1
|
Utagawa Y, Ino K, Shinoda Y, Yamazaki M, Abe H, Shiku H. Enzyme-Free In-Situ Electrochemical Measurement Using a Porous Membrane Electrode for Glucose Transport into Cell Spheroids. ACS Sens 2024; 9:4248-4255. [PMID: 39079053 PMCID: PMC11348417 DOI: 10.1021/acssensors.4c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Microphysiological systems have attracted attention because of their use in drug screening. However, it is challenging to measure cell functions in real time using a device. In this study, we developed a cell culture device using a porous membrane electrode for in situ electrochemical glucose measurements for cell analysis. First, a porous membrane electrode was fabricated and electrochemically evaluated for enzyme-free glucose measurement. Subsequently, the glucose uptake of MCF-7 spheroids was evaluated using living spheroids, fixed spheroids, supernatants, and glucose transporter inhibitor-treated spheroids. Conventionally, the direct optical measurement of glucose uptake requires fluorescence-labeled glucose derivatives. In addition, the glucose uptake can be evaluated by measuring the glucose concentration in the medium by optical or electrochemical measurements. However, glucose needs to be consumed in the entire cell culture medium, which needs a long culture time. In contrast, our system can measure glucose in approximately 5 min without any labels because of in situ electrochemical measurements. This system can be used for in situ measurements in in vitro cell culture systems, including organ-on-a-chip for drug screening.
Collapse
Affiliation(s)
- Yoshinobu Utagawa
- Graduate
School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Kosuke Ino
- Graduate
School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Yasuhiko Shinoda
- Organic
Device Development Department, Material Development Division, Toyoda Gosei Co., Ltd., Ama 490-1207, Japan
| | - Masateru Yamazaki
- Organic
Device Development Department, Material Development Division, Toyoda Gosei Co., Ltd., Ama 490-1207, Japan
| | - Hiroya Abe
- Graduate
School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Frontier
Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-0845, Japan
| | - Hitoshi Shiku
- Graduate
School of Engineering, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
2
|
Wu YC, Yang JY, Hsu CH. Tape-assisted fabrication method for constructing PDMS membrane-containing culture devices with cyclic radial stretching stimulation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240284. [PMID: 39144495 PMCID: PMC11321861 DOI: 10.1098/rsos.240284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/23/2024] [Accepted: 06/27/2024] [Indexed: 08/16/2024]
Abstract
Advanced in vitro culture systems have emerged as alternatives to animal testing and traditional cell culture methods in biomedical research. Polydimethylsiloxane (PDMS) is frequently used in creating sophisticated culture devices owing to its elastomeric properties, which allow mechanical stretching to simulate physiological movements in cell experiments. We introduce a straightforward method that uses three types of commercial tape-generic, magic and masking-to fabricate PDMS membranes with microscale thicknesses (47.2 µm for generic, 58.1 µm for magic and 89.37 µm for masking) in these devices. These membranes are shaped as the bases of culture wells and can perform cyclic radial movements controlled via a vacuum system. In experiments with A549 cells under three mechanical stimulation conditions, we analysed transcriptional regulators responsive to external mechanical stimuli. Results indicated increased nuclear yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) activity in both confluent and densely packed cells under cyclically mechanical strains (Pearson's coefficient (PC) of 0.59 in confluent and 0.24 in dense cells) compared with static (PC = 0.47 in confluent and 0.13 in dense) and stretched conditions (PC = 0.55 in confluent and 0.20 in dense). This technique offers laboratories without microfabrication capabilities a viable option for exploring cellular behaviour under dynamic mechanical stimulation using PDMS membrane-equipped devices.
Collapse
Affiliation(s)
- Yun-Chen Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli35053, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Jing-Yi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli35053, Taiwan
| | - Chia-Hsien Hsu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli35053, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu30013, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung40227, Taiwan
| |
Collapse
|
3
|
Lee S, Kim N, Kim SH, Um SJ, Park JY. Biological and mechanical influence of three-dimensional microenvironment formed in microwell on multicellular spheroids composed of heterogeneous hair follicle stem cells. Sci Rep 2023; 13:22742. [PMID: 38123607 PMCID: PMC10733424 DOI: 10.1038/s41598-023-49510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Hair loss caused by malfunction of the hair follicle stem cells (HFSCs) and physical damage to the skin is difficult to recover from naturally. To overcome these obstacles to hair follicle (HF) regeneration, it is essential to understand the three-dimensional (3D) microenvironment and interactions of various cells within the HFs. Therefore, 3D cell culture technology has been used in HF regeneration research; specifically, multicellular spheroids have been generally adapted to mimic the 3D volumetric structure of the HF. In this study, we culture HF-derived cells, which are mainly composed of HFSCs, in the form of 3D spheroids using a microwell array and discuss the effects of the 3D cellular environment on HF morphogenesis by expression measurements of Sonic hedgehog signaling and stem cell markers in the HF spheroids. Additionally, the influences of microwell depth on HF spheroid formation and biological conditions were investigated. The biomolecular diffusion and convective flow in the microwell were predicted using computational fluid dynamics, which allows analysis of the physical stimulations occurring on the spheroid at the micro-scale. Although a simple experimental method using the microwell array was adopted in this study, the results provide fundamental insights into the physiological phenomena of HFs in the 3D microenvironment, and the numerical analysis is expected to shed light on the investigation of the geometric parameters of the microwell system.
Collapse
Affiliation(s)
- Seungjin Lee
- Department of Mechanical Engineering, Graduate School, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Nackhyoung Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Sung-Hwan Kim
- Cellsmith Inc., 38 Pungseong-ro, Gangdong-gu, Seoul, 05393, Republic of Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea.
| | - Joong Yull Park
- Department of Mechanical Engineering, Graduate School, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
- Department of Intelligent Energy and Industry, Graduate School, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
4
|
Moeinzadeh A, Ashtari B, Garcia H, Koruji M, Velazquez CA, Bagher Z, Barati M, Shabani R, Davachi SM. The Effect of Chitosan/Alginate/Graphene Oxide Nanocomposites on Proliferation of Mouse Spermatogonial Stem Cells. J Funct Biomater 2023; 14:556. [PMID: 38132810 PMCID: PMC10744091 DOI: 10.3390/jfb14120556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Male survivors of childhood cancer have been known to be afflicted with azoospermia. To combat this, the isolation and purification of spermatogonial stem cells (SSCs) are crucial. Implementing scaffolds that emulate the extracellular matrix environment is vital for promoting the regeneration and proliferation of SSCs. This research aimed to evaluate the efficiency of nanocomposite scaffolds based on alginate, chitosan, and graphene oxide (GO) in facilitating SSCs proliferation. To analyze the cytotoxicity of the scaffolds, an MTT assay was conducted at 1, 3, and 7 days, and the sample containing 30 µg/mL of GO (ALGCS/GO30) exhibited the most favorable results, indicating its optimal performance. The identity of the cells was confirmed using flow cytometry with C-Kit and GFRα1 markers. The scaffolds were subjected to various analyses to characterize their properties. FTIR was employed to assess the chemical structure, XRD to examine crystallinity, and SEM to visualize the morphology of the scaffolds. To evaluate the proliferation of SSCs, qRT-PCR was used. The study's results demonstrated that the ALGCS/GO30 nanocomposite scaffold exhibited biocompatibility and facilitated the attachment and proliferation of SSCs. Notably, the scaffold displayed a significant increase in proliferation markers compared to the control group, indicating its ability to support SSC growth. The expression level of the PLZF protein was assessed using the Immunocytochemistry method. The observations confirmed the qRT-PCR results, which indicated that the nanocomposite scaffolds had higher levels of PLZF protein expression than scaffolds without GO. The biocompatible ALGCS/GO30 is a promising alternative for promoting SSC proliferation in in vitro applications.
Collapse
Affiliation(s)
- Alaa Moeinzadeh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Heriberto Garcia
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Carlo Alberto Velazquez
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| | - Zohreh Bagher
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Sciences and Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Davachi
- Department of Biology and Chemistry, Texas A&M International University, Laredo, TX 78041, USA
| |
Collapse
|
5
|
Wu J, Kang K, Liu S, Ma Y, Yu M, Zhao X. Recent Progress of In Vitro 3D Culture of Male Germ Stem Cells. J Funct Biomater 2023; 14:543. [PMID: 37998112 PMCID: PMC10672244 DOI: 10.3390/jfb14110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Male germline stem cells (mGSCs), also known as spermatogonial stem cells (SSCs), are the fundamental seed cells of male animal reproductive physiology. However, environmental influences, drugs, and harmful substances often pose challenges to SSCs, such as population reduction and quality decline. With advancements in bioengineering technology and biomaterial technology, an increasing number of novel cell culture methods and techniques have been employed for studying the proliferation and differentiation of SSCs in vitro. This paper provides a review on recent progress in 3D culture techniques for SSCs in vitro; we summarize the microenvironment of SSCs and spermatocyte development, with a focus on scaffold-based culture methods and 3D printing cell culture techniques for SSCs. Additionally, decellularized testicular matrix (DTM) and other biological substrates are utilized through various combinations and approaches to construct an in vitro culture microenvironment suitable for SSC growth. Finally, we present some perspectives on current research trends and potential opportunities within three areas: the 3D printing niche environment, alternative options to DTM utilization, and advancement of the in vitro SSC culture technology system.
Collapse
Affiliation(s)
- Jiang Wu
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Kai Kang
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Siqi Liu
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Yaodan Ma
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
6
|
Wang K, Wei Y, Xie X, Li Q, Liu X, Wang L, Li J, Wu J, Fan C. DNA-Programmed Stem Cell Niches via Orthogonal Extracellular Vesicle-Cell Communications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302323. [PMID: 37463346 DOI: 10.1002/adma.202302323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Extracellular vesicles (EVs) are natural carriers for intercellular transfer of bioactive molecules, which are harnessed for wide biomedical applications. However, a facile yet general approach to engineering interspecies EV-cell communications is still lacking. Here, the use of DNA to encode the heterogeneous interfaces of EVs and cells in a manner free of covalent or genetic modifications is reported, which enables orthogonal EV-cell interkingdom interactions in complex environments. Cholesterol-modified DNA strands and tetrahedral DNA frameworks are employed with complementary sequences to serve as artificial ligands and receptors docking on EVs and living cells, respectively, which can mediate specific yet efficient cellular internalization of EVs via Watson-Crick base pairing. It is shown that based on this system, human cells can adopt EVs derived from the mouse, watermelon, and Escherichia coli. By implementing several EV-cell circuits, it shows that this DNA-programmed system allows orthogonal EV-cell communications in complex environments. This study further demonstrates efficient delivery of EVs with bioactive contents derived from feeder cells toward monkey female germline stem cells (FGSCs), which enables self-renewal and stemness maintenance of the FGSCs without feeder cells. This system may provide a universal platform to customize intercellular exchanges of materials and signals across species and kingdoms.
Collapse
Affiliation(s)
- Kaizhe Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of BioMedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Yuhan Wei
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Xie
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
7
|
Joshi A, Singh N. Generation of Patterned Cocultures in 2D and 3D: State of the Art. ACS OMEGA 2023; 8:34249-34261. [PMID: 37780002 PMCID: PMC10536108 DOI: 10.1021/acsomega.3c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Cells inside the body are embedded into a highly structured microenvironment that consists of cells that lie in direct or close contact with other cell types that regulate the overall tissue function. Therefore, coculture models are versatile tools that can generate tissue engineering constructs with improved mimicking of in vivo conditions. While there are many reviews that have focused on pattering a single cell type, very few reviews have been focused on techniques for coculturing multiple cell types on a single substrate with precise control. In this regard, this Review covers various technologies that have been utilized for the development of these patterned coculture models while mentioning the limitations associated with each of them. Further, the application of these models to various tissue engineering applications has been discussed.
Collapse
Affiliation(s)
- Akshay Joshi
- Centre
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
| | - Neetu Singh
- Centre
for Biomedical Engineering, Indian Institute
of Technology Delhi, Hauz Khas, New Delhi, Delhi 110016, India
- Biomedical
Engineering Unit, All India Institute of
Medical Sciences, Ansari
Nagar, New Delhi, Delhi 110029, India
| |
Collapse
|
8
|
Karakocak BB, Keshavan S, Gunasingam G, Angeloni S, Auderset A, Petri-Fink A, Rothen-Rutishauser B. Rethinking of TEER measurement reporting for epithelial cells grown on permeable inserts. Eur J Pharm Sci 2023; 188:106511. [PMID: 37385303 DOI: 10.1016/j.ejps.2023.106511] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Transepithelial electrical resistance (TEER) measures electrical resistance across epithelial tissue barriers involving confluent layer(s) of cells. TEER values act as a prerequisite for determining the barrier integrity of cells, which play a key role in evaluating the transport of drugs, materials or chemicals of interest across an epithelial barrier. The measurements can be performed non-invasively by measuring ohmic resistance across a defined area. Thus, the TEER values are reported in Ω·cm2. In vitro epithelial models are typically assembled on semi-permeable inserts providing two-chamber compartments, and the majority of the studies use inserts with polyethylene terephthalate (PET) membranes. Recently, new inserts with different membrane types and properties have been introduced. However, the TEER values presented so far did not allow a direct comparison. This study presents the characterization of selected epithelial tissues, i.e., lung, retina, and intestine, grown on an ultra-thin ceramic microporous permeable insert (SiMPLI) and PET membranes with different properties, i.e., thickness, material, and pore numbers. We verified the epithelial cell growth on both inserts via phase-contrast and confocal laser scanning microscope imaging. Barrier characteristics were assessed by TEER measurements and also by evaluating the permeability of fluorescein isothiocyanate through cell layers. The findings indicated that background TEER value calculations and the available surface area for cell growth must be thoroughly assessed when new inserts are introduced, as the values cannot be directly compared without re-calculations. Finally, we proposed electrical circuit models highlighting the contributors to TEER recordings on PET and SiMPLI insert membranes. This study paves the way for making the ohmic-based evaluation of epithelial tissues' permeability independent of the material and geometry of the insert membrane used for cell growth.
Collapse
Affiliation(s)
- Bedia Begum Karakocak
- BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Sandeep Keshavan
- BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Gowsinth Gunasingam
- BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Silvia Angeloni
- SiMPLInext SA, Rue Fritz-Oppliger 18, 2504 Biel/Bienne, Switzerland
| | - Adrian Auderset
- Switzerland Innovation Park Biel/Bienne, Aarbergstrasse 46, 2503 Biel/Bienne, Switzerland
| | - Alke Petri-Fink
- BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland; Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| |
Collapse
|
9
|
Zhang XS, Xie G, Ma H, Ding S, Wu YX, Fei Y, Cheng Q, Huang Y, Wang Y. Highly reproducible and cost-effective one-pot organoid differentiation using a novel platform based on PF-127 triggered spheroid assembly. Biofabrication 2023; 15:045014. [PMID: 37552975 DOI: 10.1088/1758-5090/acee21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Organoid technology offers sophisticatedin vitrohuman models for basic research and drug development. However, low batch-to-batch reproducibility and high cost due to laborious procedures and materials prevent organoid culture standardization for automation and high-throughput applications. Here, using a novel platform based on the findings that Pluronic F-127 (PF-127) could trigger highly uniform spheroid assembly through a mechanism different from plate coating, we develop a one-pot organoid differentiation strategy. Using our strategy, we successfully generate cortical, nephron, hepatic, and lung organoids with improved reproducibility compared to previous methods while reducing the original costs by 80%-95%. In addition, we adapt our platform to microfluidic chips allowing automated culture. We showcase that our platform can be applied to tissue-specific screening, such as drug toxicity and transfection reagents testing. Finally, we generateNEAT1knockout tissue-specific organoids and showNEAT1modulates multiple signaling pathways fine-tuning the differentiation of nephron and hepatic organoids and suppresses immune responses in cortical organoids. In summary, our strategy provides a powerful platform for advancing organoid research and studying human development and diseases.
Collapse
Affiliation(s)
- Xiao-Shan Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Gang Xie
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Honghao Ma
- Peking-Tsinghua Center for Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, People's Republic of China
| | - Shuangjin Ding
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Yi-Xia Wu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Yuan Fei
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Yanyi Huang
- Peking-Tsinghua Center for Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, People's Republic of China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Park DH, He MT, Cho EJ, Morten K, Go JS. Development of a novel microfluidic perfusion 3D cell culture system for improved neuronal cell differentiation. Biomed Microdevices 2023; 25:22. [PMID: 37310518 DOI: 10.1007/s10544-023-00660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2023] [Indexed: 06/14/2023]
Abstract
Three-dimensional (3D) cell cultures have recently gained popularity in the biomedical sciences because of their similarity to the in vivo environment. SH-SY5Y cells, which are neuronal cells and are commonly used to investigate neurodegenerative diseases, have particularly been reported to be differentiated as neuron-like cells expressing neuron-specific markers of mature neurons in static 3D culture environments when compared to static 2D environments, and those in perfusion environments have not yet been investigated. Microfluidic technology has provided perfusion environment which has more similarity to in vivo through mimicking vascular transportation of nutrients, but air bubbles entering into microchannels drastically increase instability of the flow. Furthermore, static incubation commonly used is incompatible with perfusion setup due to its air conditions, which is a critical huddle to the biologists. In the present study, we developed a novel microfluidic perfusion 3D cell culture system that overcomes the disturbance from air bubbles and intuitionally sets the incubation with the perfusion 3D culture. The system is capable of generating concentration gradients between 5 and 95% and air bubble traps were included to increase stability during incubation by collecting air bubbles. To evaluate the perfusion 3D culture, SH-SY5Y differentiation was examined in static 2D, static 3D, and perfusion 3D cultures. Our system supported significantly increased clustering of SH-SY5Y compared to static 2D and 3D methods, as well as increasing neurite growth rate. This novel system therefore supports differentiation of SH-SY5Y and can be used to more accurately model the in vivo environment during cell culture experiments.
Collapse
Affiliation(s)
- Dong Hyeok Park
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Mei Tong He
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan, Republic of Korea
| | - Karl Morten
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Jeung Sang Go
- School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| |
Collapse
|
11
|
Lumbrokinase, a Fibrinolytic Enzyme, Prevents Intra-Abdominal Adhesion by Inhibiting the Migrative and Adhesive Activities of Fibroblast via Attenuation of the AP-1/ICAM-1 Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4050730. [PMID: 36685669 PMCID: PMC9851794 DOI: 10.1155/2023/4050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Intra-abdominal adhesion is a complication following abdominal surgery caused by the suppression of fibrinolytic activity and aggravated fibroblast invasion of the injured area, which may lead to chronic illnesses such as chronic pain, intestinal obstruction, and female infertility. This study hypothesized that lumbrokinase, a fibrinolytic enzyme extracted from the earthworm, supports the wound healing process. Therefore, we assessed the effect of lumbrokinase on intra-abdominal adhesion. Lumbrokinase treatment significantly decreased the severity and the area of intra-abdominal adhesion in vivo in a dose-dependent manner compared with the controls (untreated and hyaluronate-treated). Lumbrokinase-associated adverse effects were not observed. Immunohistochemical analysis of adhesion tissues revealed a loosened adhesive band between tissues, coupled with significantly decreased peritoneal thickening in the lumbrokinase-treated group versus the control group. Three-dimensional spheroid, MTT, and scratch wound migration assays using the IMR-90 human fibroblast cell line demonstrated that lumbrokinase significantly attenuated the migration and adhesive activity of fibroblasts without compromising cell proliferation. The luciferase assay and western blot analysis showed that lumbrokinase inhibited the AP-1/ICAM-1 cell adhesion signaling pathway. Therefore, lumbrokinase decreases intra-abdominal adhesion and peritoneal thickening by augmenting fibrinolytic action and inhibiting fibroblast migration and adhesive activity via attenuation of the AP-1/ICAM-1 signaling pathway. Lumbrokinase is thus a promising agent to prevent intra-abdominal adhesion.
Collapse
|
12
|
Guo W, Chen Z, Feng Z, Li H, Zhang M, Zhang H, Cui X. Fabrication of Concave Microwells and Their Applications in Micro-Tissue Engineering: A Review. MICROMACHINES 2022; 13:mi13091555. [PMID: 36144178 PMCID: PMC9505614 DOI: 10.3390/mi13091555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 05/27/2023]
Abstract
At present, there is an increasing need to mimic the in vivo micro-environment in the culture of cells and tissues in micro-tissue engineering. Concave microwells are becoming increasingly popular since they can provide a micro-environment that is closer to the in vivo environment compared to traditional microwells, which can facilitate the culture of cells and tissues. Here, we will summarize the fabrication methods of concave microwells, as well as their applications in micro-tissue engineering. The fabrication methods of concave microwells include traditional methods, such as lithography and etching, thermal reflow of photoresist, laser ablation, precision-computerized numerical control (CNC) milling, and emerging technologies, such as surface tension methods, the deformation of soft membranes, 3D printing, the molding of microbeads, air bubbles, and frozen droplets. The fabrication of concave microwells is transferring from professional microfabrication labs to common biochemical labs to facilitate their applications and provide convenience for users. Concave microwells have mostly been used in organ-on-a-chip models, including the formation and culture of 3D cell aggregates (spheroids, organoids, and embryoids). Researchers have also used microwells to study the influence of substrate topology on cellular behaviors. We will briefly review their applications in different aspects of micro-tissue engineering and discuss the further applications of concave microwells. We believe that building multiorgan-on-a-chip by 3D cell aggregates of different cell lines will be a popular application of concave microwells, while integrating physiologically relevant molecular analyses with the 3D culture platform will be another popular application in the near future. Furthermore, 3D cell aggregates from these biosystems will find more applications in drug screening and xenogeneic implantation.
Collapse
Affiliation(s)
- Weijin Guo
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Zejingqiu Chen
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zitao Feng
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Haonan Li
- Department of Electrical Engineering, Shantou University, Shantou 515063, China
| | - Muyang Zhang
- Department of Electrical Engineering, Shantou University, Shantou 515063, China
| | - Huiru Zhang
- Guangdong Foshan Lianchuang Graduate School of Engineering, Foshan 528311, China
| | - Xin Cui
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Nguyen QTT, Park HS, Lee TJ, Choi KM, Park JY, Kim D, Kim JH, Park J, Lee EJ. DKK3, Downregulated in Invasive Epithelial Ovarian Cancer, Is Associated with Chemoresistance and Enhanced Paclitaxel Susceptibility via Inhibition of the β-Catenin-P-Glycoprotein Signaling Pathway. Cancers (Basel) 2022; 14:cancers14040924. [PMID: 35205672 PMCID: PMC8870560 DOI: 10.3390/cancers14040924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Dickkopf-3 (DKK3) is considered a tumor suppressor as it possesses anti-tumoral properties and is frequently downregulated in various cancers. However, the role of DKK3 in ovarian cancer is not known. In this study, we showed that DKK3 loss occurred in 56.1% of patients with ovarian cancer and that it was significantly associated with poor survival and chemoresistance. Secreted DKK3 possessed anti-tumoral properties and enhanced paclitaxel susceptibility by inhibiting the β-catenin-P-glycoprotein signaling pathway in ovarian cancer. This study revealed promising therapeutic effects of secreted DKK3, which targets paclitaxel-resistant ovarian cancer. Abstract Dickkopf-3 (DKK3), a tumor suppressor, is frequently downregulated in various cancers. However, the role of DKK3 in ovarian cancer has not been evaluated. This study aimed to assess aberrant DKK3 expression and its role in epithelial ovarian carcinoma. DKK3 expression was assessed using immunohistochemistry with tissue blocks from 82 patients with invasive carcinoma, and 15 normal, 19 benign, and 10 borderline tumors as controls. Survival data were analyzed using Kaplan–Meier and Cox regression analysis. Paclitaxel-resistant cells were established using TOV-21G and OV-90 cell lines. Protein expression was assessed using Western blotting and immunofluorescence analysis. Cell viability was assessed using the MT assay and 3D-spheroid assay. Cell migration was determined using a migration assay. DKK3 was significantly downregulated in invasive carcinoma compared to that in normal, benign, and borderline tumors. DKK3 loss occurred in 56.1% invasive carcinomas and was significantly associated with disease-free survival and chemoresistance in serous adenocarcinoma. DKK3 was lost in paclitaxel-resistant cells, while β-catenin and P-glycoprotein were upregulated. Exogenous secreted DKK3, incorporated by cells, enhanced anti-tumoral effect and paclitaxel susceptibility in paclitaxel-resistant cells, and reduced the levels of active β-catenin and its downstream P-glycoprotein, suggesting that DKK3 can be used as a therapeutic for targeting paclitaxel-resistant cancer.
Collapse
Affiliation(s)
- Que Thanh Thanh Nguyen
- Department of Obstetrics and Gynecology, School of Medicine, Chung-Ang University, Seoul 06974, Korea; (Q.T.T.N.); (K.-M.C.)
| | - Hwang Shin Park
- Department of Obstetrics and Gynecology, Chung-Ang University Health Care System, Hyundae Hospital, Namyangju 12013, Korea;
| | - Tae Jin Lee
- Department of Pathology, School of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Kyung-Mi Choi
- Department of Obstetrics and Gynecology, School of Medicine, Chung-Ang University, Seoul 06974, Korea; (Q.T.T.N.); (K.-M.C.)
| | - Joong Yull Park
- Department of Mechanical Engineering, Chung-Ang University, Seoul 06974, Korea; (J.Y.P.); (D.K.)
| | - Daehan Kim
- Department of Mechanical Engineering, Chung-Ang University, Seoul 06974, Korea; (J.Y.P.); (D.K.)
| | - Jae Hyung Kim
- Department of Radiology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul 01757, Korea;
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Korea;
| | - Eun-Ju Lee
- Department of Obstetrics and Gynecology, School of Medicine, Chung-Ang University, Seoul 06974, Korea; (Q.T.T.N.); (K.-M.C.)
- Correspondence: ; Tel.: +82-2-6299-3173; Fax: +82-2-824-7869
| |
Collapse
|
14
|
Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021; 132:52-82. [PMID: 33716174 PMCID: PMC8433272 DOI: 10.1016/j.actbio.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
There is often a tradeoff between in vitro disease modeling platforms that capture pathophysiologic complexity and those that are amenable to high-throughput fabrication and analysis. However, this divide is closing through the application of a handful of fabrication approaches-parallel fabrication, automation, and flow-driven assembly-to design sophisticated cellular and biomaterial systems. The purpose of this review is to highlight methods for the fabrication of high-throughput biomaterial-based platforms and showcase examples that demonstrate their utility over a range of throughput and complexity. We conclude with a discussion of future considerations for the continued development of higher-throughput in vitro platforms that capture the appropriate level of biological complexity for the desired application. STATEMENT OF SIGNIFICANCE: There is a pressing need for new biomedical tools to study and understand disease. These platforms should mimic the complex properties of the body while also permitting investigation of many combinations of cells, extracellular cues, and/or therapeutics in high-throughput. This review summarizes emerging strategies to fabricate biomimetic disease models that bridge the gap between complex tissue-mimicking microenvironments and high-throughput screens for personalized medicine.
Collapse
Affiliation(s)
- Mackenzie L Grubb
- Department of Biomedical Engineering, University of Virginia, Unites States
| | - Steven R Caliari
- Department of Biomedical Engineering, University of Virginia, Unites States; Department of Chemical Engineering, University of Virginia, Unites States.
| |
Collapse
|
15
|
Yao J, Li G, Jiao Y, Zheng Y, Liu Y, Wang G, Zhou L, Zhang H, Zhang X, Shuai J, Fan Q, Ye F, Lou S, Chen G, Song K, Liao Y, Liu L. Biological gel-based microchamber array for tumor cell proliferation and migration studies in well-controlled biochemical gradients. LAB ON A CHIP 2021; 21:3004-3018. [PMID: 34159958 DOI: 10.1039/d0lc00951b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Breast cancer metastasis is a complex process controlled by multiple factors, including various cell-cell interactions, cell-environment coupling, and oxygen, nutrient and drug gradients that are intimately related to the heterogeneous breast tissue structure. In this study, we constructed a high-throughput in vitro biochip system containing an array of 642 microchambers arranged in a checkerboard configuration, with each chamber embedded in a composite extracellular matrix (ECM) composed of engineered collagen and Matrigel to mimic local heterogeneous environment in vivo. In addition, a controllable complex tetragonal chemical concentration profile can be achieved by imposing chemical compounds at the four boundaries of the chip, leading to distinct local nutrient and/or drug gradients in the individual microchambers. Here, the microchamber array with composite ECM (MACECM) device aims to simulate multiple tumor cell niches composed of both breast epithelial cells (MCF-10A-GFP) and metastatic breast cancer cells (MDA-MB-231-RFP), which enables systematic studies of cell responses to a variety of biochemical conditions. The results obtained from the MACECM studies indicate that discoidin domain receptor 1 (DDR1) inhibitor 7rh and matrix metalloproteinase inhibitor batimastat, in association with epidermal growth factor (EGF) had no significant effects on the growth of MCF-10A-GFP cells, but had significant effects on DDR1 expression and the related migratory behavior of MDA-MB-231-RFP cells. The MACECM design not only enables the construction of a more realistic in vitro model for investigating cancer cell migration mechanisms but also has considerable potential for further development as a platform for next-generation high-throughput and therapeutic screening (e.g., anti-cancer drug evaluation) and personalized medicine.
Collapse
Affiliation(s)
- Jingru Yao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Guoqiang Li
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85281, USA
| | - Yu Zheng
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85281, USA
| | - Yanping Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Gao Wang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Lianjie Zhou
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Hongfei Zhang
- Hygeia International Cancer Hospital, Chongqing 401331, China
| | - Xianquan Zhang
- Hygeia International Cancer Hospital, Chongqing 401331, China
| | - Jianwei Shuai
- Department of Physics, Xiamen University, Xiamen 361005, China and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Silong Lou
- Chongqing University Cancer Hospital, Chongqing 400044, China
| | - Guo Chen
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| | - Kena Song
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China. and College of Medical Technology and Engineering, Henan University of Science and Technology, Henan 471023, China.
| | - Yong Liao
- Institute for Viral Hepatitis, Department of Infectious Diseases, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400331, China.
| | - Liyu Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
16
|
Kim D, Lee SJ, Youn J, Hong H, Eom S, Kim DS. A deep and permeable nanofibrous oval-shaped microwell array for the stable formation of viable and functional spheroids. Biofabrication 2021; 13. [PMID: 34030141 DOI: 10.1088/1758-5090/ac044c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Despite the potential of a nanofibrous (NF) microwell array as a permeable microwell array to improve the viability and functions of spheroids, thanks to the superior permeability to both gases and solutes, there have still been difficulties regarding the stable formation of spheroids in the NF microwell array due to the low aspect ratio (AR) and the large interspacing between microwells. This study proposes a nanofibrous oval-shaped microwell array, named the NOVA microwell array, with both a high AR and a high well density, enabling us to not only collect cells in the microwell with a high cell seeding efficiency, but also to generate multiple viable and functional spheroids in a uniform and stable manner. To realize a deep NOVA microwell array with a high aspect ratio (AR = 0.9) and a high well density (494 wells cm-2), we developed a matched-mold thermoforming process for the fabrication of both size- and AR-controllable NOVA microwell arrays with various interspacing between microwells while maintaining the porous nature of the NF membrane. The human hepatocellular carcinoma (HepG2) cell spheroids cultured on the deep NOVA microwell array not only had uniform size and shape, with a spheroid circularity of 0.80 ± 0.03 at a cell seeding efficiency of 94.29 ± 9.55%, but also exhibited enhanced viability with a small fraction of dead cells and promoted functionality with increased albumin secretion, compared with the conventional impermeable microwell array. The superior characteristics of the deep NOVA microwell array, i.e. a high AR, a high well density, and a high permeability, pave the way to the production of various viable and functional spheroids and even organoids in a scalable manner.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seong Jin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyeonjun Hong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seongsu Eom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
17
|
Kim D, Kim K, Park JY. Novel microwell with a roof capable of buoyant spheroid culture. LAB ON A CHIP 2021; 21:1974-1986. [PMID: 34008588 DOI: 10.1039/d0lc01295e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microwells are used in studies to mimic the in vivo environment through an in vitro environment by generating three-dimensional cell spheroids. These microwells have been fabricated in various shapes using different methods according to the research purpose. However, because all microwells up to now have an open top, it has been difficult to culture spheroids of floating cells due to their low density, such as human adipose-derived stem cells (hASCs) that differentiate into adipocytes. Therefore, the labor-intensive hanging droplet method has been mainly used for the study of adipocytes. Here, we introduce a sigma-well, which is a microwell in the shape of the Greek letter sigma (σ) with a roof. Because of its unique shape, the sigma-well is advantageous for the culture of floating cells by reducing cell loss and external interference. The sigma-well was fabricated using the principle of surface tension of polydimethylsiloxane as well as air trapping and thermal expansion. Unlike conventional microwells, because the center of the bottom surface and the inlet of the sigma-well are not located on the same line and have a difference of approximately 218 μm, the spheroids are cultured more stably and may not escape the cavity. In this study, hASC and adipocyte spheroids differentiated using these sigma-wells were successfully cultured. In addition, through cytokine diffusion simulation, it was confirmed that the diffusion and mass transfer in the sigma-well was lower than that in the conventional microwell. It is expected that the morphological features of the sigma-well, which cannot be easily obtained by other methods, can be beneficial for the study of buoyant cell types such as adipocytes.
Collapse
Affiliation(s)
- Daehan Kim
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| | - Kideok Kim
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea. and Cell-Smith Inc., 195 Ogeum-ro, Songpa-gu, Seoul 05643, Republic of Korea
| | - Joong Yull Park
- School of Mechanical Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea. and Department of Intelligent Energy and Industry, Graduate School, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
18
|
Hong J, Shin Y, Lee J, Cha C. Programmable multilayer printing of a mechanically-tunable 3D hydrogel co-culture system for high-throughput investigation of complex cellular behavior. LAB ON A CHIP 2021; 21:710-718. [PMID: 33459335 DOI: 10.1039/d0lc01230k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogels are widely used as a 3D cell culture platform, as they can be tailored to provide suitable microenvironments to induce cellular phenotypes with physiological significance. Hydrogels are especially deemed attractive as a co-culture platform, in which two or more different types of cells are cultured together in close proximity, since the spatial distribution of different cell types can be rendered possible by advanced microfabrication schemes. Herein, programmable multilayer photolithography is employed to develop a 3D hydrogel-based co-culture system in an efficient and scalable manner, which consists of an inner microgel array containing one cell type covered by an outer hydrogel overlay containing another cell type. In particular, the mechanical properties of microgel array and hydrogel overlay are independently controlled in a wide range, with elastic moduli ranging from 1.7 to 31.6 kPa, allowing the high-throughput investigation of both individual hydrogel mechanics and mechanical gradients generated at their interface. Utilizing this system, phenotypical changes (i.e. proliferation, spheroid formation and Mφ polarization) of macrophages encapsulated in microgel array, in response to complex mechanical microenvironment and co-cultured fibroblasts, are comprehensively explored.
Collapse
Affiliation(s)
- Jisu Hong
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea. and Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Yoonkyung Shin
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
| | - Jiseok Lee
- Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea and Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea. and Center for Multidimensional Programmable Matter, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|