairable massive rotator cuff tears (UMRCTs) are challenging to surgeons owing to the severely retracted rotator cuff musculotendinous tissues and extreme defects in the rotator cuff tendinous tissues. PURPOSE To fabricate a tendon stem cell-derived exosomes loaded scaffold (TSC-Exos-S) and investigate its effects on cellular bioactivity in vitro and repair in a rabbit UMRCT model in vivo. STUDY DESIGN Controlled laboratory study. METHODS TSC-Exos-S was fabricated by loading TSC-Exos and type 1 collagen (COL-I) into a 3-dimensional bioprinted and polycaprolactone (PCL)-based scaffold. The proliferation, migration, and tenogenic differentiation activities of rabbit bone marrow stem cells (BMSCs) were evaluated in vitro by culturing them in saline, PCL-based scaffold (S), COL-I loaded scaffold (COL-I-S), and TSC-Exos-S. In vivo studies were conducted on a rabbit UMRCT model, where bridging was repaired with S, COL-I-S, TSC-Exos-S, and autologous fascia lata (FL). Histological and biomechanical analyses were performed at 8 and 16 weeks postoperatively. RESULTS TSC-Exos-S exhibited reliable mechanical strength and subcutaneous degradation, which did not occur before tissue regeneration. TSC-Exos-S significantly promoted the proliferation, migration, and tenogenic differentiation of rabbit BMSCs in vitro. In vivo studies showed that UMRCT repaired with TSC-Exos-S exhibited significant signs of tendinous tissue regeneration at the bridging site with regard to specific collagen staining. Moreover, no significant differences were observed in the histological and biomechanical properties compared with those repaired with autologous FL. CONCLUSION TSC-Exos-S achieved tendinous tissue regeneration in UMRCT by providing mechanical support and promoting the trend toward tenogenic differentiation. CLINICAL RELEVANCE The present study proposes a potential strategy for repairing UMRCT with severely retracted musculotendinous tissues and large tendinous tissue defects.
Collapse
Affiliation(s)
- Xuancheng Zhang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxu Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoyi Fang
- Biodynamics Laboratory, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eunshinae Cho
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihe Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoqiao Huangfu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Xuan L, Hou Y, Liang L, Wu J, Fan K, Lian L, Qiu J, Miao Y, Ravanbakhsh H, Xu M, Tang G. Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine. NANO-MICRO LETTERS 2024; 16:218. [PMID: 38884868 PMCID: PMC11183039 DOI: 10.1007/s40820-024-01421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
Collapse
Affiliation(s)
- Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianhua Qiu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingling Miao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hossein Ravanbakhsh
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA.
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
14
|
Steltzer SS, Abraham AC, Killian ML. Interfacial Tissue Regeneration with Bone. Curr Osteoporos Rep 2024; 22:290-298. [PMID: 38358401 PMCID: PMC11060924 DOI: 10.1007/s11914-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE OF REVIEW Interfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and physiology that can guide future regenerative strategies for improving post-injury healing. RECENT FINDINGS Cues from interfacial tissue development may guide regeneration including biological cues such as cell phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell alignment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment. In this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue development and adaptation have high potential for improving outcomes in the clinic.
Collapse
Affiliation(s)
- Stephanie S Steltzer
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Adam C Abraham
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Megan L Killian
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Zhang J, Cai Z, Feng F, Peng Y, Cui Y, Xu Y. Age-different BMSCs-derived exosomes accelerate tendon-bone interface healing in rotator cuff tears model. Gene 2024; 895:148002. [PMID: 37979948 DOI: 10.1016/j.gene.2023.148002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Rotator cuff tears (RCTs) are culprit of shoulder pain and dysfunction. Tendon-bone interface (TBI) mal-healing is an essential contributor to retear after RCTs. Consequently, present project was conducted to investigate the role of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes on TBI healing. METHOD Young BMSCs (Y-BMSCs) and Aged BMSCs (A-BMSCs) were isolated from Young (3-month-old) and old (24-month-old) SD rats, and their-derived exosomes (A-BMSCs-exo and Y-BMSCs-exo) were identified. RCTs model was established, and A-BMSCs-exo and Y-BMSCs-exo were injected at the rotator cuff using hydrogel as a vehicle. Pathological changes of TBI were observed by HE, Sirius Red and Oil Red O staining. Western blotting and RT-qPCR were applied to assess the expression of extracellular matrix (ECM)-, tendon cell (TCs)-, osteogenic-, tendon-derived stem cell (TDSCs)- and angiogenic-associated proteins and mRNAs in TBI. RESULT Y-BMSCs exhibited increased activity, osteogenic and lipogenic abilities than A-BMSCs. After A-BMSCs-exo and Y-BMSCs-exo treatment, TBI displayed massive sharpey's fibers growing along the tendon longitudinally, and a collagen fiber-chondrocyte migration zone forming a typical tendon-noncalcified fibrocartilage-calcified fibrocartilage-bone structure. A-BMSCs-exo and Y-BMSCs-exo significantly upregulated the expression of collagen Col I/II/III, Aggrecan, TNMD, SCX, Runx2, OPN, CD45, Sox2, CD31 and VEGFR2 in TBI. In vitro, A-BMSCs-exo and Y-BMSCs-exo significantly enhanced the activity of TCs and TDSCs, TDSCs stemness, and reduced the osteogenic and lipogenic capacity of TDSCs. The effect of Y-BMSCs-exo was significantly stronger than that of A-BMSCs-exo. CONCLUSION BMSCs-derived exosomes facilitate ECM remodeling, osteogenic differentiation, angiogenesis, and stemness of TDSCs, thereby accelerating TBI healing in RCTs, with better outcomes using young individual-derived BMSCs.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China.
| | - Zhijun Cai
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China.
| | - Fanzhe Feng
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China
| | - Yufeng Peng
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China
| | - Yi Cui
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China.
| | - Yongiqing Xu
- Department of Orthopaedics, 920th Hospital of Joint Logistic Support Force, PLA, No. 212 Daguan Road, Kunming, Yunnan 650032, China.
| |
Collapse
|
16
|
Du C, Wu R, Yan W, Fang J, Dai W, Wang Y, Cheng J, Hu X, Ao Y, Liang X, Liu Z. Ultrasound-Controlled Delivery of Growth Factor-Loaded Cerasomes Combined with Polycaprolactone Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells for Biomimetic Tendon-to-Bone Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:292-304. [PMID: 38133932 PMCID: PMC10789257 DOI: 10.1021/acsami.3c14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Rotator cuff tear (RCT) is a prevalent shoulder injury that poses challenges for achieving continuous and functional regeneration of the tendon-to-bone interface (TBI). In this study, we controlled the delivery of growth factors (GFs) from liposomal nanohybrid cerasomes by ultrasound and implanted three-dimensional printed polycaprolactone (PCL) scaffolds modified with polydopamine loaded with bone marrow mesenchymal stem cells (BMSCs) to repair tears of the infraspinatus tendon in a lapine model. Direct suturing (control, CTL) was used as a control. The PCL/BMSC/cerasome (PBC) devices are sutured with the enthesis of the infraspinatus tendon. The cerasomes and PCL scaffolds are highly stable with excellent biocompatibility. The roles of GFs BMP2, TGFβ1, and FGF2 in tissue-specific differentiation are validated. Compared with the CTL group, the PBC group had significantly greater proteoglycan deposition (P = 0.0218), collagen volume fraction (P = 0.0078), and proportions of collagen I (P = 0.0085) and collagen III (P = 0.0048). Biotin-labeled in situ hybridization revealed a high rate of survival for transplanted BMSCs. Collagen type co-staining at the TBI is consistent with multiple collagen regeneration. Our studies demonstrate the validity of biomimetic scaffolds of TBI with BMSC-seeded PCL scaffolds and GF-loaded cerasomes to enhance the treatment outcomes for RCTs.
Collapse
Affiliation(s)
- Cancan Du
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Ruiqi Wu
- Department
of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Wenqiang Yan
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Jingchao Fang
- Department
of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Wenli Dai
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Yiqun Wang
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Jin Cheng
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Xiaoqing Hu
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Yingfang Ao
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Xiaolong Liang
- Department
of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Zhenlong Liu
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| |
Collapse
|
17
|
Mandalia K, Mousad A, Welborn B, Bono O, Le Breton S, MacAskill M, Forlizzi J, Ives K, Ross G, Shah S. Scaffold- and graft-based biological augmentation of rotator cuff repair: an updated systematic review and meta-analysis of preclinical and clinical studies for 2010-2022. J Shoulder Elbow Surg 2023; 32:1784-1800. [PMID: 37178960 DOI: 10.1016/j.jse.2023.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/05/2023] [Accepted: 03/22/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Despite advancements in the surgical techniques of rotator cuff repair (RCR), there remains a high retear rate. Biological augmentation of repairs with overlaying grafts and scaffolds may enhance healing and strengthen the repair construct. This study aimed to investigate the efficacy and safety of scaffold-based (nonstructural) and overlay graft-based (structural) biological augmentation in RCR (excluding superior capsule reconstruction and bridging techniques) in both preclinical and clinical studies. METHODS This systematic review was performed in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, as well as guidelines outlined by The Cochrane Collaboration. A search of the PubMed, Embase, and Cochrane Library databases from 2010 until 2022 was conducted to identify studies reporting the clinical, functional, and/or patient-reported outcomes of ≥1 biological augmentation method in either animal models or humans. The methodologic quality of included primary studies was appraised using the Checklist to Evaluate a Report of a Non-pharmacological Trial (CLEAR-NPT) for randomized controlled trials and using the Methodological Index for Non-randomized Studies (MINORS) for nonrandomized studies. RESULTS A total of 62 studies (Level I-IV evidence) were included, comprising 47 studies reporting outcomes in animal models and 15 clinical studies. Of the 47 animal-model studies, 41 (87.2%) demonstrated biomechanical and histologic enhancement with improved RCR load to failure, stiffness, and strength. Of the 15 clinical studies, 10 (66.7%) illustrated improvement in postoperative clinical, functional, and patient-reported outcomes (eg, retear rate, radiographic thickness and footprint, and patient functional scores). No study reported a significant detriment to repair with augmentation, and all studies endorsed low complication rates. A meta-analysis of pooled retear rates demonstrated significantly lower odds of retear after treatment with biological augmentation of RCR compared with treatment with non-augmented RCR (odds ratio, 0.28; P < .00001), with low heterogeneity (I2 = 0.11). CONCLUSIONS Graft and scaffold augmentations have shown favorable results in both preclinical and clinical studies. Of the investigated clinical grafts and scaffolds, acellular human dermal allograft and bovine collagen demonstrate the most promising preliminary evidence in the graft and scaffold categories, respectively. With a low risk of bias, meta-analysis revealed that biological augmentation significantly lowered the odds of retear. Although further investigation is warranted, these findings suggest graft and scaffold biological augmentation of RCR to be safe.
Collapse
Affiliation(s)
- Krishna Mandalia
- Tufts University School of Medicine, Boston, MA, USA; New England Shoulder and Elbow Center, Boston, MA, USA.
| | - Albert Mousad
- Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | - Glen Ross
- New England Baptist Hospital, Boston, MA, USA
| | - Sarav Shah
- New England Baptist Hospital, Boston, MA, USA
| |
Collapse
|
18
|
Cui J, Zhang YJ, Li X, Luo JJ, Zhao LL, Xie XY, Ding W, Luo JC, Qin TW. Decellularized tendon scaffolds loaded with collagen targeted extracellular vesicles from tendon-derived stem cells facilitate tendon regeneration. J Control Release 2023; 360:842-857. [PMID: 37478916 DOI: 10.1016/j.jconrel.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Stem cell-based treatment of tendon injuries remains to have some inherent issues. Extracellular vesicles derived from stem cells have shown promising achievements in tendon regeneration, though their retention in vivo is low. This study reports on the use of a collagen binding domain (CBD) to bind extracellular vesicles, obtained from tendon-derived stem cells (TDSCs), to collagen. CBD-extracellular vesicles (CBD-EVs) were coupled to decellularized bovine tendon sheets (DBTS) to fabricate a bio-functionalized scaffold (CBD-EVs-DBTS). Our results show that thus obtained bio-functionalized scaffolds facilitate the proliferation, migration and tenogenic differentiation of stem cells in vitro. Furthermore, the scaffolds promote endogenous stem cell recruitment to the defects, facilitate collagen deposition and improve the biomechanics of injured tendons, thus resulting in functional regeneration of tendons.
Collapse
Affiliation(s)
- Jing Cui
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Jing Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuan Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Jiao Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lei-Lei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin-Yue Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Ding
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing-Cong Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting-Wu Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Zhang X, Han K, Fang Z, Cho E, Huangfu X, Zhao J. Enhancement of Tendon-to-Bone Healing: Choose a Monophasic or Hierarchical Scaffold? Am J Sports Med 2023; 51:2688-2700. [PMID: 37470279 DOI: 10.1177/03635465231182976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
BACKGROUND To enhance the healing of tendon to bone, various biomimetically hierarchical scaffolds have been proposed. However, the fabrication of such scaffolds is complicated. Furthermore, the most significant result after a routine repair is loss of the transition zone between the tendon and bone, whose main components are similar to fibrocartilage. PURPOSE To compare tendon-to-bone healing results in a rabbit model using a monophasic graft (decellularized fibrocartilage graft; DFCG) and hierarchical graft (decellularized tendon-to-bone complex; DTBC) that contain the native hierarchical enthesis. STUDY DESIGN Controlled laboratory study. METHODS DFCG and DTBC were harvested from allogenic rabbits. A rabbit model of a chronic rotator cuff tear was established, and 3 groups were assessed: direct repair or repair with DFCG or DTBC fixed between the tendon and bone. Hierarchical evaluations of the repaired tendon-to-bone interface were performed with regard to the tendon zone, transition zone, and bone zone using histological staining and micro-computed tomography scanning. Biomechanical analysis was performed to evaluate the general healing strength. RESULTS The healing results in the tendon zone exhibited no significant difference among the 3 groups at any time point. In the transition zone, the grade in the direct repair group was significantly lower than that in the DFCG and DTBC groups at 4 weeks, and the grade in the DFCG group was significantly lower than that in the DTBC group at this time point. However, any significant difference between the DFCG group and DTBC group could no longer be detected at 8 and 16 weeks, which was inconsistent with the results of the biomechanical analysis. Micro-computed tomography analysis showed no significant difference among the 3 groups with regard to bone mineral density at 16 weeks. CONCLUSION A monophasic DFCG was able to achieve enhanced tendon-to-bone healing similar to that with hierarchical DTBC over the long term, with regard to both histological and biomechanical properties. CLINICAL RELEVANCE Fabrication of a monophasic scaffold instead of a hierarchical scaffold to promote regeneration and remodeling of a transition zone, which was mainly composed of fibrocartilaginous matrix between the tendon and bone, may be sufficient to enhance tendon-to-bone healing.
Collapse
Affiliation(s)
- Xuancheng Zhang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Han
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoyi Fang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eunshinae Cho
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqiao Huangfu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Han J, Han SC, Kim YK, Tarafder S, Jeong HJ, Jeong HJ, Chung JY, Lee CH, Oh JH. Bioactive Scaffold With Spatially Embedded Growth Factors Promotes Bone-to-Tendon Interface Healing of Chronic Rotator Cuff Tear in Rabbit Model. Am J Sports Med 2023; 51:2431-2442. [PMID: 37345646 DOI: 10.1177/03635465231180289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
BACKGROUND Functional restoration of the bone-to-tendon interface (BTI) after rotator cuff repair is a challenge. Therefore, numerous biocompatible biomaterials for promoting BTI healing have been investigated. PURPOSE To determine the efficacy of scaffolds with spatiotemporal delivery of growth factors (GFs) to accelerate BTI healing after rotator cuff repair. STUDY DESIGN Controlled laboratory study. METHODS An advanced 3-dimensional printing technique was used to fabricate bioactive scaffolds with spatiotemporal delivery of multiple GFs targeting the tendon, fibrocartilage, and bone regions. In total, 50 rabbits were used: 2 nonoperated controls and 48 rabbits with induced chronic rotator cuff tears (RCTs). The animals with RCTs were divided into 3 groups: (A) saline injection, (B) scaffold without GF, and (C) scaffold with GF. To induce chronic models, RCTs were left unrepaired for 6 weeks; then, surgical repairs with or without bioactive scaffolds were performed. For groups B and C, each scaffold was implanted between the bony footprint and the supraspinatus tendon. Four weeks after repair, quantitative real-time polymerase chain reaction and immunofluorescence analyses were performed to evaluate early signs of regenerative healing. Histological, biomechanical, and micro-computed tomography analyses were performed 12 weeks after repair. RESULTS Group C had the highest mRNA expression of collagen type I alpha 1, collagen type III alpha 1, and aggrecan. Immunofluorescence analysis showed the formation of an aggrecan+/collagen II+ fibrocartilaginous matrix at the BTI when repaired with scaffold with GFs. Histologic analysis revealed greater collagen fiber continuity, denser collagen fibers, and a more mature tendon-to-bone junction in GF-embedded scaffolds than those in the other groups. Group C demonstrated the highest load-to-failure ratio, and modulus mapping showed that the distribution of the micromechanical properties of the BTI repaired with GF-embedded scaffolds was comparable with that of the native BTI. Micro-computed tomography analysis identified the highest bone mineral density and bone volume/total volume ratio in group C. CONCLUSION Bioactive scaffolds with spatially embedded GFs have significant potential to promote the BTI healing of chronic RCTs in a rabbit model. CLINICAL RELEVANCE The scaffolds with spatiotemporal delivery of GF may serve as an off-the-shelf biomaterial graft to promote the healing of RCTs.
Collapse
Affiliation(s)
- Jian Han
- Department of Orthopaedic Surgery, The First People's Hospital of Huzhou, Huzhou, Zhejiang Province, China
| | - Sheng Chen Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Kyu Kim
- Department of Orthopaedic Surgery, Bundang Jesaeng Hospital, Seongnam, Republic of Korea
| | - Solaiman Tarafder
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Hun Jin Jeong
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Hyeon Jang Jeong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ju Young Chung
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chang H Lee
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
21
|
McLoughlin S, McKenna AR, Fisher JP. Fabrication Strategies for Engineered Thin Membranous Tissues. ACS APPLIED BIO MATERIALS 2023. [PMID: 37314953 DOI: 10.1021/acsabm.3c00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thin membranous tissues (TMTs) are anatomical structures consisting of multiple stratified cell layers, each less than 100 μm in thickness. While these tissues are small in scale, they play critical roles in normal tissue function and healing. Examples of TMTs include the tympanic membrane, cornea, periosteum, and epidermis. Damage to these structures can be caused by trauma or congenital disabilities, resulting in hearing loss, blindness, dysfunctional bone development, and impaired wound repair, respectively. While autologous and allogeneic tissue sources for these membranes exist, they are significantly limited by availability and patient complications. Tissue engineering has therefore become a popular strategy for TMT replacement. However, due to their complex microscale architecture, TMTs are often difficult to replicate in a biomimetic manner. The critical challenge in TMT fabrication is balancing fine resolution with the ability to mimic complex target tissue anatomy. This Review reports existing TMT fabrication strategies, their resolution and material capabilities, cell and tissue response, and the advantages and disadvantages of each technique.
Collapse
Affiliation(s)
- Shannon McLoughlin
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, United States
| | - Abigail Ruth McKenna
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, United States
- Department of Biology, University of Maryland, College Park, Maryland 20742, United States
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
22
|
Huang T, Wan L, Chen Y, Xiong Y, Yuan F, Xie S, Huang J, Lu H. The effect of local sympatholysis on bone-tendon interface healing in a murine rotator cuff repair model. J Orthop Translat 2023; 40:1-12. [PMID: 37181480 PMCID: PMC10173072 DOI: 10.1016/j.jot.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/04/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023] Open
Abstract
Background Although neuroregulation plays an important role in tissue healing, the key neuroregulatory pathways and related neurotransmitters involved in bone-tendon interface (BTI) healing are still unknown. It is reported that sympathetic nerves can regulate cartilage and bone metabolism, which are the basic aspects of BTI repair after injury, through the release of norepinephrine (NE). Thus, the purpose of this study was to explore the effect of local sympatholysis (LS) on BTI healing in a murine rotator cuff repair model. Methods Specifically, C57BL/6 mice underwent unilateral supraspinatus tendon (SST) detachment and repair was established on a total of 174 mature C57BL/6 mice (12 weeks old): 54 mice were used to examine the sympathetic fibers and its neurotransmitter NE for the representation of sympathetic innervation of BTI, while the rest of them were randomly allocated into (LS) group and control group to verify the effect of sympathetic denervation during BTI healing. The LS group were intervened with fibrin sealant containing 10 ng/ml guanethidine, while the control group received fibrin sealant only. Mice were euthanized at postoperative 2, 4 and 8 weeks for immunofluorescent, qRT-PCR, ELISA, Micro-computed tomography (CT), histology and biomechanical evaluations. Results Immunofluorescence, qRT-PCR and ELISA evaluations indicated that there were the expression of tyrosine hydroxylase (TH), NE and β2-adrenergic receptor (β2-AR) at the BTI site. All the above showed a trend of increasing at the early postoperative stage and they started to decrease with the healing time after a significant peak. Meanwhile, local sympathetic denervation of BTI was achieved after the use of guanethidine as shown in the NE ELISA outcomes in two groups. QRT-PCR analysis revealed that the healing interface in the LS group expressed more transcription factors, such as Runx2, Bmp2, Sox9, and Aggrecan, than the control group. Further, radiographic data showed that the LS group significantly possessed higher bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), and lower trabecular spacing (Tb.Sp) than the control group. Also, histological test results showed that there was more fibrocartilage regenerated at the healing interface in the LS group compared with the control group. Mechanical testing results demonstrated that the failure load, ultimate strength and stiffness in the LS group were significantly higher at postoperative week 4 (P < 0.05), but not at postoperative week 8 (P > 0.05), compared to the control group. Conclusion The regulation of sympathetic innervation was involved in the healing process of injured BTI, and local sympathetic denervation by using guanethidine was beneficial for BTI healing outcomes.The translational potential of this article: This is the first study to evaluate the expression and specific role of sympathetic innervation during BTI healing. The findings of this study also imply that the antagonists of β2-AR could serve as a potential therapeutic strategy for BTI healing. Also, we firstly successfully constructed a local sympathetic denervation mouse model by using guanethidine loaded fibrin sealant, which provided a new effective methodology for future neuroskeletal biology study.
Collapse
Affiliation(s)
- Tingmo Huang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Liyang Wan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yinghong Xiong
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Feifei Yuan
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jianjun Huang
- Department of Orthopaedics, Ningde Affiliated Hospital, Fujian Medical University, Ningde, 352000, China
- Corresponding author. Ningde City Hospital, Fujian Medical University, Ningde, 352000, China.
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Corresponding author. Xiangya Hospital, No. 87, Xiangya Road, Kaifu District, Changsha, 410008, China.
| |
Collapse
|
23
|
Baawad A, Jacho D, Hamil T, Yildirim-Ayan E, Kim DS. Polysaccharide-Based Composite Scaffolds for Osteochondral and Enthesis Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:123-140. [PMID: 36181352 DOI: 10.1089/ten.teb.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are frequently injured with limited healing capacity. At the soft-hard tissue interface, enthesis is prone to get damaged and its regeneration in osteochondral defects is essential for complete healing. The current clinical techniques used in suturing procedures to reattach tendons to bones need much improvement for the generation of the native interface tissue, that is, enthesis, for patients to regain their full functions. Recently, inspired by the composite native tissue, much effort has been made to fabricate composite scaffolds for enthesis tissue regeneration. This review first focuses on the studies that used composite scaffolds for the regeneration of enthesis. Then, the use of polysaccharides for osteochondral tissue engineering is reviewed and their potential for enthesis regeneration is presented based on their supporting effects on osteogenesis and chondrogenesis. Gellan gum (GG) is selected and reviewed as a promising polysaccharide due to its unique osteogenic and chondrogenic activities that help avoid the inherent weakness of dissimilar materials in composite scaffolds. In addition, original preliminary results showed that GG supports collagen type I production and upregulation of osteogenic marker genes. Impact Statement Enthesis regeneration is essential for complete and functional healing of tendon and ligament tissues. Current suturing techniques to reattach the tendon/ligament to bones have high failure rates. This review highlights the studies on biomimetic scaffolds aimed to regenerate enthesis. In addition, the potential of using polysaccharides to regenerate enthesis is discussed based on their ability to regenerate osteochondral tissues. Gellan gum is presented as a promising biopolymer that can be modified to simultaneously support bone and cartilage regeneration by providing structural continuity for the scaffold.
Collapse
Affiliation(s)
- Abdullah Baawad
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Diego Jacho
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Taijah Hamil
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
24
|
Altunbek M, Afghah F, Caliskan OS, Yoo JJ, Koc B. Design and bioprinting for tissue interfaces. Biofabrication 2023; 15. [PMID: 36716498 DOI: 10.1088/1758-5090/acb73d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Tissue interfaces include complex gradient structures formed by transitioning of biochemical and mechanical properties in micro-scale. This characteristic allows the communication and synchronistic functioning of two adjacent but distinct tissues. It is particularly challenging to restore the function of these complex structures by transplantation of scaffolds exclusively produced by conventional tissue engineering methods. Three-dimensional (3D) bioprinting technology has opened an unprecedented approach for precise and graded patterning of chemical, biological and mechanical cues in a single construct mimicking natural tissue interfaces. This paper reviews and highlights biochemical and biomechanical design for 3D bioprinting of various tissue interfaces, including cartilage-bone, muscle-tendon, tendon/ligament-bone, skin, and neuro-vascular/muscular interfaces. Future directions and translational challenges are also provided at the end of the paper.
Collapse
Affiliation(s)
- Mine Altunbek
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - Ferdows Afghah
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - Ozum Sehnaz Caliskan
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, NC 27157, United States of America
| | - Bahattin Koc
- Sabanci Nanotechnology Research and Application Center, Istanbul 34956, Turkey.,Sabanci University Faculty of Engineering and Natural Sciences, Istanbul 34956, Turkey
| |
Collapse
|
25
|
Han F, Li T, Li M, Zhang B, Wang Y, Zhu Y, Wu C. Nano-calcium silicate mineralized fish scale scaffolds for enhancing tendon-bone healing. Bioact Mater 2023; 20:29-40. [PMID: 35633872 PMCID: PMC9123220 DOI: 10.1016/j.bioactmat.2022.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/12/2022] Open
Abstract
Tendon-bone healing is essential for an effective rotator cuff tendon repair surgery, however, this remains a significant challenge due to the lack of biomaterials with high strength and bioactivity. Inspired by the high-performance exoskeleton of natural organisms, we set out to apply natural fish scale (FS) modified by calcium silicate nanoparticles (CS NPs) as a new biomaterial (CS-FS) to overcome the challenge. Benefit from its “Bouligand” microstructure, such FS-based scaffold maintained excellent tensile strength (125.05 MPa) and toughness (14.16 MJ/m3), which are 1.93 and 2.72 times that of natural tendon respectively, allowing it to well meet the requirements for rotator cuff tendon repair. Additionally, CS-FS showed diverse bioactivities by stimulating the differentiation and phenotypic maintenance of multiple types of cells participated into the composition of tendon-bone junction, (e.g. bone marrow mesenchymal stem cells (BMSCs), chondrocyte, and tendon stem/progenitor cells (TSPCs)). In both rat and rabbit rotator cuff tear (RCT) models, CS-FS played a key role in the tendon-bone interface regeneration and biomechanical function, which may be achieved by activating BMP-2/Smad/Runx2 pathway in BMSCs. Therefore, natural fish scale -based biomaterials are the promising candidate for clinical tendon repair due to their outstanding strength and bioactivity. Nano-calcium silicate mineralized fish scale scaffold was first developed for tendon defect repair. •CS-FS exhibited excellent mechanical properties superior to those of natural tendon. •CS-FS showed diverse bioactivities by stimulating the differentiation of multiple types of cells. •CS NPs accelerated tendon-bone interface tendon-bone healing enhancement and biomechanical recovery.
Collapse
|
26
|
Luo W, Wang Y, Han Q, Wang Z, Jiao J, Gong X, Liu Y, Zhang A, Zhang H, Chen H, Wang J, Wu M. Advanced strategies for constructing interfacial tissues of bone and tendon/ligament. J Tissue Eng 2022; 13:20417314221144714. [PMID: 36582940 PMCID: PMC9793068 DOI: 10.1177/20417314221144714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/26/2022] [Indexed: 12/25/2022] Open
Abstract
Enthesis, the interfacial tissue between a tendon/ligament and bone, exhibits a complex histological transition from soft to hard tissue, which significantly complicates its repair and regeneration after injury. Because traditional surgical treatments for enthesis injury are not satisfactory, tissue engineering has emerged as a strategy for improving treatment success. Rapid advances in enthesis tissue engineering have led to the development of several strategies for promoting enthesis tissue regeneration, including biological scaffolds, cells, growth factors, and biophysical modulation. In this review, we discuss recent advances in enthesis tissue engineering, particularly the use of biological scaffolds, as well as perspectives on the future directions in enthesis tissue engineering.
Collapse
Affiliation(s)
- Wangwang Luo
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Orthopaedic Research Institute of Jilin
Province, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Aobo Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Han Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Hao Chen
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Minfei Wu, Department of Orthopedics, The
Second Hospital of Jilin University, 218 Ziqiang Sreet, Changchun 130041, China.
| |
Collapse
|
27
|
Bai L, Han Q, Meng Z, Chen B, Qu X, Xu M, Su Y, Qiu Z, Xue Y, He J, Zhang J, Yin Z. Bioprinted living tissue constructs with layer-specific, growth factor-loaded microspheres for improved enthesis healing of a rotator cuff. Acta Biomater 2022; 154:275-289. [PMID: 36328126 DOI: 10.1016/j.actbio.2022.10.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Substantial challenges remain in constructing the native tendon-to-bone interface for rotator cuff healing owing to the enthesis tissues' highly organized structural and compositional gradients. Herein, we propose to bioprint living tissue constructs with layer-specific growth factors (GFs) to promote enthesis regeneration by guiding the zonal differentiation of the loaded stem cells in situ. The sustained release of tenogenic, chondrogenic, and osteogenic GFs was achieved via microsphere-based delivery carriers embedded in the bioprinted constructs. Compared to the basal construct without GFs, the layer-specific tissue analogs realized region-specific differentiation of stem cells in vitro. More importantly, bioprinted living tissue constructs with layer-specific GFs rapidly enhanced the enthesis regeneration in a rabbit rotator cuff tear model in terms of biomechanical restoration, collagen deposition, and alignment, showing gradient interface of fibrocartilage structures with aligned collagen fibrils and an ultimate load failure of 154.3 ± 9.5 N resembling those of native enthesis tissues in 12 weeks. This exploration provides a feasible strategy to engineer living tissue constructions with region-specific differentiation potentials for the functional repair of gradient enthesis tissues. STATEMENT OF SIGNIFICANCE: Previous studies that employed acellular layer-specific scaffolds or stem cells for the reconstruction of the rotator cuff faced challenges due to their insufficient capability to rebuild the anisotropic compositional and structural gradients of native enthesis tissues. This manuscript proposed a living tissue construct with layer-specific, GFs-loaded µS, which can direct in situ and region-specific differentiation of the embedded stem cells to tenogenic, chondrogenic, and osteogenic lineages for functional regeneration of the enthesis tissues. This bioprinted living tissue construct with the unique capability to reduce fibrovascular scar tissue formation and simultaneously facilitate enthesis tissue remodeling might provide a promising strategy to repair complex and gradient tissues in the future.
Collapse
Affiliation(s)
- Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zijie Meng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, 450003, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanwen Su
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuan Xue
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
28
|
Kent RN, Said M, Busch ME, Poupard ER, Tsai A, Xia J, Matera DL, Wang WY, DePalma SJ, Hiraki HL, Killian ML, Abraham AC, Shin JW, Huang AH, Shikanov A, Baker BM. Physical and Soluble Cues Enhance Tendon Progenitor Cell Invasion into Injectable Synthetic Hydrogels. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2207556. [PMID: 39257859 PMCID: PMC11382351 DOI: 10.1002/adfm.202207556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Indexed: 09/12/2024]
Abstract
Synthetic hydrogels represent an exciting avenue in the field of regenerative biomaterials given their injectability, orthogonally tunable mechanical properties, and potential for modular inclusion of cellular cues. Separately, recent advances in soluble factor release technology have facilitated control over the soluble milieu in cell microenvironments via tunable microparticles. A composite hydrogel incorporating both of these components can robustly mediate tendon healing following a single injection. Here, a synthetic hydrogel system with encapsulated electrospun fiber segments and a novel microgel-based soluble factor delivery system achieves precise control over topographical and soluble features of an engineered microenvironment, respectively. It is demonstrated that three-dimensional migration of tendon progenitor cells can be enhanced via combined mechanical, topographical, and microparticle-delivered soluble cues in both a tendon progenitor cell spheroid model and an ex vivo murine Achilles tendon model. These results indicate that fiber reinforced hydrogels can drive the recruitment of endogenous progenitor cells relevant to the regeneration of tendon and, likely, a broad range of connective tissues.
Collapse
Affiliation(s)
- Robert N Kent
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Mohamed Said
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Megan E Busch
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Ethan R Poupard
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Ariane Tsai
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Jingyi Xia
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Daniel L Matera
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - William Y Wang
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Samuel J DePalma
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Harrison L Hiraki
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Megan L Killian
- Department of Orthopedic Surgery University of Michigan Ann Arbor MI 48109 USA
| | - Adam C Abraham
- Department of Orthopedic Surgery University of Michigan Ann Arbor MI 48109 USA
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, Department of Biomedical Engineering University of Illinois Chicago Chicago IL 60607 USA
| | - Alice H Huang
- Department of Orthopedic Surgery Columbia University New York NY 10032 USA
| | - Ariella Shikanov
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Brendon M Baker
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
29
|
Li Y, Zhou M, Zheng W, Yang J, Jiang N. Scaffold-based tissue engineering strategies for soft-hard interface regeneration. Regen Biomater 2022; 10:rbac091. [PMID: 36683751 PMCID: PMC9847541 DOI: 10.1093/rb/rbac091] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Repairing injured tendon or ligament attachments to bones (enthesis) remains costly and challenging. Despite superb surgical management, the disorganized enthesis newly formed after surgery accounts for high recurrence rates after operations. Tissue engineering offers efficient alternatives to promote healing and regeneration of the specialized enthesis tissue. Load-transmitting functions thus can be restored with appropriate biomaterials and engineering strategies. Interestingly, recent studies have focused more on microstructure especially the arrangement of fibers since Rossetti successfully demonstrated the variability of fiber underspecific external force. In this review, we provide an important update on the current strategies for scaffold-based tissue engineering of enthesis when natural structure and properties are equally emphasized. We firstly described compositions, structures and features of natural enthesis with their special mechanical properties highlighted. Stimuli for growth, development and healing of enthesis widely used in popular strategies are systematically summarized. We discuss the fabrication of engineering scaffolds from the aspects of biomaterials, techniques and design strategies and comprehensively evaluate the advantages and disadvantages of each strategy. At last, this review pinpoints the remaining challenges and research directions to make breakthroughs in further studies.
Collapse
Affiliation(s)
| | | | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Nan Jiang
- Correspondence address. E-mail: (N.J.); (J.Y.)
| |
Collapse
|
30
|
Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids. Biointerphases 2022; 17:060801. [DOI: 10.1116/6.0002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.
Collapse
|
31
|
Abstract
Approved therapies for tendon diseases have not yet changed the clinical practice of symptomatic pain treatment and physiotherapy. This review article summarizes advances in the development of novel drugs, biologic products, and biomaterial therapies for tendon diseases with perspectives for translation of integrated therapies. Shifting from targeting symptom relief toward disease modification and prevention of disease progression may open new avenues for therapies. Deep evidence-based clinical, cellular, and molecular characterization of the underlying pathology of tendon diseases, as well as therapeutic delivery optimization and establishment of multidiscipline interorganizational collaboration platforms, may accelerate the discovery and translation of transformative therapies for tendon diseases.
Collapse
Affiliation(s)
- Benjamin R. Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Wang L, Zhu T, Kang Y, Zhang J, Du J, Gao H, Chen S, Jiang J, Zhao J. Crimped nanofiber scaffold mimicking tendon-to-bone interface for fatty-infiltrated massive rotator cuff repair. Bioact Mater 2022; 16:149-161. [PMID: 35386329 PMCID: PMC8958472 DOI: 10.1016/j.bioactmat.2022.01.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Electrospun fibers, with proven ability to promote tissue regeneration, are widely being explored for rotator cuff repairing. However, without post treatment, the microstructure of the electrospun scaffold is vastly different from that of natural extracellular matrix (ECM). Moreover, during mechanical loading, the nanofibers slip that hampers the proliferation and differentiation of migrating stem cells. Here, electrospun nanofiber scaffolds, with crimped nanofibers and welded joints to biomimic the intricate natural microstructure of tendon-to-bone insertion, were prepared using poly(ester-urethane)urea and gelatin via electrospinning and double crosslinking by a multi-bonding network densification strategy. The crimped nanofiber scaffold (CNS) features bionic tensile stress and induces chondrogenic differentiation, laying credible basis for in vivo experimentation. After repairing a rabbit massive rotator cuff tear using a CNS for 3 months, the continuous translational tendon-to-bone interface was fully regenerated, and fatty infiltration was simultaneously inhibited. Instead of micro-CT, μCT was employed to visualize the integrity and intricateness of the three-dimensional microstructure of the CNS-induced-healed tendon-to-bone interface at an ultra-high resolution of less than 1 μm. This study sheds light on the correlation between nanofiber post treatment and massive rotator cuff repair and provides a general strategy for crimped nanofiber preparation and tendon-to-bone interface imaging characterization. Electrospun scaffold mimicking the microstructure of ECM was fabricated. The translational microstructure of tendon-to-bone interface was regenerated. Tendon-to-bone interface was 3D visualized with resolution less than 1 μm. Muscle fatty infiltration was inhibited for massive rotator cuff tear.
Collapse
Affiliation(s)
- Liren Wang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.,Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Tonghe Zhu
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.,Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Jianguang Zhang
- Department of Medgen Group Research Laboratory, 18 Qinglan 3 Rd, Shenzhen, 518118, China
| | - Juan Du
- Biofunctional Materials Research Group, College of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Institute of Advanced Studies, Shanghai University of Engineering Science, No. 333 Longteng Rd, Shanghai, 201620, China
| | - Haihan Gao
- Biofunctional Materials Research Group, College of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Institute of Advanced Studies, Shanghai University of Engineering Science, No. 333 Longteng Rd, Shanghai, 201620, China.,Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Sihao Chen
- Biofunctional Materials Research Group, College of Chemistry and Chemical Engineering, Multidisciplinary Center for Advanced Materials, Institute of Advanced Studies, Shanghai University of Engineering Science, No. 333 Longteng Rd, Shanghai, 201620, China
| | - Jia Jiang
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.,Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Department of Orthopedics, Shanghai Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.,Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People' Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
33
|
Yang J, Kang Y, Zhao W, Jiang J, Jiang Y, Zhao B, Jiao M, Yuan B, Zhao J, Ma B. Evaluation of patches for rotator cuff repair: A systematic review and meta-analysis based on animal studies. Bioact Mater 2022; 10:474-491. [PMID: 34901561 PMCID: PMC8633530 DOI: 10.1016/j.bioactmat.2021.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Based on the published animal studies, we systematically evaluated the outcomes of various materials for rotator cuff repair in animal models and the potentials of their clinical translation. 74 animal studies were finally included, of which naturally derived biomaterials were applied the most widely (50.0%), rats were the most commonly used animal model (47.0%), and autologous tissue demonstrated the best outcomes in all animal models. The biomechanical properties of naturally derived biomaterials (maximum failure load: WMD 18.68 [95%CI 7.71-29.66]; P = 0.001, and stiffness: WMD 1.30 [95%CI 0.01-2.60]; P = 0.048) was statistically significant in the rabbit model. The rabbit model showed better outcomes even though the injury was severer compared with the rat model.
Collapse
Affiliation(s)
- Jinwei Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730050, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wanlu Zhao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yanbiao Jiang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bing Zhao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingyue Jiao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Yuan
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
34
|
Pitta Kruize C, Panahkhahi S, Putra NE, Diaz-Payno P, van Osch G, Zadpoor AA, Mirzaali MJ. Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces. ACS Biomater Sci Eng 2021. [PMID: 34784181 DOI: 10.1021/acsbiomaterials.1c00620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone-to-soft tissue interfaces are responsible for transferring loads between tissues with significantly dissimilar material properties. The examples of connective soft tissues are ligaments, tendons, and cartilages. Such natural tissue interfaces have unique microstructural properties and characteristics which avoid the abrupt transitions between two tissues and prevent formation of stress concentration at their connections. Here, we review some of the important characteristics of these natural interfaces. The native bone-to-soft tissue interfaces consist of several hierarchical levels which are formed in a highly specialized anisotropic fashion and are composed of different types of heterogeneously distributed cells. The characteristics of a natural interface can rely on two main design principles, namely by changing the local microarchitectural features (e.g., complex cell arrangements, and introducing interlocking mechanisms at the interfaces through various geometrical designs) and changing the local chemical compositions (e.g., a smooth and gradual transition in the level of mineralization). Implementing such design principles appears to be a promising approach that can be used in the design, reconstruction, and regeneration of engineered biomimetic tissue interfaces. Furthermore, prominent fabrication techniques such as additive manufacturing (AM) including 3D printing and electrospinning can be used to ease these implementation processes. Biomimetic interfaces have several biological applications, for example, to create synthetic scaffolds for osteochondral tissue repair.
Collapse
Affiliation(s)
- Carlos Pitta Kruize
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Sara Panahkhahi
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Niko Eka Putra
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Pedro Diaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Gerjo van Osch
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| |
Collapse
|
35
|
Jiang N, Mao M, Li X, Zhang W, He J, Li D. Advanced biofabrication strategies for biomimetic composite scaffolds to regenerate ligament‐bone interface. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Nan Jiang
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- Department of Surgical Oncology Shaanxi Provincial People’s Hospital (Third Hospital of Medical College of Xi’an Jiaotong University) Xi’an Shaanxi China
| | - Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Weijie Zhang
- Department of Knee Joint Surgery Hong Hui Hospital Health Science Center Xi’an Jiaotong University Xi’an Shaanxi China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering Xi’an Jiaotong University Xi’an Shaanxi China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices Xi’an Jiaotong University Xi’an Shaanxi China
| |
Collapse
|
36
|
Wang Z, Agrawal P, Zhang YS. Nanotechnologies and Nanomaterials in 3D (Bio)printing toward Bone Regeneration. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Zongliang Wang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Prajwal Agrawal
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA
| |
Collapse
|
37
|
Cellular Technologies in Traumatology: From Cells to Tissue Engineering. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.2.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Injuries and degenerative changes of tendons are common damages of the musculoskeletal system. Due to its hypovascular character the tendon has a limited natural ability to recover. For typical surgical treatment, the tendon integrity is restored, but in most cases, there occurs formation of the connective tissue scar resulting in structural and mechanical functionality disruption. The insufficient effectiveness of traditional therapy methods requires the search for alternative ways to restore damaged tendon tissues. This article discusses new effective methods for improving the treatment that base on the use of cellular technologies among which one of the main directions is mesenchymal stem cell application. Due to mesenchymal stem cells, there is a shift from pro-fibrotic and pro-inflammatory reactions of cells to pro-regenerative ones. Stem cells being multipotent and having among other things tenogenic potential are considered a promising material for repairing damaged tendons. The article also describes the sources of progenitor tendon cells including the tendon bundles and pericytes the main markers of which are Scx and Mkx that are proteins of the transcription factor superfamily, and Tnmd that is transmembrane glycoprotein.The growth factors that not only enhance the proliferative activity of mesenchymal stem cells but also promote in vitro tenogenic genes expression as well as the collagen Itype production what is necessary for tendon formation are considered. Along with growth factors, the morphogenetic protein BMP14 is presented, this protein increases themesenchymal stem cell proliferation and contributes directed tenogenic differentiation of these cells, suppressing their adipogenic and chondrogenic potentials.In recent years, mesenchymal stem cells have been used both separately and in combination with various growth factors and different three-dimensional structures providing the interaction with all of the cell types.The issues of the latest 3D-bioprinting technology allowing to make tissue-like structures for replacement damaged tissues and organs are discussed. 3D-bioprinting technology is known to allow acting exact spatio-temporal control of the distribution of cells, growth factors, small molecules, drugs and biologically active substances.
Collapse
|
38
|
Madry H, Grässel S, Nöth U, Relja B, Bernstein A, Docheva D, Kauther MD, Katthagen JC, Bader R, van Griensven M, Wirtz DC, Raschke MJ, Huber-Lang M. The future of basic science in orthopaedics and traumatology: Cassandra or Prometheus? Eur J Med Res 2021; 26:56. [PMID: 34127057 PMCID: PMC8200553 DOI: 10.1186/s40001-021-00521-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
Orthopaedic and trauma research is a gateway to better health and mobility, reflecting the ever-increasing and complex burden of musculoskeletal diseases and injuries in Germany, Europe and worldwide. Basic science in orthopaedics and traumatology addresses the complete organism down to the molecule among an entire life of musculoskeletal mobility. Reflecting the complex and intertwined underlying mechanisms, cooperative research in this field has discovered important mechanisms on the molecular, cellular and organ levels, which subsequently led to innovative diagnostic and therapeutic strategies that reduced individual suffering as well as the burden on the society. However, research efforts are considerably threatened by economical pressures on clinicians and scientists, growing obstacles for urgently needed translational animal research, and insufficient funding. Although sophisticated science is feasible and realized in ever more individual research groups, a main goal of the multidisciplinary members of the Basic Science Section of the German Society for Orthopaedics and Trauma Surgery is to generate overarching structures and networks to answer to the growing clinical needs. The future of basic science in orthopaedics and traumatology can only be managed by an even more intensified exchange between basic scientists and clinicians while fuelling enthusiasm of talented junior scientists and clinicians. Prioritized future projects will master a broad range of opportunities from artificial intelligence, gene- and nano-technologies to large-scale, multi-centre clinical studies. Like Prometheus in the ancient Greek myth, transferring the elucidating knowledge from basic science to the real (clinical) world will reduce the individual suffering from orthopaedic diseases and trauma as well as their socio-economic impact.
Collapse
Affiliation(s)
- Henning Madry
- Institute of Experimental Orthopaedics and Osteoarthritis Research, Saarland University, Homburg, Germany
| | - Susanne Grässel
- Experimental Orthopedics, Department of Orthopedic Surgery, University of Regensburg, Regensburg, Germany
| | - Ulrich Nöth
- Department of Orthopaedics and Trauma Surgery, Evangelisches Waldkrankenhaus Berlin Spandau, Berlin, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Anke Bernstein
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Breisgau, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Max Daniel Kauther
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Essen, Essen, Germany
| | - Jan Christoph Katthagen
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Rainer Bader
- Department of Orthopaedics, Research Lab for Biomechanics and Implant Technology, Rostock University Medical Center, Rostock, Germany
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN-Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Dieter C Wirtz
- Department of Orthopaedics and Trauma Surgery, University Hopsital Bonn, Bonn, Germany
| | - Michael J Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Helmholzstr. 8/1, Ulm, Germany.
| |
Collapse
|
39
|
Chen B, Liang Y, Zhang J, Bai L, Xu M, Han Q, Han X, Xiu J, Li M, Zhou X, Guo B, Yin Z. Synergistic enhancement of tendon-to-bone healing via anti-inflammatory and pro-differentiation effects caused by sustained release of Mg 2+/curcumin from injectable self-healing hydrogels. Am J Cancer Res 2021; 11:5911-5925. [PMID: 33897889 PMCID: PMC8058719 DOI: 10.7150/thno.56266] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Poor healing response after rotator cuff reconstruction is multifactorial, with the inflammatory microenvironment and deficiency of stem cell differentiation factors at the lesion site being most relevant. However, there is a lack of effective tissue engineering strategies that can simultaneously exert anti-inflammatory and pro-differentiation effects to promote rotator cuff healing. Methods: In this study, we synthesized and characterized a novel active drug delivery vector that successfully overcame the challenge of simultaneous high-efficiency loading and controlled release of Mg2+ and curcumin. The anti-inflammatory and pro-differentiation effects of the composite hydrogel were evaluated in vitro and in vivo. Moreover, healing of the rotator cuff tendon-to-bone interface was studied by histology, immunofluorescence, and biomechanical tests. Results: The composite hydrogel exhibited excellent biocompatibility and injectability, good adhesiveness, and rapid self-healing. The released curcumin showed obvious anti-inflammatory and antioxidation effects, which protected stem cells and tendon matrix. Furthermore, released Mg2+ promoted stem cell aggregation and chondrogenesis. Moreover, biomechanical tests and histological results of a rat rotator cuff tear model at 8 weeks after surgery indicated that the composite hydrogel significantly enhanced tendon-to-bone healing. Conclusions: The composite hydrogel mediated sustained in situ release of curcumin and Mg2+ to effectively promote rotator cuff tendon-to-bone healing via anti-inflammatory and pro-differentiation effects. Therefore, this composite hydrogel offers significant promise for rotator cuff repair.
Collapse
|
40
|
Quam VG, Altmann NN, Brokken MT, Durgam SS. Zonal characterization and differential trilineage potentials of equine intrasynovial deep digital flexor tendon-derived cells. BMC Vet Res 2021; 17:138. [PMID: 33794882 PMCID: PMC8015054 DOI: 10.1186/s12917-021-02793-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Intrasynovial deep digital flexor tendon (DDFT) injuries occur frequently and are often implicated in cases of navicular disease with poor outcomes and reinjuries. Cell-based approaches to tendon healing are gaining traction in veterinary medicine and ultimately may contribute to improved DDFT healing in horses. However, a better understanding of the innate cellular characteristics of equine DDFT is necessary for developing improved therapeutic strategies. Additionally, fibrocartilaginous, intrasynovial tendons like the DDFT are common sites of injury and share a poor prognosis across species, offering translational applications of this research. The objective of this study is to isolate and characterize tendon-derived cells (TDC) from intrasynovial DDFT harvested from within the equine forelimb podotrochlear bursa. TDC from the fibrocartilaginous and tendinous zones are separately isolated and assessed. Flow cytometry is performed for mesenchymal stem cell (MSC) surface markers (CD 29, CD 44, CD 90). Basal tenogenic, osteogenic and chondrogenic markers are assessed via quantitative real time-PCR, and standard trilineage differentiation is performed with third passage TDC from the fibrocartilaginous (fTDC) and tendinous (tTDC) zones of DDFT. RESULTS Low-density plating isolated homogenous TDC populations from both zones. During monolayer passage, both TDC subpopulations exhibited clonogenicity, high in vitro proliferation rate, and fibroblast-like morphology. fTDC and tTDC were positive for MSC surface markers CD90 and CD29 and negative for CD44. There were no significant differences in basal tenogenic, osteogenic or chondrogenic marker expression between zones. While fTDC were largely restricted to chondrogenic differentiation, tTDC underwent osteogenic and chondrogenic differentiation. Both TDC subpopulations displayed weak adipogenic differentiation potentials. CONCLUSIONS TDC at the level of the podotrochlear bursa, that potentially could be targeted for enhancing DDFT injury healing in horses were identified and characterized. Pending further investigation, promoting chondrogenic properties in cells administered exogenously into the intrasynovial space may be beneficial for intrasynovial tendon regeneration.
Collapse
Affiliation(s)
- Vivian G Quam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA
| | - Nadine N Altmann
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA
| | - Matthew T Brokken
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA
| | - Sushmitha S Durgam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA.
| |
Collapse
|
41
|
Lei T, Zhang T, Ju W, Chen X, Heng BC, Shen W, Yin Z. Biomimetic strategies for tendon/ligament-to-bone interface regeneration. Bioact Mater 2021; 6:2491-2510. [PMID: 33665493 PMCID: PMC7889437 DOI: 10.1016/j.bioactmat.2021.01.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Tendon/ligament-to-bone healing poses a formidable clinical challenge due to the complex structure, composition, cell population and mechanics of the interface. With rapid advances in tissue engineering, a variety of strategies including advanced biomaterials, bioactive growth factors and multiple stem cell lineages have been developed to facilitate the healing of this tissue interface. Given the important role of structure-function relationship, the review begins with a brief description of enthesis structure and composition. Next, the biomimetic biomaterials including decellularized extracellular matrix scaffolds and synthetic-/natural-origin scaffolds are critically examined. Then, the key roles of the combination, concentration and location of various growth factors in biomimetic application are emphasized. After that, the various stem cell sources and culture systems are described. At last, we discuss unmet needs and existing challenges in the ideal strategies for tendon/ligament-to-bone regeneration and highlight emerging strategies in the field.
Collapse
Affiliation(s)
- Tingyun Lei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Tao Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Ju
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | | | - Weiliang Shen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Orthopedic Surgery of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
42
|
Shiroud Heidari B, Ruan R, De-Juan-Pardo EM, Zheng M, Doyle B. Biofabrication and Signaling Strategies for Tendon/Ligament Interfacial Tissue Engineering. ACS Biomater Sci Eng 2021; 7:383-399. [PMID: 33492125 DOI: 10.1021/acsbiomaterials.0c00731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tendons and ligaments (TL) have poor healing capability, and for serious injuries like tears or ruptures, surgical intervention employing autografts or allografts is usually required. Current tissue replacements are nonideal and can lead to future problems such as high retear rates, poor tissue integration, or heterotopic ossification. Alternatively, tissue engineering strategies are being pursued using biodegradable scaffolds. As tendons connect muscle and bone and ligaments attach bones, the interface of TL with other tissues represent complex structures, and this intricacy must be considered in tissue engineered approaches. In this paper, we review recent biofabrication and signaling strategies for biodegradable polymeric scaffolds for TL interfacial tissue engineering. First, we discuss biodegradable polymeric scaffolds based on the fabrication techniques as well as the target tissue application. Next, we consider the effect of signaling factors, including cell culture, growth factors, and biophysical stimulation. Then, we discuss human clinical studies on TL tissue healing using commercial synthetic scaffolds that have occurred over the past decade. Finally, we highlight the challenges and future directions for biodegradable scaffolds in the field of TL and interface tissue engineering.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Elena M De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.,BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
43
|
|
44
|
Zhang L, Fu L, Zhang X, Chen L, Cai Q, Yang X. Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater Sci 2021; 9:1547-1573. [DOI: 10.1039/d0bm01595d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A state-of-the-art review on the design and preparation of hierarchical and heterogeneous hydrogel systems for interfacial tissue regeneration.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Lei Fu
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xin Zhang
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Linxin Chen
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| |
Collapse
|
45
|
Bakht SM, Pardo A, Gómez-Florit M, Reis RL, Domingues RMA, Gomes ME. Engineering next-generation bioinks with nanoparticles: moving from reinforcement fillers to multifunctional nanoelements. J Mater Chem B 2021; 9:5025-5038. [PMID: 34014245 DOI: 10.1039/d1tb00717c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of additive manufacturing in the biomedical field has become a hot topic in the last decade owing to its potential to provide personalized solutions for patients. Different bioinks have been designed trying to obtain a unique concoction that addresses all the needs for tissue engineering and drug delivery purposes, among others. Despite the remarkable progress made, the development of suitable bioinks which combine printability, cytocompatibility, and biofunctionality is still a challenge. In this sense, the well-established synthetic and functionalization routes to prepare nanoparticles with different functionalities make them excellent candidates to be combined with polymeric systems in order to generate suitable multi-functional bioinks. In this review, we briefly discuss the most recent advances in the design of functional nanocomposite hydrogels considering their already evaluated or potential use as bioinks. The scientific development over the last few years is reviewed, focusing the discussion on the wide range of functionalities that can be incorporated into 3D bioprinted constructs through the addition of multifunctional nanoparticles in order to increase their regenerative potential in the field of tissue engineering.
Collapse
Affiliation(s)
- Syeda M Bakht
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alberto Pardo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and Colloids and Polymers Physics Group, Particle Physics Department and Health Research Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
46
|
Chae S, Sun Y, Choi YJ, Ha DH, Jeon IH, Cho DW. 3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair. Biofabrication 2020; 13. [PMID: 33285539 DOI: 10.1088/1758-5090/abd159] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023]
Abstract
The tendon-bone interface (TBI) in rotator cuffs exhibits a structural and compositional gradient integrated through the fibrocartilaginous transition. Owing to restricted healing capacity, functional regeneration of the TBI is considered a great clinical challenge. Here, we establish a novel therapeutic platform based on 3D cell-printing and tissue-specific bioinks to achieve spatially-graded physiology for functional TBI regeneration. The 3D cell-printed TBI patch constructs are created via a spatial arrangement of cell-laden tendon and bone-specific bioinks in a graded manner, approximating a multi-tissue fibrocartilaginous interface. This TBI patch offers a cell favorable microenvironment, including high cell viability, proliferative capacity, and zonal-specific differentiation of encapsulated stem cells for TBI formation in vitro. Furthermore, in vivo application of spatially-graded TBI patches with stem cells demonstrates their regenerative potential, indicating that repair with 3D cell-printed TBI patch significantly accelerates and promotes TBI healing in a rat chronic tear model. Therefore, our findings propose a new therapeutic strategy for functional TBI regeneration using 3D cell-printing and tissue-specific decellularized extracellular matrix (dECM) bioink-based approach.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do, 37673, Korea (the Republic of)
| | - Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, Nantong University, No 20, West Temple Road, Nantong, 226000, CHINA
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science, 797, Changwon-daero, Seongsan-gu, Gyeongsangnam-do, Changwon, 51508, Korea (the Republic of)
| | - Dong-Heon Ha
- EDmicBio Inc., 117-3, Hoegi-ro, Dongdaemun-gu, Seoul, 02445, Korea (the Republic of)
| | - In-Ho Jeon
- Orthopaedic Surgery, University of Ulsan, Asan Medical Center, 88, OLYMPIC-RO 43-GIL, SONGPA-GU, Seoul, 05505, Korea (the Republic of)
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do, 37673, Korea (the Republic of)
| |
Collapse
|
47
|
Kim YH, Park GY, Rabinovitch N, Tarafder S, Lee CH. Effect of local anesthetics on viability and differentiation of various adult stem/progenitor cells. Stem Cell Res Ther 2020; 11:385. [PMID: 32894184 PMCID: PMC7487635 DOI: 10.1186/s13287-020-01905-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Local anesthetics (LAs) are widely used to control pain during various clinical treatments. One of the side effects of LAs, cytotoxicity, has been investigated in various cells including stem/progenitor cells. However, our understanding of the effects of LAs on the differentiation capacity of stem/progenitor cells still remains limited. Therefore, a comparative study was conducted to investigate the effects of multiple LAs on viability and multi-lineage differentiation of stem/progenitor cells that originated from various adult tissues. METHOD Multiple types of stem/progenitor cells, including bone marrow mesenchymal stem/progenitor cells (MSCs), dental pulp stem/progenitor cells (DPSCs), periodontal ligament stem/progenitor cells (PDLSCs), and tendon-derived stem/progenitor cells, were either obtained from a commercial provider or isolated from adult human donors. Lidocaine (LD) and bupivacaine (BP) at various doses (1×, 0.75×, 0.5×, and 0.25× of each physiological dose) were applied to the different stem/progenitor cells for an hour, followed by induction of fibrogenic, chondrogenic, osteogenic, and adipogenic differentiation. Live/dead and MTT assays were performed at 24 h after the LD or BP treatment. At 2 weeks, qRT-PCR was conducted to evaluate the gene expressions associated with differentiation. After 4 weeks, multiple biochemical staining was performed to evaluate matrix deposition. RESULTS At 24 h after LD or BP treatment, 1× and 0.75× physiological doses of LD and BP showed significant cytotoxicity in all the tested adult stem/progenitor cells. At 0.5×, BP resulted in higher viability than the same dose LD, with variance between cell types. Overall, the gene expressions associated with fibrogenic, chondrogenic, osteogenic, and adipogenic differentiation were attenuated in LD or BP pre-treated stem/progenitor cells, with notable dose-effect and dependence on types. In contrast, certain doses of LD and/or BP were found to increase specific gene expression, depending on the cell types. CONCLUSION Our data suggest that LAs such as LD and BP affect not only the viability but also the differentiation capacity of adult stem/progenitor cells from various anatomical sites. This study sheds light on stem cell applications for tissue regeneration in which isolation and transplantation of stem cells frequently involve LA administration.
Collapse
Affiliation(s)
- Young Hoon Kim
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ga Young Park
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, 630 West 168th Street, VC12-211, New York, NY, 10032, USA
| | - Nechama Rabinovitch
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, 630 West 168th Street, VC12-211, New York, NY, 10032, USA
| | - Solaiman Tarafder
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, 630 West 168th Street, VC12-211, New York, NY, 10032, USA
| | - Chang H Lee
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, 630 West 168th Street, VC12-211, New York, NY, 10032, USA.
| |
Collapse
|
48
|
Zurina IM, Presniakova VS, Butnaru DV, Svistunov AA, Timashev PS, Rochev YA. Tissue engineering using a combined cell sheet technology and scaffolding approach. Acta Biomater 2020; 113:63-83. [PMID: 32561471 DOI: 10.1016/j.actbio.2020.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Cell sheet technology has remained quite popular among tissue engineering techniques over the last several years. Meanwhile, there is an apparent trend in modern scientific research towards combining different approaches and strategies. Accordingly, a large body of work has arisen where cell sheets are used not as separate structures, but in combination with scaffolds as supporting constructions. The aim of this review is to analyze the intersection of these two vast areas of tissue engineering described in the literature mainly within the last five years. Some practical and technical details are emphasized to provide information that can be useful in research design and planning. The first part of the paper describes the general issues concerning the use of combined technology, its advantages and limitations in comparison with those of other tissue engineering approaches. Next, the detailed literature analysis of in vivo studies aimed at the regeneration of different tissues is performed. A significant part of this section concerns bone regeneration. In addition to that, other connective tissue structures, including articular cartilage and fibrocartilage, ligaments and tendons, and some soft tissues are discussed. STATEMENT OF SIGNIFICANCE: This paper describes the intersection of two technologies used in designing of tissue-engineered constructions for regenerative medicine: cell sheets as extracellular matrix-rich structures and supporting scaffolds as essentials in tissue engineering. A large number of reviews are devoted to each of these scientific problems. However, the solution of complex problems of tissue engineering requires an integrated approach that includes both three-dimensional scaffolds and cell sheets. This manuscript serves as a description of advantages and limitations of this method, its use in regeneration of bones, connective tissues and soft tissues and some other details.
Collapse
Affiliation(s)
- Irina M Zurina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; FSBSI Institute of General Pathology and Pathophysiology, 125315, 8 Baltiyskaya St., Moscow, Russia; FSBEI FPE "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of Russia, 125993, 2/1-1 Barrikadnaya St., Moscow, Russia
| | - Viktoria S Presniakova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia
| | - Denis V Butnaru
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Andrey A Svistunov
- Sechenov First Moscow State Medical University (Sechenov University), 119991, 8-2 Trubetskaya St., Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; Institute of Photonic Technologies, Research Center "Crystallography and Photonics", Russian Academy of Sciences, 108840, 2 Pionerskaya st., Troitsk, Moscow, Russia; Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, 119991 4 Kosygin st., Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1‑3, Moscow 119991, Russia.
| | - Yury A Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 8-2 Trubetskaya St., Moscow, Russia; Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
49
|
Jiang X, Wu S, Kuss M, Kong Y, Shi W, Streubel PN, Li T, Duan B. 3D printing of multilayered scaffolds for rotator cuff tendon regeneration. Bioact Mater 2020; 5:636-643. [PMID: 32405578 PMCID: PMC7212184 DOI: 10.1016/j.bioactmat.2020.04.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
Repairing massive rotator cuff tendon defects remains a challenge due to the high retear rate after surgical intervention. 3D printing has emerged as a promising technique that enables the fabrication of engineered tissues with heterogeneous structures and mechanical properties, as well as controllable microenvironments for tendon regeneration. In this study, we developed a new strategy for rotator cuff tendon repair by combining a 3D printed scaffold of polylactic-co-glycolic acid (PLGA) with cell-laden collagen-fibrin hydrogels. We designed and fabricated two types of scaffolds: one featuring a separate layer-by-layer structure and another with a tri-layered structure as a whole. Uniaxial tensile tests showed that both types of scaffolds had improved mechanical properties compared to single-layered PLGA scaffolds. The printed scaffold with collagen-fibrin hydrogels effectively supported the growth, proliferation, and tenogenic differentiation of human adipose-derived mesenchymal stem cells. Subcutaneous implantation of the multilayered scaffolds demonstrated their excellent in vivo biocompatibility. This study demonstrates the feasibility of 3D printing multilayered scaffolds for application in rotator cuff tendon regeneration.
Collapse
Affiliation(s)
- Xiping Jiang
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Molecular Genetics and Cell Biology Program, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- College of Textiles & Clothing, Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, 266071, China
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Philipp N. Streubel
- Department of Orthopedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tieshi Li
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68516, USA
| |
Collapse
|
50
|
Desai S, Jayasuriya CT. Implementation of Endogenous and Exogenous Mesenchymal Progenitor Cells for Skeletal Tissue Regeneration and Repair. Bioengineering (Basel) 2020; 7:E86. [PMID: 32759659 PMCID: PMC7552784 DOI: 10.3390/bioengineering7030086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Harnessing adult mesenchymal stem/progenitor cells to stimulate skeletal tissue repair is a strategy that is being actively investigated. While scientists continue to develop creative and thoughtful ways to utilize these cells for tissue repair, the vast majority of these methodologies can ultimately be categorized into two main approaches: (1) Facilitating the recruitment of endogenous host cells to the injury site; and (2) physically administering into the injury site cells themselves, exogenously, either by autologous or allogeneic implantation. The aim of this paper is to comprehensively review recent key literature on the use of these two approaches in stimulating healing and repair of different skeletal tissues. As expected, each of the two strategies have their own advantages and limitations (which we describe), especially when considering the diverse microenvironments of different skeletal tissues like bone, tendon/ligament, and cartilage/fibrocartilage. This paper also discusses stem/progenitor cells commonly used for repairing different skeletal tissues, and it lists ongoing clinical trials that have risen from the implementation of these cells and strategies. Lastly, we discuss our own thoughts on where the field is headed in the near future.
Collapse
Affiliation(s)
| | - Chathuraka T. Jayasuriya
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and the Rhode Island Hospital, Providence, RI 02903, USA;
| |
Collapse
|