1
|
Ratanpara A, Kim M, Kim YJ, Hidrovo CH. Spectral Characteristics of Water-Soluble Rhodamine Derivatives for Laser-Induced Fluorescence. J Fluoresc 2024:10.1007/s10895-024-03819-1. [PMID: 38954086 DOI: 10.1007/s10895-024-03819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
We present a comprehensive fluorescence characterization of seven water-soluble rhodamine derivatives for applications in laser-induced fluorescence (LIF) techniques. Absorption and emission spectra for these dyes are presented over the visible spectrum of wavelengths (400 to 700 nm). Their fluorescence properties were also investigated as a function of temperature for LIF thermometry applications. Rhodamine 110 depicted the least fluorescence emission sensitivity to temperature at -0.11%/°C, while rhodamine B depicted the most with a -1.55%/°C. We found that the absorption spectra of these molecules are independent of temperature, supporting the notion that the temperature sensitivity of their emission only comes from changes in quantum yield with temperature. Conversely, these rhodamine fluorophores showed no change in emission intensities with pH variations and are, therefore, not suitable tracers for pH measurements. Similarly, fluorescent lifetime, which is also a property sensitive to local environmental changes in temperature, pH, and ion concentration, measurements were conducted for these fluorophores. It was found that rhodamine B and kiton red 620 have shorter fluorescence timescales compared to those of the other five rhodamine dyes, making them least suitable for applications where temporal changes in emission are monitored. Lastly, we conducted experiments to assess the physicochemical absorption characteristics of these dyes' molecules into polydimethylsiloxane (PDMS), the most common material for microfluidic devices. Rhodamine B showed the highest diffusion into PDMS substrates as compared to the other derivative dyes.
Collapse
Affiliation(s)
- Abhishek Ratanpara
- Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Myeongsub Kim
- Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
| | - Yeo Jun Kim
- Multiscale Thermal Fluids Laboratory, Mechanical Engineering Department, The University of Texas at Austin, 204 E. Dean Keeton, Austin, TX, 78712, USA
| | - Carlos H Hidrovo
- Multiscale Thermal Fluids Laboratory, Mechanical and Industrial Engineering Department, Northeastern University, 360 Huntington Ave, Boston, MA, 02114, USA
| |
Collapse
|
2
|
Lee J, Ingle A, Chacko JV, Eliceiri KW, Gupta M. CASPI: collaborative photon processing for active single-photon imaging. Nat Commun 2023; 14:3158. [PMID: 37258509 DOI: 10.1038/s41467-023-38893-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
Image sensors capable of capturing individual photons have made tremendous progress in recent years. However, this technology faces a major limitation. Because they capture scene information at the individual photon level, the raw data is sparse and noisy. Here we propose CASPI: Collaborative Photon Processing for Active Single-Photon Imaging, a technology-agnostic, application-agnostic, and training-free photon processing pipeline for emerging high-resolution single-photon cameras. By collaboratively exploiting both local and non-local correlations in the spatio-temporal photon data cubes, CASPI estimates scene properties reliably even under very challenging lighting conditions. We demonstrate the versatility of CASPI with two applications: LiDAR imaging over a wide range of photon flux levels, from a sub-photon to high ambient regimes, and live-cell autofluorescence FLIM in low photon count regimes. We envision CASPI as a basic building block of general-purpose photon processing units that will be implemented on-chip in future single-photon cameras.
Collapse
Affiliation(s)
- Jongho Lee
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| | - Atul Ingle
- Department of Computer Science, Portland State University, Portland, OR, USA
| | - Jenu V Chacko
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, Madison, WI, USA
| | - Mohit Gupta
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, Madison, WI, USA
| |
Collapse
|
3
|
Ceriotti G, Borisov SM, Berg JS, de Anna P. Morphology and Size of Bacterial Colonies Control Anoxic Microenvironment Formation in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17471-17480. [PMID: 36414252 DOI: 10.1021/acs.est.2c05842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial metabolisms using electron acceptors other than oxygen (e.g., methanogenesis and fermentation) largely contribute to element cycling and natural contaminant attenuation/mobilization, even in well-oxygenated porous environments, such as shallow aquifers. This paradox is commonly explained by the occurrence of small-scale anoxic microenvironments generated by the coupling of bacterial respiration and dissolved oxygen (O2) transport by pore water. Such microenvironments allow facultative anaerobic bacteria to proliferate in oxic environments. Microenvironment dynamics are still poorly understood due to the challenge of directly observing biomass and O2 distributions at the microscale within an opaque sediment matrix. To overcome these limitations, we integrated a microfluidic device with transparent O2 planar optical sensors to measure the temporal behavior of dissolved O2 concentrations and biomass distributions with time-lapse videomicroscopy. Our results reveal that bacterial colony morphology, which is highly variable in flowing porous systems, controls the formation of anoxic microenvironments. We rationalize our observations through a colony-scale Damköhler number comparing dissolved O2 diffusion and a bacterial O2 uptake rate. Our Damköhler number enables us to predict the pore space fraction occupied by anoxic microenvironments in our system for a given bacterial organization.
Collapse
Affiliation(s)
- Giulia Ceriotti
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne1015, Switzerland
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz8010, Austria
| | - Jasmine S Berg
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne1015, Switzerland
| | - Pietro de Anna
- Institute of Earth Sciences, University of Lausanne, Lausanne1015, Switzerland
| |
Collapse
|
4
|
Viebrock K, Rabl D, Meinen S, Wunder P, Meyer JA, Frey LJ, Rasch D, Dietzel A, Mayr T, Krull R. Microsensor in Microbioreactors: Full Bioprocess Characterization in a Novel Capillary-Wave Microbioreactor. BIOSENSORS 2022; 12:bios12070512. [PMID: 35884315 PMCID: PMC9312480 DOI: 10.3390/bios12070512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Microbioreactors (MBRs) with a volume below 1 mL are promising alternatives to established cultivation platforms such as shake flasks, lab-scale bioreactors and microtiter plates. Their main advantages are simple automatization and parallelization and the saving of expensive media components and test substances. These advantages are particularly pronounced in small-scale MBRs with a volume below 10 µL. However, most described small-scale MBRs are lacking in process information from integrated sensors due to limited space and sensor technology. Therefore, a novel capillary-wave microbioreactor (cwMBR) with a volume of only 7 µL has the potential to close this gap, as it combines a small volume with integrated sensors for biomass, pH, dissolved oxygen (DO) and glucose concentration. In the cwMBR, pH and DO are measured by established luminescent optical sensors on the bottom of the cwMBR. The novel glucose sensor is based on a modified oxygen sensor, which measures the oxygen uptake of glucose oxidase (GOx) in the presence of glucose up to a concentration of 15 mM. Furthermore, absorbance measurement allows biomass determination. The optical sensors enabled the characterization of an Escherichia coli batch cultivation over 8 h in the cwMBR as proof of concept for further bioprocesses. Hence, the cwMBR with integrated optical sensors has the potential for a wide range of microscale bioprocesses, including cell-based assays, screening applications and process development.
Collapse
Affiliation(s)
- Kevin Viebrock
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Dominik Rabl
- Institute of Analytical Chemistry and Food Chemistry, Technische Universität Graz, 8010 Graz, Austria; (D.R.); (T.M.)
| | - Sven Meinen
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
| | - Paul Wunder
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Jan-Angelus Meyer
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Lasse Jannis Frey
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
- Institute of Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Technische Universität Graz, 8010 Graz, Austria; (D.R.); (T.M.)
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (K.V.); (P.W.); (J.-A.M.); (L.J.F.); (D.R.)
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (S.M.); (A.D.)
- Correspondence:
| |
Collapse
|
5
|
Grist SM, Bennewith KL, Cheung KC. Oxygen Measurement in Microdevices. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:221-246. [PMID: 35696522 DOI: 10.1146/annurev-anchem-061020-111458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oxygen plays a fundamental role in respiration and metabolism, and quantifying oxygen levels is essential in many environmental, industrial, and research settings. Microdevices facilitate the study of dynamic, oxygen-dependent effects in real time. This review is organized around the key needs for oxygen measurement in microdevices, including integrability into microfabricated systems; sensor dynamic range and sensitivity; spatially resolved measurements to map oxygen over two- or three-dimensional regions of interest; and compatibility with multimodal and multianalyte measurements. After a brief overview of biological readouts of oxygen, followed by oxygen sensor types that have been implemented in microscale devices and sensing mechanisms, this review presents select recent applications in organs-on-chip in vitro models and new sensor capabilities enabling oxygen microscopy, bioprocess manufacturing, and pharmaceutical industries. With the advancement of multiplexed, interconnected sensors and instruments and integration with industry workflows, intelligent microdevice-sensor systems including oxygen sensors will have further impact in environmental science, manufacturing, and medicine.
Collapse
Affiliation(s)
- Samantha M Grist
- School of Biomedical Engineering, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Kevin L Bennewith
- Integrative Oncology Department, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Karen C Cheung
- School of Biomedical Engineering, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada;
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Zieger S, Jones PD, Koren K. Noise versus Resolution in Optical Chemical Imaging-How Reliable Are Our Measurements? ACS OMEGA 2022; 7:11829-11838. [PMID: 35449925 PMCID: PMC9016884 DOI: 10.1021/acsomega.1c07232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Optical chemical imaging has established itself as a valuable technique for visualizing analyte distributions in 2D, notably in medical, biological, and environmental applications. In particular for image acquisitions on small scales between few millimeter to the micrometer range, as well as in heterogeneous samples with steep analyte gradients, image resolution is essential. When individual pixels are inspected, however, image noise becomes a metric as relevant as image accuracy and precision, and denoising filters are applied to preserve relevant information. While denoising filters smooth the image noise, they can also lead to a loss of spatial resolution and thus to a loss of relevant information about analyte distributions. To investigate the trade-off between image resolution and noise reduction for information preservation, we studied the impact of random camera noise and noise due to incorrect camera settings on oxygen optodes using the ratiometric imaging technique. First, we estimated the noise amplification across the calibration process using a Monte Carlo simulation for nonlinear fit models. We demonstrated how initially marginal random camera noise results in a significant standard deviation (SD) for oxygen concentration of up to 2.73% air under anoxic conditions, although the measurement was conducted under ideal conditions and over 270 thousand sample pixels were considered during calibration. Second, we studied the effect of the Gaussian denoising filter on a steep oxygen gradient and investigated the impact when the smoothing filter is applied during data processing. Finally, we demonstrated the effectiveness of a Savitzky-Golay filter compared to the well-established Gaussian filter.
Collapse
Affiliation(s)
- Silvia
E. Zieger
- Aarhus
University Centre for Water Technology
(WATEC), Department of Biology, Section for Microbiology, Aarhus University, 8000, Aarhus C, Denmark
| | - Peter D. Jones
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Klaus Koren
- Aarhus
University Centre for Water Technology
(WATEC), Department of Biology, Section for Microbiology, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
7
|
Koren K, Zieger SE. Optode Based Chemical Imaging-Possibilities, Challenges, and New Avenues in Multidimensional Optical Sensing. ACS Sens 2021; 6:1671-1680. [PMID: 33905234 DOI: 10.1021/acssensors.1c00480] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seeing is believing, as the saying goes, and optical sensors (so-called optodes) are tools that can make chemistry visible. Optodes react reversibly and quickly (seconds to minutes) to changing analyte concentrations, enabling the spatial and temporal visualization of an analyte in complex environments. By being available as planar sensor foils or in the form of nano- or microparticles, optodes are flexible tools suitable for a wide array of applications. The steadily grown applications of in particular oxygen (O2) and pH optodes in fields as diverse as medical, environmental, or material sciences is proof for the large demand of optode based chemical imaging. Nevertheless, the full potential of this technology is not exhausted yet, challenges have to be overcome, and new avenues wait to be taken. Within this Perspective, we look at where the field currently stands, highlight several successful examples of optode based chemical imaging and ask what it will take to advance current state-of-the-art technology. It is our intention to point toward some potential blind spots and to inspire further developments.
Collapse
Affiliation(s)
- Klaus Koren
- Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| | - Silvia E. Zieger
- Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Qiu W, Nagl S. Automated Miniaturized Digital Microfluidic Antimicrobial Susceptibility Test Using a Chip-Integrated Optical Oxygen Sensor. ACS Sens 2021; 6:1147-1156. [PMID: 33720687 DOI: 10.1021/acssensors.0c02399] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present the first digital microfluidic (DMF) antimicrobial susceptibility test (AST) using an optical oxygen sensor film for in-situ and real-time continuous measurement of extracellular dissolved oxygen (DO). The device allows one to monitor bacterial growth across the entire cell culture area, and the fabricated device was utilized for a miniaturized and automated AST. The oxygen-sensitive probe platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin was embedded in a Hyflon AD 60 polymer and spin-coated as a 100 nm thick layer onto an ITO glass serving as the DMF ground electrode. This DMF-integrated oxygen sensing film was found to cause no negative effects to the droplet manipulation or cell growth on the chip. The developed DMF platform was used to monitor the DO consumption during Escherichia coli (E. coli) growth caused by cellular respiration. A rapid and reliable twofold dilution procedure was developed and performed, and the AST with E. coli ATCC 25922 in the presence of ampicillin, chloramphenicol, and tetracycline at different concentrations from 0.5 to 8 μg mL-1 was investigated. All sample dispensation, dilution, and mixing were performed automatically on the chip within 10 min. The minimum inhibitory concentration values measured from the DMF chip were consistent with those from the standard broth microdilution method but requiring only minimal sample handling and working with much smaller sample volumes.
Collapse
Affiliation(s)
- Wenting Qiu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Stefan Nagl
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
9
|
Abstract
Micro and nanoparticles are not only understood as components of materials but as small functional units too. Particles can be designed for the primary transduction of physical and chemical signals and, therefore, become a valuable component in sensing systems. Due to their small size, they are particularly interesting for sensing in microfluidic systems, in microarray arrangements and in miniaturized biotechnological systems and microreactors, in general. Here, an overview of the recent development in the preparation of micro and nanoparticles for sensing purposes in microfluidics and application of particles in various microfluidic devices is presented. The concept of sensor particles is particularly useful for combining a direct contact between cells, biomolecules and media with a contactless optical readout. In addition to the construction and synthesis of micro and nanoparticles with transducer functions, examples of chemical and biological applications are reported.
Collapse
|
10
|
Semenova D, Fernandes AC, Bolivar JM, Rosinha Grundtvig IP, Vadot B, Galvanin S, Mayr T, Nidetzky B, Zubov A, Gernaey KV. Model-based analysis of biocatalytic processes and performance of microbioreactors with integrated optical sensors. N Biotechnol 2020; 56:27-37. [DOI: 10.1016/j.nbt.2019.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023]
|
11
|
Luo W, Cui Q, Fang K, Chen K, Ma H, Guan J. Responsive Hydrogel-based Photonic Nanochains for Microenvironment Sensing and Imaging in Real Time and High Resolution. NANO LETTERS 2020; 20:803-811. [PMID: 29323918 DOI: 10.1021/acs.nanolett.7b04218] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microenvironment sensing and imaging are of importance in microscale zones like microreactors, microfluidic systems, and biological cells. But they are so far implemented only based on chemical colors from dyes or quantum dots, which suffered either from photobleaching, quenching, or photoblinking behaviors, or from limited color gamut. In contrast, structural colors from hydrogel-based photonic crystals (PCs) may be stable and tunable in the whole visible spectrum by diffraction peak shift, facilitating the visual detection with high accuracy. However, the current hydrogel-based PCs are all inappropriate for microscale detection due to the bulk size. Here we demonstrate the smallest hydrogel-based PCs, responsive hydrogel-based photonic nanochains with high-resolution and real-time response, by developing a general hydrogen bond-guided template polymerization method. A variety of mechanically separated stimuli-responsive hydrogel-based photonic nanochains have been obtained in a large scale including those responding to pH, solvent, and temperature. Each of them has a submicrometer diameter and is composed of individual one-dimensional periodic structure of magnetic particles locked by a tens-of-nanometer-thick peapod-like responsive hydrogel shell. Taking the pH-responsive hydrogel-based photonic nanochains, for example, pH-induced hydrogel volume change notably alters the nanochain length, resulting in a significant variation of the structural color. The submicrometer size endows the nanochains with improved resolution and response time by 2-3 orders of magnitude than the previous counterparts. Our results for the first time validate the feasibility of using structural colors for microenvironment sensing and imaging and may further promote the applications of responsive PCs, such as in displays and printing.
Collapse
Affiliation(s)
- Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China
- Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Qian Cui
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China
| | - Kai Fang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China
| | - Ke Chen
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , Wuhan 430070 , China
| | - Huiru Ma
- School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , Wuhan 430070 , China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering , Wuhan University of Technology , Wuhan 430070 , China
| |
Collapse
|
12
|
Bolivar JM, Nidetzky B. The Microenvironment in Immobilized Enzymes: Methods of Characterization and Its Role in Determining Enzyme Performance. Molecules 2019; 24:molecules24193460. [PMID: 31554193 PMCID: PMC6803829 DOI: 10.3390/molecules24193460] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
The liquid milieu in which enzymes operate when they are immobilized in solid materials can be quite different from the milieu in bulk solution. Important differences are in the substrate and product concentration but also in pH and ionic strength. The internal milieu for immobilized enzymes is affected by the chemical properties of the solid material and by the interplay of reaction and diffusion. Enzyme performance is influenced by the internal milieu in terms of catalytic rate (“activity”) and stability. Elucidation, through direct measurement of differences in the internal as compared to the bulk milieu is, therefore, fundamentally important in the mechanistic characterization of immobilized enzymes. The deepened understanding thus acquired is critical for the rational development of immobilized enzyme preparations with optimized properties. Herein we review approaches by opto-chemical sensing to determine the internal milieu of enzymes immobilized in porous particles. We describe analytical principles applied to immobilized enzymes and focus on the determination of pH and the O2 concentration. We show measurements of pH and [O2] with spatiotemporal resolution, using in operando analysis for immobilized preparations of industrially important enzymes. The effect of concentration gradients between solid particle and liquid bulk on enzyme performance is made evident and quantified. Besides its use in enzyme characterization, the method can be applied to the development of process control strategies.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
- Chemical and Materials Engineering Department, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), Petersgasse 14, A-8010 Graz, Austria.
| |
Collapse
|
13
|
Rahaman SA, Mondal DK, Bandyopadhyay S. Formation of disulphide linkages restricts intramolecular motions of a fluorophore: detection of molecular oxygen in food packaging. Chem Commun (Camb) 2019; 55:3132-3135. [PMID: 30794266 DOI: 10.1039/c8cc10035g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reliable and easy detection of oxygen in food packaging without the aid of sophisticated instruments is highly coveted. A tetraphenylethene probe based on oxygen-mediated polymerization via the formation of disulfides causes restricted intramolecular rotation of the TPE phenyls resulting in a >100 fold enhancement of emission and thus detects O2 in food packages.
Collapse
Affiliation(s)
- Sk Atiur Rahaman
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, WB 741246, India.
| | | | | |
Collapse
|
14
|
Ahmed S, Chauhan VM, Ghaemmaghami AM, Aylott JW. New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol Lett 2019; 41:1-25. [PMID: 30368691 PMCID: PMC6313369 DOI: 10.1007/s10529-018-2611-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Bioreactors hold a lot of promise for tissue engineering and regenerative medicine applications. They have multiple uses including cell cultivation for therapeutic production and for in vitro organ modelling to provide a more physiologically relevant environment for cultures compared to conventional static conditions. Bioreactors are often used in combination with scaffolds as the nutrient flow can enhance oxygen and diffusion throughout the 3D constructs to prevent the formation of necrotic cores. A variety of scaffolds have been fabricated to achieve a structural architecture that mimic native extracellular matrix. Future developments of in vitro models will incorporate the ability to non-invasively monitor the cellular microenvironment to enhance the understanding of in vitro conditions. This review details current advancements in bioreactor and scaffold systems and provides insight on how in vitro models can be augmented for future biomedical applications.
Collapse
Affiliation(s)
- Shehnaz Ahmed
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| | - Veeren M. Chauhan
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, Life Sciences Building, University Park, Nottingham, NG7 2RD UK
| | - Jonathan W. Aylott
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham, UK
| |
Collapse
|
15
|
Lladó Maldonado S, Panjan P, Sun S, Rasch D, Sesay AM, Mayr T, Krull R. A fully online sensor-equipped, disposable multiphase microbioreactor as a screening platform for biotechnological applications. Biotechnol Bioeng 2018; 116:65-75. [DOI: 10.1002/bit.26831] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/08/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Susanna Lladó Maldonado
- Institute of Biochemical Engineering, Technische Universität Braunschweig; Braunschweig Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig; Braunschweig Germany
| | - Peter Panjan
- Unit of Measurement Technologies, University of Oulu; Kajaani Finland
| | - Shiwen Sun
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology; Graz Austria
| | - Detlev Rasch
- Institute of Biochemical Engineering, Technische Universität Braunschweig; Braunschweig Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig; Braunschweig Germany
| | - Adama M. Sesay
- Unit of Measurement Technologies, University of Oulu; Kajaani Finland
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology; Graz Austria
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig; Braunschweig Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig; Braunschweig Germany
| |
Collapse
|
16
|
Zirath H, Rothbauer M, Spitz S, Bachmann B, Jordan C, Müller B, Ehgartner J, Priglinger E, Mühleder S, Redl H, Holnthoner W, Harasek M, Mayr T, Ertl P. Every Breath You Take: Non-invasive Real-Time Oxygen Biosensing in Two- and Three-Dimensional Microfluidic Cell Models. Front Physiol 2018; 9:815. [PMID: 30018569 PMCID: PMC6037982 DOI: 10.3389/fphys.2018.00815] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Knowledge on the availability of dissolved oxygen inside microfluidic cell culture systems is vital for recreating physiological-relevant microenvironments and for providing reliable and reproducible measurement conditions. It is important to highlight that in vivo cells experience a diverse range of oxygen tensions depending on the resident tissue type, which can also be recreated in vitro using specialized cell culture instruments that regulate external oxygen concentrations. While cell-culture conditions can be readily adjusted using state-of-the-art incubators, the control of physiological-relevant microenvironments within the microfluidic chip, however, requires the integration of oxygen sensors. Although several sensing approaches have been reported to monitor oxygen levels in the presence of cell monolayers, oxygen demands of microfluidic three-dimensional (3D)-cell cultures and spatio-temporal variations of oxygen concentrations inside two-dimensional (2D) and 3D cell culture systems are still largely unknown. To gain a better understanding on available oxygen levels inside organ-on-a-chip systems, we have therefore developed two different microfluidic devices containing embedded sensor arrays to monitor local oxygen levels to investigate (i) oxygen consumption rates of 2D and 3D hydrogel-based cell cultures, (ii) the establishment of oxygen gradients within cell culture chambers, and (iii) influence of microfluidic material (e.g., gas tight vs. gas permeable), surface coatings, cell densities, and medium flow rate on the respiratory activities of four different cell types. We demonstrate how dynamic control of cyclic normoxic-hypoxic cell microenvironments can be readily accomplished using programmable flow profiles employing both gas-impermeable and gas-permeable microfluidic biochips.
Collapse
Affiliation(s)
- Helene Zirath
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mario Rothbauer
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sarah Spitz
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Bachmann
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Vienna, Austria
| | - Christian Jordan
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Bernhard Müller
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Josef Ehgartner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Eleni Priglinger
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Vienna, Austria
| | - Severin Mühleder
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Vienna, Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Vienna, Austria
| | - Wolfgang Holnthoner
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Vienna, Austria
| | - Michael Harasek
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Peter Ertl
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
17
|
Biocatalyst Screening with a Twist: Application of Oxygen Sensors Integrated in Microchannels for Screening Whole Cell Biocatalyst Variants. Bioengineering (Basel) 2018; 5:bioengineering5020030. [PMID: 29642515 PMCID: PMC6027248 DOI: 10.3390/bioengineering5020030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Selective oxidative functionalization of molecules is a highly relevant and often demanding reaction in organic chemistry. The use of biocatalysts allows the stereo- and regioselective introduction of oxygen molecules in organic compounds at milder conditions and avoids the use of complex group-protection schemes and toxic compounds usually applied in conventional organic chemistry. The identification of enzymes with the adequate properties for the target reaction and/or substrate requires better and faster screening strategies. In this manuscript, a microchannel with integrated oxygen sensors was applied to the screening of wild-type and site-directed mutated variants of naphthalene dioxygenase (NDO) from Pseudomonas sp. NICB 9816-4. The oxygen sensors were used to measure the oxygen consumption rate of several variants during the conversion of styrene to 1-phenylethanediol. The oxygen consumption rate allowed the distinguishing of endogenous respiration of the cell host from the oxygen consumed in the reaction. Furthermore, it was possible to identify the higher activity and different reaction rate of two variants, relative to the wild-type NDO. The meander microchannel with integrated oxygen sensors can therefore be used as a simple and fast screening platform for the selection of dioxygenase mutants, in terms of their ability to convert styrene, and potentially in terms of substrate specificity.
Collapse
|
18
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
19
|
Gruber P, Marques MPC, Szita N, Mayr T. Integration and application of optical chemical sensors in microbioreactors. LAB ON A CHIP 2017; 17:2693-2712. [PMID: 28725897 DOI: 10.1039/c7lc00538e] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The quantification of key variables such as oxygen, pH, carbon dioxide, glucose, and temperature provides essential information for biological and biotechnological applications and their development. Microfluidic devices offer an opportunity to accelerate research and development in these areas due to their small scale, and the fine control over the microenvironment, provided that these key variables can be measured. Optical sensors are well-suited for this task. They offer non-invasive and non-destructive monitoring of the mentioned variables, and the establishment of time-course profiles without the need for sampling from the microfluidic devices. They can also be implemented in larger systems, facilitating cross-scale comparison of analytical data. This tutorial review presents an overview of the optical sensors and their technology, with a view to support current and potential new users in microfluidics and biotechnology in the implementation of such sensors. It introduces the benefits and challenges of sensor integration, including, their application for microbioreactors. Sensor formats, integration methods, device bonding options, and monitoring options are explained. Luminescent sensors for oxygen, pH, carbon dioxide, glucose and temperature are showcased. Areas where further development is needed are highlighted with the intent to guide future development efforts towards analytes for which reliable, stable, or easily integrated detection methods are not yet available.
Collapse
Affiliation(s)
- Pia Gruber
- Department of Biochemical Engineering, University College London, Gower Street, WC1E 6BT, London, UK.
| | | | | | | |
Collapse
|
20
|
Gruber P, Marques MPC, O'Sullivan B, Baganz F, Wohlgemuth R, Szita N. Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700030] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Pia Gruber
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| | - Marco P. C. Marques
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| | - Brian O'Sullivan
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| | - Frank Baganz
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| | | | - Nicolas Szita
- Department of Biochemical Engineering; University College London; WC1H 0AH United Kingdom
| |
Collapse
|
21
|
Pfeiffer SA, Borisov SM, Nagl S. In-line monitoring of pH and oxygen during enzymatic reactions in off-the-shelf all-glass microreactors using integrated luminescent microsensors. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2021-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Ehgartner J, Strobl M, Bolivar JM, Rabl D, Rothbauer M, Ertl P, Borisov SM, Mayr T. Simultaneous Determination of Oxygen and pH Inside Microfluidic Devices Using Core–Shell Nanosensors. Anal Chem 2016; 88:9796-9804. [DOI: 10.1021/acs.analchem.6b02849] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Josef Ehgartner
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9/3, 8010 Graz, Austria
| | - Martin Strobl
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9/3, 8010 Graz, Austria
| | - Juan M. Bolivar
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/1, 8010 Graz, Austria
| | - Dominik Rabl
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9/3, 8010 Graz, Austria
| | - Mario Rothbauer
- Institute
of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt
9/163, 1060 Wien, Austria
| | - Peter Ertl
- Institute
of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt
9/163, 1060 Wien, Austria
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9/3, 8010 Graz, Austria
| | - Torsten Mayr
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9/3, 8010 Graz, Austria
| |
Collapse
|
23
|
Mousavi Shaegh SA, De Ferrari F, Zhang YS, Nabavinia M, Binth Mohammad N, Ryan J, Pourmand A, Laukaitis E, Banan Sadeghian R, Nadhman A, Shin SR, Nezhad AS, Khademhosseini A, Dokmeci MR. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. BIOMICROFLUIDICS 2016; 10:044111. [PMID: 27648113 PMCID: PMC5001973 DOI: 10.1063/1.4955155] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/17/2016] [Indexed: 05/05/2023]
Abstract
There is a growing interest to develop microfluidic bioreactors and organ-on-chip platforms with integrated sensors to monitor their physicochemical properties and to maintain a well-controlled microenvironment for cultured organoids. Conventional sensing devices cannot be easily integrated with microfluidic organ-on-chip systems with low-volume bioreactors for continual monitoring. This paper reports on the development of a multi-analyte optical sensing module for dynamic measurements of pH and dissolved oxygen levels in the culture medium. The sensing system was constructed using low-cost electro-optics including light-emitting diodes and silicon photodiodes. The sensing module includes an optically transparent window for measuring light intensity, and the module could be connected directly to a perfusion bioreactor without any specific modifications to the microfluidic device design. A compact, user-friendly, and low-cost electronic interface was developed to control the optical transducer and signal acquisition from photodiodes. The platform enabled convenient integration of the optical sensing module with a microfluidic bioreactor. Human dermal fibroblasts were cultivated in the bioreactor, and the values of pH and dissolved oxygen levels in the flowing culture medium were measured continuously for up to 3 days. Our integrated microfluidic system provides a new analytical platform with ease of fabrication and operation, which can be adapted for applications in various microfluidic cell culture and organ-on-chip devices.
Collapse
|
24
|
Poehler E, Pfeiffer SA, Herm M, Gaebler M, Busse B, Nagl S. Microchamber arrays with an integrated long luminescence lifetime pH sensor. Anal Bioanal Chem 2015; 408:2927-35. [DOI: 10.1007/s00216-015-9178-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
|
25
|
Bonk SM, Stubbe M, Buehler SM, Tautorat C, Baumann W, Klinkenberg ED, Gimsa J. Design and Characterization of a Sensorized Microfluidic Cell-Culture System with Electro-Thermal Micro-Pumps and Sensors for Cell Adhesion, Oxygen, and pH on a Glass Chip. BIOSENSORS-BASEL 2015; 5:513-36. [PMID: 26263849 PMCID: PMC4600170 DOI: 10.3390/bios5030513] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 01/09/2023]
Abstract
We combined a multi-sensor glass-chip with a microfluidic channel grid for the characterization of cellular behavior. The grid was imprinted in poly-dimethyl-siloxane. Mouse-embryonal/fetal calvaria fibroblasts (MC3T3-E1) were used as a model system. Thin-film platinum (Pt) sensors for respiration (amperometric oxygen electrode), acidification (potentiometric pH electrodes) and cell adhesion (interdigitated-electrodes structures, IDES) allowed us to monitor cell-physiological parameters as well as the cell-spreading behavior. Two on-chip electro-thermal micro-pumps (ETμPs) permitted the induction of medium flow in the system, e.g., for medium mixing and drug delivery. The glass-wafer technology ensured the microscopic observability of the on-chip cell culture. Connecting Pt structures were passivated by a 1.2 μm layer of silicon nitride (Si3N4). Thin Si3N4 layers (20 nm or 60 nm) were used as the sensitive material of the pH electrodes. These electrodes showed a linear behavior in the pH range from 4 to 9, with a sensitivity of up to 39 mV per pH step. The oxygen sensors were circular Pt electrodes with a sensor area of 78.5 μm(2). Their sensitivity was 100 pA per 1% oxygen increase in the range from 0% to 21% oxygen (air saturated). Two different IDES geometries with 30- and 50-μm finger spacings showed comparable sensitivities in detecting the proliferation rate of MC3T3 cells. These cells were cultured for 11 days in vitro to test the biocompatibility, microfluidics and electric sensors of our system under standard laboratory conditions.
Collapse
Affiliation(s)
- Sebastian M Bonk
- Chair for Biophysics, Department of Biology, University of Rostock, Gertrudenstr. 11a, 18057 Rostock, Germany.
| | - Marco Stubbe
- Chair for Biophysics, Department of Biology, University of Rostock, Gertrudenstr. 11a, 18057 Rostock, Germany.
| | - Sebastian M Buehler
- Leibniz Institute for Farm Animal Biology, Institute of Muscle Biology and Growth, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Carsten Tautorat
- Chair for Biophysics, Department of Biology, University of Rostock, Gertrudenstr. 11a, 18057 Rostock, Germany.
| | - Werner Baumann
- Chair for Biophysics, Department of Biology, University of Rostock, Gertrudenstr. 11a, 18057 Rostock, Germany.
| | | | - Jan Gimsa
- Chair for Biophysics, Department of Biology, University of Rostock, Gertrudenstr. 11a, 18057 Rostock, Germany.
| |
Collapse
|
26
|
Lasave LC, Borisov SM, Ehgartner J, Mayr T. Quick and simple integration of optical oxygen sensors into glass-based microfluidic devices. RSC Adv 2015. [DOI: 10.1039/c5ra15591f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel simple and inexpensive technique for integration of optical oxygen sensors into microfluidic channels made of glass. The channels are coated with conjugated polymeric nanoparticles containing a covalently grafted oxygen indicator.
Collapse
Affiliation(s)
- Liliana C. Lasave
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Sergey M. Borisov
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Josef Ehgartner
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| |
Collapse
|