1
|
Cheung BCH, Abbed RJ, Wu M, Leggett SE. 3D Traction Force Microscopy in Biological Gels: From Single Cells to Multicellular Spheroids. Annu Rev Biomed Eng 2024; 26:93-118. [PMID: 38316064 DOI: 10.1146/annurev-bioeng-103122-031130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cell traction force plays a critical role in directing cellular functions, such as proliferation, migration, and differentiation. Current understanding of cell traction force is largely derived from 2D measurements where cells are plated on 2D substrates. However, 2D measurements do not recapitulate a vital aspect of living systems; that is, cells actively remodel their surrounding extracellular matrix (ECM), and the remodeled ECM, in return, can have a profound impact on cell phenotype and traction force generation. This reciprocal adaptivity of living systems is encoded in the material properties of biological gels. In this review, we summarize recent progress in measuring cell traction force for cells embedded within 3D biological gels, with an emphasis on cell-ECM cross talk. We also provide perspectives on tools and techniques that could be adapted to measure cell traction force in complex biochemical and biophysical environments.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Rana J Abbed
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan E Leggett
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA;
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Cheng Y, Pang SW. Biointerfaces with ultrathin patterns for directional control of cell migration. J Nanobiotechnology 2024; 22:158. [PMID: 38589901 PMCID: PMC11000378 DOI: 10.1186/s12951-024-02418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
In the context of wound healing and tissue regeneration, precise control of cell migration direction is deemed crucial. To address this challenge, polydimethylsiloxane (PDMS) platforms with patterned 10 nm thick TiOx in arrowhead shape were designed and fabricated. Remarkably, without tall sidewall constraints, MC3T3-E1 cells seeded on these platforms were constrained to migrate along the tips of the arrowheads, as the cells were guided by the asymmetrical arrowhead tips which provided large contact areas. To the best of our knowledge, this is the first study demonstrating the use of thin TiOx arrowhead pattern in combination with a cell-repellent PDMS surface to provide guided cell migration unidirectionally without tall sidewall constraints. Additionally, high-resolution fluorescence imaging revealed that the asymmetrical distribution of focal adhesions, triggered by the patterned TiOx arrowheads with arm lengths of 10, 20, and 35 μm, promoted cell adhesion and protrusion along the arrowhead tip direction, resulting in unidirectional cell migration. These findings have important implications for the design of biointerfaces with ultrathin patterns to precisely control cell migration. Furthermore, microelectrodes were integrated with the patterned TiOx arrowheads to enable dynamic monitoring of cell migration using impedance measurement. This microfluidic device integrated with thin layer of guiding pattern and microelectrodes allows simultaneous control of directional cell migration and characterization of the cell movement of individual MC3T3-E1 cells, offering great potential for the development of biosensors for single-cell monitoring.
Collapse
Grants
- CityU11207620, CityU11207821, CityU11205423 Research Grants Council of the Hong Kong Special Administrative Region, China
- CityU11207620, CityU11207821, CityU11205423 Research Grants Council of the Hong Kong Special Administrative Region, China
- 9360148, 9380062 Center for Biosystems, Neuroscience, and Nanotechnology (CBNN) of City University of Hong Kong
- 9360148, 9380062 Center for Biosystems, Neuroscience, and Nanotechnology (CBNN) of City University of Hong Kong
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Stella W Pang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Huang JY, Wong TY, Tu TY, Tang MJ, Lin HH, Hsueh YY. Assessment of Tilapia Skin Collagen for Biomedical Research Applications in Comparison with Mammalian Collagen. Molecules 2024; 29:402. [PMID: 38257315 PMCID: PMC10819363 DOI: 10.3390/molecules29020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Collagen is an important material for biomedical research, but using mammalian tissue-derived collagen carries the risk of zoonotic disease transmission. Marine organisms, such as farmed tilapia, have emerged as a safe alternative source of collagen for biomedical research. However, the tilapia collagen products for biomedical research are rare, and their biological functions remain largely unexamined. In this study, we characterized a commercial tilapia skin collagen using SDS-PAGE and fibril formation assays and evaluated its effects on skin fibroblast adhesion, proliferation, and migration, comparing it with commercial collagen from rat tails, porcine skin, and bovine skin. The results showed that tilapia skin collagen is a type I collagen, similar to rat tail collagen, and has a faster fibril formation rate and better-promoting effects on cell migration than porcine and bovine skin collagen. We also confirmed its application in a 3D culture for kidney cells' spherical cyst formation, fibroblast-induced gel contraction, and tumor spheroid interfacial invasion. Furthermore, we demonstrated that the freeze-dried tilapia skin collagen scaffold improved wound closure in a mouse excisional wound model, similar to commercial porcine or bovine collagen wound dressings. In conclusion, tilapia skin collagen is an ideal biomaterial for biomedical research.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
| | - Tzyy-Yue Wong
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
| | - Ting-Yuan Tu
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan City 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | - Hsi-Hui Lin
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | - Yuan-Yu Hsueh
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan City 701, Taiwan; (J.-Y.H.); (T.-Y.W.); (T.-Y.T.); (M.-J.T.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| |
Collapse
|
4
|
Ngo TKN, Yang SJ, Mao BH, Nguyen TKM, Ng QD, Kuo YL, Tsai JH, Saw SN, Tu TY. A deep learning-based pipeline for analyzing the influences of interfacial mechanochemical microenvironments on spheroid invasion using differential interference contrast microscopic images. Mater Today Bio 2023; 23:100820. [PMID: 37810748 PMCID: PMC10558776 DOI: 10.1016/j.mtbio.2023.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/16/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. During this process, cancer cells are likely to navigate discrete tissue-tissue interfaces, enabling them to infiltrate and spread throughout the body. Three-dimensional (3D) spheroid modeling is receiving more attention due to its strengths in studying the invasive behavior of metastatic cancer cells. While microscopy is a conventional approach for investigating 3D invasion, post-invasion image analysis, which is a time-consuming process, remains a significant challenge for researchers. In this study, we presented an image processing pipeline that utilized a deep learning (DL) solution, with an encoder-decoder architecture, to assess and characterize the invasion dynamics of tumor spheroids. The developed models, equipped with feature extraction and measurement capabilities, could be successfully utilized for the automated segmentation of the invasive protrusions as well as the core region of spheroids situated within interfacial microenvironments with distinct mechanochemical factors. Our findings suggest that a combination of the spheroid culture and DL-based image analysis enable identification of time-lapse migratory patterns for tumor spheroids above matrix-substrate interfaces, thus paving the foundation for delineating the mechanism of local invasion during cancer metastasis.
Collapse
Affiliation(s)
- Thi Kim Ngan Ngo
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Sze Jue Yang
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Bin-Hsu Mao
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Thi Kim Mai Nguyen
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Qi Ding Ng
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yao-Lung Kuo
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Department of Surgery, National Cheng Kung University Hospital, Tainan, 70101, Taiwan
| | - Jui-Hung Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, 70101, Taiwan
| | - Shier Nee Saw
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
5
|
Zhang XS, Xie G, Ma H, Ding S, Wu YX, Fei Y, Cheng Q, Huang Y, Wang Y. Highly reproducible and cost-effective one-pot organoid differentiation using a novel platform based on PF-127 triggered spheroid assembly. Biofabrication 2023; 15:045014. [PMID: 37552975 DOI: 10.1088/1758-5090/acee21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Organoid technology offers sophisticatedin vitrohuman models for basic research and drug development. However, low batch-to-batch reproducibility and high cost due to laborious procedures and materials prevent organoid culture standardization for automation and high-throughput applications. Here, using a novel platform based on the findings that Pluronic F-127 (PF-127) could trigger highly uniform spheroid assembly through a mechanism different from plate coating, we develop a one-pot organoid differentiation strategy. Using our strategy, we successfully generate cortical, nephron, hepatic, and lung organoids with improved reproducibility compared to previous methods while reducing the original costs by 80%-95%. In addition, we adapt our platform to microfluidic chips allowing automated culture. We showcase that our platform can be applied to tissue-specific screening, such as drug toxicity and transfection reagents testing. Finally, we generateNEAT1knockout tissue-specific organoids and showNEAT1modulates multiple signaling pathways fine-tuning the differentiation of nephron and hepatic organoids and suppresses immune responses in cortical organoids. In summary, our strategy provides a powerful platform for advancing organoid research and studying human development and diseases.
Collapse
Affiliation(s)
- Xiao-Shan Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Gang Xie
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Honghao Ma
- Peking-Tsinghua Center for Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, People's Republic of China
| | - Shuangjin Ding
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Yi-Xia Wu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Yuan Fei
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Yanyi Huang
- Peking-Tsinghua Center for Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, People's Republic of China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Guidotti G, Soccio M, Argentati C, Luzi F, Aluigi A, Torre L, Armentano I, Emiliani C, Morena F, Martino S, Lotti N. Novel Nanostructured Scaffolds of Poly(butylene trans-1,4-cyclohexanedicarboxylate)-Based Copolymers with Tailored Hydrophilicity and Stiffness: Implication for Tissue Engineering Modeling. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2330. [PMID: 37630915 PMCID: PMC10459479 DOI: 10.3390/nano13162330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Here, we present novel biocompatible poly(butylene trans-1,4-cyclohexanedicarboxylate) (PBCE)-based random copolymer nanostructured scaffolds with tailored stiffness and hydrophilicity. The introduction of a butylene diglycolate (BDG) co-unit, containing ether oxygen atoms, along the PBCE chain remarkably improved the hydrophilicity and chain flexibility. The copolymer containing 50 mol% BDG co-units (BDG50) and the parent homopolymer (PBCE) were synthesized and processed as electrospun scaffolds and compression-molded films, added for the sake of comparison. We performed thermal, wettability, and stress-strain measures on the PBCE-derived scaffolds and films. We also conducted biocompatibility studies by evaluating the adhesion and proliferation of multipotent mesenchymal/stromal cells (hBM-MSCs) on each polymeric film and scaffold. We demonstrated that solid-state properties can be tailored by altering sample morphology besides chemical structure. Thus, scaffolds were characterized by a higher hydrophobicity and a lower elastic modulus than the corresponding films. The three-dimensional nanostructure conferred a higher adsorption protein capability to the scaffolds compared to their film counterparts. Finally, the PBCE and BDG50 scaffolds were suitable for the long-term culture of hBM-MSCs. Collectively, the PBCE homopolymer and copolymer are good candidates for tissue engineering applications.
Collapse
Affiliation(s)
- Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (C.A.); (C.E.); (F.M.)
| | - Francesca Luzi
- Department of Science and Engineering of Matter, Environment and Urban Planning (SIMAU), Università Politecnica Delle Marche, UdR INSTM, 60121 Ancona, Italy;
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, Italy;
| | - Luigi Torre
- Department of Civil and Environmental Engineering, University of Perugia, UdR INSTM, 05100 Terni, Italy;
| | - Ilaria Armentano
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, UdR INSTM, 01100 Viterbo, Italy;
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (C.A.); (C.E.); (F.M.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (C.A.); (C.E.); (F.M.)
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (C.A.); (C.E.); (F.M.)
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
| |
Collapse
|
7
|
Argentati C, Morena F, Guidotti G, Soccio M, Lotti N, Martino S. Tight Regulation of Mechanotransducer Proteins Distinguishes the Response of Adult Multipotent Mesenchymal Cells on PBCE-Derivative Polymer Films with Different Hydrophilicity and Stiffness. Cells 2023; 12:1746. [PMID: 37443780 PMCID: PMC10341130 DOI: 10.3390/cells12131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Mechanotransduction is a molecular process by which cells translate physical stimuli exerted by the external environment into biochemical pathways to orchestrate the cellular shape and function. Even with the advancements in the field, the molecular events leading to the signal cascade are still unclear. The current biotechnology of tissue engineering offers the opportunity to study in vitro the effect of the physical stimuli exerted by biomaterial on stem cells and the mechanotransduction pathway involved in the process. Here, we cultured multipotent human mesenchymal/stromal cells (hMSCs) isolated from bone marrow (hBM-MSCs) and adipose tissue (hASCs) on films of poly(butylene 1,4-cyclohexane dicarboxylate) (PBCE) and a PBCE-based copolymer containing 50 mol% of butylene diglycolate co-units (BDG50), to intentionally tune the surface hydrophilicity and the stiffness (PBCE = 560 Mpa; BDG50 = 94 MPa). We demonstrated the activated distinctive mechanotransduction pathways, resulting in the acquisition of an elongated shape in hBM-MSCs on the BDG50 film and in maintaining the canonical morphology on the PBCE film. Notably, hASCs acquired a new, elongated morphology on both the PBCE and BDG50 films. We found that these events were mainly due to the differences in the expression of Cofilin1, Vimentin, Filamin A, and Talin, which established highly sensitive machinery by which, rather than hASCs, hBM-MSCs distinguished PBCE from BDG50 films.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; (C.A.); (F.M.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; (C.A.); (F.M.)
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40136 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, 40131 Bologna, Italy; (G.G.); (M.S.)
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40136 Bologna, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy; (C.A.); (F.M.)
- CEMIN (Centro di Eccellenza Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|