1
|
Myeloprotection by cytidine deaminase gene transfer in antileukemic therapy. Neoplasia 2013; 15:239-48. [PMID: 23479503 DOI: 10.1593/neo.121954] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/22/2022] Open
Abstract
Gene transfer of drug resistance (CTX-R) genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O(6)-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C), gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD) represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine) in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.
Collapse
|
2
|
Tome ME, Frye JB, Coyle DL, Jacobson EL, Samulitis BK, Dvorak K, Dorr RT, Briehl MM. Lymphoma cells with increased anti-oxidant defenses acquire chemoresistance. Exp Ther Med 2012; 3:845-852. [PMID: 22529877 DOI: 10.3892/etm.2012.487] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation increases lymphoma risk. Chronic inflammation exposes cells to increased reactive oxygen species (ROS). Constant exposure to ROS selects for oxidative stress-resistant cells with upregulated anti-oxidant defense enzymes. The impact of oxidative stress resistance on the redox biology and chemotherapy response in lymphoma has not been rigorously tested. To measure the effect of antioxidant defense enzyme upregulation in lymphoid cells, we created oxidative stress-resistant WEHI7.2 thymic lymphoma cell variants. We selected a population of WEHI7.2 cells for resistance to hydrogen peroxide and constructed catalase-overexpressing WEHI7.2 transfectants. The WEHI7.2 variants had: i) increased catalase and total superoxide dismutase activities; ii) an altered GSSG/2GSH redox potential; iii) a more oxidized NADP(+)/NADPH pool; and iv) increased phase 2 enzymes, NAD(P)H:quinone oxidoreductase and glutathione S-transferases μ and π. Regression analysis showed a correlation between the GSSG/2GSH redox potential and the increased phase 2 enzyme activities. As predicted from the anti-oxidant defense enzyme profile, the variants were more resistant to the oxidants hydrogen peroxide and paraquat. The variants exhibited resistance to the common lymphoma chemotherapeutics, cyclophosphamide, doxorubicin, vincristine and glucocorticoids. These data indicate that chronic ROS exposure results in lymphoid cells with multiple changes in their redox biology and a chemoresistance phenotype. These data further suggest that lymphomas that arise at the site of chronic inflammation develop chemoresistance due to a combination of drug detoxification and removal of ROS.
Collapse
Affiliation(s)
- Margaret E Tome
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Harkey MA, Czerwinski M, Slattery J, Kiem HP. Overexpression of Glutathione-S-Transferase, MGSTII, Confers Resistance to Busulfan and Melphalan. Cancer Invest 2009. [DOI: 10.1081/cnv-46508] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Porter CC, DeGregori J. Interfering RNA-mediated purine analog resistance for in vitro and in vivo cell selection. Blood 2008; 112:4466-74. [PMID: 18587011 PMCID: PMC2597122 DOI: 10.1182/blood-2008-03-146571] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The advancement of gene therapy has been slowed, in part, by inefficient transduction of targeted cells and poor long-term engraftment of genetically modified cells. Thus, the ability to select for a desired population of cells within a recipient would be of great benefit for improving gene therapy. Proposed strategies for in vivo cell selection using drug resistance genes have had disappointing outcomes and/or require highly genotoxic medications to be effective. We hypothesized that resistance to purine analogs, a well-tolerated, relatively low-toxicity class of medications, could be provided to cells using interfering RNA against hypoxanthine phosphoribosyl transferase. Using a lentiviral vector, we found that interfering RNA-mediated purine analog resistance (iPAR) provided relative resistance to 6-thioguanine (6TG) in murine hematopoietic cells compared with control- and untransduced cells. iPAR attenuated 6TG-induced G(2)/M checkpoint activation, cell-cycle arrest, and apoptosis. Furthermore, in recipients of transplanted bone marrow cells with iPAR, treatment with 6TG resulted in increased percentages of transduced peripheral blood cells and hematopoietic progenitor cells in the bone marrow. Secondary transplantations resulted in higher hematopoietic contributions from 6TG-treated primary recipients relative to phosphate-buffered saline-treated recipients. These findings indicate that iPAR/6TG can be used for in vivo hematopoietic progenitor cell selection.
Collapse
Affiliation(s)
- Christopher C Porter
- Rick Wilson Center for Cancer and Blood Disorders, The Children's Hospital, Aurora, CO, USA.
| | | |
Collapse
|
5
|
Haviernik P, Zhang Y, Bunting KD. Retroviral transduction of murine hematopoietic stem cells. Methods Mol Biol 2008; 430:229-41. [PMID: 18370303 DOI: 10.1007/978-1-59745-182-6_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hematopoietic stem cells (HSC) are inherently rare cell types that cannot be obtained in sufficient amounts for classical biochemical characterization. To facilitate functional studies of murine HSC and hematopoietic development, the technique of retroviral-mediated gene transfer provides a useful tool. The generation of high titer retroviral vectors permits transduction of stem cells with a variety of genes and leads to long-term marking in the blood of recipient mice. Optimized promoter/enhancers facilitate high-level transgene expression in mice transplanted with transduced bone marrow (BM) cells. The co-expression of reporter genes along with a gene of interest greatly facilitates tracking donor engraftment of transduced hematopoietic progeny following stem cell transplantation. This methodology can be used to reconstitute defective function in a mutant background or to study protein function during hematopoiesis by overexpression. Despite limitations such as integration site variegation and copy number-dependent effects, this approach is rapid and efficient compared with transgenic mouse technology. In this chapter, we review this broadly applicable technique for achieving high-level murine BM stem cell transduction. We also describe methods for transplantation and subsequent analysis of transplanted mice as a bona fide assay for the stem cell transduction efficiency.
Collapse
Affiliation(s)
- Peter Haviernik
- Department of Medicine, Division of Hematology-Oncology, Center for Stem Cell and Regenerative Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | |
Collapse
|
6
|
Abstract
A major side effect of cancer chemotherapy is myelosuppression. Expression of drug-resistance genes in hematopoietic stem cells (HSC) using gene transfer methodologies holds the promise of overcoming marrow toxicity in cancer chemotherapy. Adequate protection of marrow cells in cancer patients from myelotoxicity in this way would permit the use of escalating doses of chemotherapy for eradicating residual disease. A second use of drug-resistance genes is for coexpression with a therapeutic gene in HSCs to provide a selection advantage to gene-modified cells. In this review, we discuss several drug resistance genes, which are well suited for in vivo selection as well as other newer candidate genes with potential for use in this manner.
Collapse
Affiliation(s)
- M Zaboikin
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
7
|
Lu C, Spitz MR, Zhao H, Dong Q, Truong M, Chang JY, Blumenschein GR, Hong WK, Wu X. Association between glutathione S-transferase pi polymorphisms and survival in patients with advanced nonsmall cell lung carcinoma. Cancer 2006; 106:441-7. [PMID: 16342067 DOI: 10.1002/cncr.21619] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Glutathione S-transferase (GST) pi (GSTP1) is a detoxification enzyme with substrate specificity for both exogenous carcinogens and chemotherapy agents. Genetic polymorphisms of GSTP1 exon 5 (Ile105Val) and exon 6 (Ala114Val) appear to reduce this enzyme's activity. Previously, the authors reported that the exon 6 variant was associated with an increased risk of lung carcinoma, particularly among men, younger patients, and ever smokers. In this study, the authors hypothesized that variant GSTP1 genotype would result in reduced inactivation of chemotherapy agents and improved survival in patients with advanced-stage nonsmall cell lung carcinoma (NSCLC), a population that is likely to receive platinum-based chemotherapy. METHODS Patients with Stage III and IV NSCLC who were enrolled in a molecular epidemiology study were identified, and a polymerase chain reaction-restriction fragment length polymorphism assay was used to genotype GSTP1 exons 5 and 6 in 424 patients and 425 patients, respectively. RESULTS Patients who had the exon 6 variant genotype (Ala/Val or Val/Val) had significantly better survival compared with patients who had the wild type genotype (Ala/Ala; P = 0.037), with median survival of 16.1 months and 11.4 months, respectively. Multivariate analysis revealed a reduced adjusted hazard ratio (HR) of death associated with the exon 6 variant genotype of 0.75 (95% confidence interval [95% CI], 0.54-1.05). This protective association was observed in younger patients (younger than age 62 yrs; HR, 0.59; 95% CI, 0.57-0.97) and in males (HR, 0.64; 95% CI, 0.41-0.99). GSTP1 exon 5 genotype was not associated with survival. CONCLUSIONS GSTP1 exon 6 variant genotypes may be associated with improved survival among patients with Stage III and IV NSCLC.
Collapse
Affiliation(s)
- Charles Lu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang J, Tian Q, Yung Chan S, Chuen Li S, Zhou S, Duan W, Zhu YZ. Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metab Rev 2006; 37:611-703. [PMID: 16393888 DOI: 10.1080/03602530500364023] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, beta-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and epsilon. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang J, Tian Q, Chan SY, Duan W, Zhou S. Insights into oxazaphosphorine resistance and possible approaches to its circumvention. Drug Resist Updat 2005; 8:271-97. [PMID: 16154799 DOI: 10.1016/j.drup.2005.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 07/29/2005] [Accepted: 08/10/2005] [Indexed: 11/30/2022]
Abstract
The oxazaphosphorines cyclophosphamide, ifosfamide and trofosfamide remain a clinically useful class of anticancer drugs with substantial antitumour activity against a variety of solid tumors and hematological malignancies. A major limitation to their use is tumour resistance, which is due to multiple mechanisms that include increased DNA repair, increased cellular thiol levels, glutathione S-transferase and aldehyde dehydrogenase activities, and altered cell-death response to DNA damage. These mechanisms have been recently re-examined with the aid of sensitive analytical techniques, high-throughput proteomic and genomic approaches, and powerful pharmacogenetic tools. Oxazaphosphorine resistance, together with dose-limiting toxicity (mainly neutropenia and neurotoxicity), significantly hinders chemotherapy in patients, and hence, there is compelling need to find ways to overcome it. Four major approaches are currently being explored in preclinical models, some also in patients: combination with agents that modulate cellular response and disposition of oxazaphosphorines; antisense oligonucleotides directed against specific target genes; introduction of an activating gene (CYP3A4) into tumor tissue; and modification of dosing regimens. Of these approaches, antisense oligonucleotides and gene therapy are perhaps more speculative, requiring detailed safety and efficacy studies in preclinical models and in patients. A fifth approach is the design of novel oxazaphosphorines that have favourable pharmacokinetic and pharmacodynamic properties and are less vulnerable to resistance. Oxazaphosphorines not requiring hepatic CYP-mediated activation (for example, NSC 613060 and mafosfamide) or having additional targets (for example, glufosfamide that also targets glucose transport) have been synthesized and are being evaluated for safety and efficacy. Characterization of the molecular targets associated with oxazaphosphorine resistance may lead to a deeper understanding of the factors critical to the optimal use of these agents in chemotherapy and may allow the development of strategies to overcome resistance.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | | | |
Collapse
|
10
|
Hohaus S, Di Ruscio A, Di Febo A, Massini G, D'Alo' F, Guidi F, Mansueto G, Voso MT, Leone G. Glutathione S-transferase P1 genotype and prognosis in Hodgkin's lymphoma. Clin Cancer Res 2005; 11:2175-9. [PMID: 15788664 DOI: 10.1158/1078-0432.ccr-04-1250] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Glutathione S-transferase P1 (GSTP1) is a member of the GST enzyme superfamily that is important for the detoxification of several cytotoxic drugs and their by-products. A single nucleotide polymorphism results in the substitution of isoleucine (Ile) to valine (Val) at codon 105, causing a metabolically less active variant of the enzyme. We assessed the impact of the GSTP1 codon 105 genotype on treatment outcome in patients with Hodgkin's lymphoma. EXPERIMENTAL DESIGN The Ile(105)Val polymorphism in the GSTP1 gene was analyzed using a PCR-RFLP technique. Ninety-seven patients with Hodgkin's lymphoma were included and associations with patient characteristics and treatment outcome were analyzed. RESULTS The GSTP1 Ile(105)Val polymorphism was associated in a dose-dependent fashion with an improved failure-free survival in patients with Hodgkin's lymphoma (P = 0.02). The probability of 5-year survival for patients homozygous for the (105)Val/(105)Val GSTP1 genotype was 100%, for heterozygous patients 74% (95% confidence interval, 56-85), and for patients homozygous for the (105)Ile/(105)Ile genotype 43% (95% confidence interval, 23-61). The Cox multivariate analysis showed that GSTP1 codon 105 genotype was an independent prognostic factor. CONCLUSIONS The GSTP1 genotype predicts clinical outcome in patients with Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Stefan Hohaus
- Istituto di Ematologia, Universita' Cattolica S. Cuore, Largo A. Gemelli 1, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zaboikin M, Srinivasakumar N, Zaboikina T, Schuening F. Cloning and expression of canine O6-methylguanine-DNA methyltransferase in target cells, using gammaretroviral and lentiviral vectors. Hum Gene Ther 2004; 15:383-92. [PMID: 15053863 DOI: 10.1089/104303404322959533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human O(6)-methylguanine-DNA methyltransferase (MGMT) gene and its mutants have been used for in vivo selection of transduced hematopoietic stem cells with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) alone or in combination with O(6)-benzylguanine (BG). To allow similar in vivo selection in dogs, without the risk of inducing an immune response, we have cloned the canine MGMT drug resistance gene. Comparison of canine and human MGMT-coding regions indicates that there is about 62% amino acid identity and 78% similarity between the two MGMTs. The canine MGMT is also longer, by nine amino acids. Proline at position 140 and the surrounding amino acids of the human MGMT are highly conserved in the canine sequence. To determine whether mutation of the proline residue at position 144 to lysine in the canine MGMT would provide a similar advantage for selection of transduced cells as the human mutant, Moloney murine leukemia virus and human immunodeficiency type 1 vectors encoding the corresponding mutant MGMT were created and used to express separately canine and human MGMTs in cultured cells. Drug resistance assays using BCNU alone or BCNU with BG demonstrated that the wild-type and mutant canine MGMTs provided resistance to the selection agents that was comparable to the human MGMT counterparts.
Collapse
Affiliation(s)
- Michail Zaboikin
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | |
Collapse
|
12
|
Kuroda H, Matsunaga T, Terui T, Tanaka I, Takimoto R, Fujikawa K, Takayama T, Kato J, Hirayama Y, Sakamaki S, Kohda K, Niitsu Y. Decrease of Smad4 gene expression in patients with essential thrombocythaemia may cause an escape from suppression of megakaryopoiesis by transforming growth factor-beta1. Br J Haematol 2004; 124:211-20. [PMID: 14687032 DOI: 10.1046/j.1365-2141.2003.04755.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Essential thrombocythaemia (ET) is characterized by the abnormal and sustained proliferation of megakaryocytes. The mechanism for this lineage-specific expansion in ET, remains unclear. We have previously reported that transforming growth factor-beta1 (TGF-beta1) is involved in negative feedback regulation of megakaryopoiesis in both healthy volunteers (HV) and patients with idiopathic thrombocytopenic purpura (ITP). The present study found that megakaryocyte colony-forming units (CFU-MK) of ET patients were less sensitive to TGF-beta1 than those of HV. The expression of Smad4 (Sma- and Mad-related protein-4) in CFU-MK of ET patients was reduced in comparison with that of HV. Finally, to confirm that the impaired TGF-beta1 sensitivity was caused by reduced expression of Smad4, we examined Smad4-transfected CFU-MK from ET patients in the presence of TGF-beta1, and verified that the transfectants were indeed as susceptible as CFU-MK from HV to TGF-beta1. Thus it was surmised that one of the mechanisms for impaired sensitivity of CFU-MK to TGF-beta1 is the reduced expression of Smad4.
Collapse
Affiliation(s)
- Hiroyuki Kuroda
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Flasshove M, Moritz T, Bardenheuer W, Seeber S. Hematoprotection by transfer of drug-resistance genes. Acta Haematol 2003; 110:93-106. [PMID: 14583669 DOI: 10.1159/000072458] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Myelosuppression represents a major side effect of cytotoxic anti-cancer agents. Infection due to granulocytopenia and the risk of bleeding due to thrombocytopenia compromise the potential of curative and palliative chemotherapy. Considering the many chemotherapeutic agents for which drug resistance genes have been described, and the recent improvements in vector and transduction technology, it seems conceivable that drug resistance gene transfer into a patient's autologous hematopoietic stem or progenitor cells will be able to reduce or abolish chemotherapy-induced myelosuppression.
Collapse
Affiliation(s)
- Michael Flasshove
- Department of Internal Medicine (Cancer Research), West German Cancer Center, University of Essen Medical School, Essen, Germany.
| | | | | | | |
Collapse
|
14
|
Dasgupta RK, Adamson PJ, Davies FE, Rollinson S, Roddam PL, Ashcroft AJ, Dring AM, Fenton JAL, Child JA, Allan JM, Morgan GJ. Polymorphic variation in GSTP1 modulates outcome following therapy for multiple myeloma. Blood 2003; 102:2345-50. [PMID: 12791655 DOI: 10.1182/blood-2003-02-0444] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glutathione S-transferase P1 (GSTP1) is a phase 2 drug metabolism enzyme involved in the metabolism and detoxification of a range of chemotherapeutic agents. A single nucleotide polymorphism (Ile105Val) results in a variant enzyme with lower thermal stability and altered catalytic activity. We hypothesized that patients with the less stable variant have a decreased ability to detoxify chemotherapeutic substrates, including melphalan, and have an altered outcome following treatment for multiple myeloma. We have assessed the impact of GSTP1 codon 105 polymorphisms in 222 patients entered into the Medical Research Council (MRC) myeloma VII trial (comparing standard-dose chemotherapy with high-dose therapy). In the standard-dose arm, patients with the variant allele (105Val) had an improved progression-free survival (PFS) (adjusted hazard ratios for PFS were 0.55 for heterozygotes and 0.52 for 105Val homozygotes, compared with 105Ile homozygotes; P for trend =.04); this was supported by a trend to improved overall survival, greater likelihood of entering plateau and shorter time to reach plateau in patients with the 105Val allele. No difference in outcome by genotype was found for patients treated with high-dose therapy. However, the progression-free survival advantage of the high-dose arm was seen only in patients homozygous for 105Ile (P =.008).
Collapse
Affiliation(s)
- Ranjit K Dasgupta
- Academic Unit of Hematology and Oncology, University of Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Belzile JP, Karatzas A, Shiu HY, Létourneau S, Palerme JS, Cournoyer D. Increased resistance to nitrogen mustards and antifolates following in vitro selection of murine fibroblasts and primary hematopoietic cells transduced with a bicistronic retroviral vector expressing the rat glutathione S-transferase A3 and a mutant dihydrofolate reductase. Cancer Gene Ther 2003; 10:637-46. [PMID: 12872145 DOI: 10.1038/sj.cgt.7700619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have constructed a retroviral bicistronic vector, MFG/GID, that transduces the expression of both the A3 isoform of the rat glutathione S-transferase (GST A3), and the tyr-22 variant of the human dihydrofolate reductase (DHFR(L22Y)). Transduction of murine 3T3 fibroblasts with this vector increased their in vitro resistance to chlorambucil (1.8-fold) and trimetrexate (TMTX) (748-fold). TMTX selection of a mixed population of 20% GID-transduced NIH 3T3 cells and 80% control cells resulted in a marked increase in the GST peroxidase activity associated with the GST A3 isoform (17.7-fold). MFG/GID-transduced primary clonogenic murine hematopoietic progenitor cells were likewise more resistant to TMTX and chlorambucil than control beta-gal-transduced cells. Selecting GID-transduced hematopoietic cells with a combination of TMTX and a nucleoside transport inhibitor resulted in a marked increase in resistance upon re-exposure to TMTX (99% survival). Similarly, GID-transduced hematopoietic cells selected with TMTX were more resistant to chlorambucil, with 40% survival at a drug concentration that killed practically all control cells. These results suggest that antifolate-mediated selection of MFG/GID-transduced hematopoietic cells could be used as a mean to enrich the population of transduced cells prior to or following transplantation, thus potentially conferring in vivo chemoprotection to nitrogen mustards and antifolates.
Collapse
Affiliation(s)
- Jean-Philippe Belzile
- Department of Human Genetics, Montreal General Hospital and Research Institute, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
16
|
Laufs S, Buss EC, Zeller WJ, Fruehauf S. Transfer of drug resistance genes in hematopoietic progenitors for chemoprotection: is it still an option? Drug Resist Updat 2003; 6:57-69. [PMID: 12729804 DOI: 10.1016/s1368-7646(03)00002-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For numerous malignancies a relationship between the intensity of antineoplastic chemotherapy and tumor response has been demonstrated. Myelotoxicity is the main cause of chemotherapy-associated morbidity and of treatment delays. The concept of myeloprotective cytostatic drug resistance gene transfer to normal hematopoietic stem cells (HSC) therefore sparks great enthusiasm. While initial studies using murine retroviral vectors on murine HSC showed that the concept works, a number of clinical studies in the last decade were not informative because of limitations in transduction efficiency and transgene expression.Furthermore, possible side effects such as unforeseen transgene activity and vector integration-based leukemogenesis have been reported. Among others, these developments raised some scepticism against the feasibility of myeloprotective gene transfer. Recently, considerable improvements have been achieved in vector design, HSC manipulation, selection protocols and risk assessment methods which are discussed in detail here. Based on these experimental studies successful clinical trials can now be anticipated.
Collapse
Affiliation(s)
- S Laufs
- Research Program Innovative Cancer Diagnostics and Therapy, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
17
|
Haase D, Binder C, Bünger J, Fonatsch C, Streubel B, Schnittger S, Griesinger F, Westphal G, Schoch C, Knopp A, Berkovicz D, Krieger O, Wörmann B, Hilgers R, Hallier E, Schulz T. Increased risk for therapy-associated hematologic malignancies in patients with carcinoma of the breast and combined homozygous gene deletions of glutathione transferases M1 and T1. Leuk Res 2002; 26:249-54. [PMID: 11792413 DOI: 10.1016/s0145-2126(01)00124-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The most serious long-term complications of anti-tumor therapy are secondary malignancies. Parameters which might allow an estimation of the individual risk to develop a therapy-induced neoplasia are urgently needed. We examined whether the genotypes of the glutathione S-transferases (GST) M1 and T1, which metabolize various cytostatic drugs, as well as reactive oxygen species, influence the risk for secondary neoplasia. In a retrospective study, we analyzed peripheral blood lymphocyte or bone marrow DNA samples from 213 patients with acute myeloid leukemia (AML) and 128 with myelodysplastic syndromes (MDS) 44 of whom suffered from therapy-associated AML/MDS. The control group consisted of 239 healthy individuals with comparable composition as to race and sex. GSTM1 and GSTT1 were analyzed by multiplex PCR. Comparison between patients and control group revealed a significant (P=0.0003) overrepresentation of combined deletions of both GSTM1 and GSTT1 (double null genotype) in the group of patients with AML/MDS secondary to chemo- and/or radiotherapy of a carcinoma of the breast. In this group, 55% of the patients displayed the double null genotype as compared with 8.8% in the control group. We conclude that patients with carcinoma of the breast and inheritance of a combined gene deletion of GSTM1 and GSTT1 might bear an increased risk to develop a secondary therapy-induced hematologic neoplasia. An insufficient detoxification of cytostatic drugs such as cyclophosphamide is suggested to represent the underlying pathomechanism.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/adverse effects
- Bone Marrow Cells/enzymology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/radiotherapy
- Breast Neoplasms, Male/drug therapy
- Breast Neoplasms, Male/genetics
- Breast Neoplasms, Male/radiotherapy
- Chromosome Aberrations
- Female
- Gene Deletion
- Genotype
- Glutathione Transferase/genetics
- Hematologic Neoplasms/etiology
- Hematologic Neoplasms/genetics
- Homozygote
- Humans
- Karyotyping
- Leukemia, Myeloid, Acute/chemically induced
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Radiation-Induced/etiology
- Lymphocytes/enzymology
- Male
- Middle Aged
- Myelodysplastic Syndromes/chemically induced
- Myelodysplastic Syndromes/etiology
- Myelodysplastic Syndromes/genetics
- Radiotherapy/adverse effects
- Retrospective Studies
- Risk Factors
- Translocation, Genetic
Collapse
Affiliation(s)
- Detlef Haase
- Department of Hematology and Oncology, Georg-August-University, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Allan JM, Wild CP, Rollinson S, Willett EV, Moorman AV, Dovey GJ, Roddam PL, Roman E, Cartwright RA, Morgan GJ. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci U S A 2001; 98:11592-7. [PMID: 11553769 PMCID: PMC58774 DOI: 10.1073/pnas.191211198] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2001] [Indexed: 01/02/2023] Open
Abstract
Glutathione S-transferases (GSTs) detoxify potentially mutagenic and toxic DNA-reactive electrophiles, including metabolites of several chemotherapeutic agents, some of which are suspected human carcinogens. Functional polymorphisms exist in at least three genes that encode GSTs, including GSTM1, GSTT1, and GSTP1. We hypothesize, therefore, that polymorphisms in genes that encode GSTs alter susceptibility to chemotherapy-induced carcinogenesis, specifically to therapy-related acute myeloid leukemia (t-AML), a devastating complication of long-term cancer survival. Elucidation of genetic determinants may help to identify individuals at increased risk of developing t-AML. To this end, we have examined 89 cases of t-AML, 420 cases of de novo AML, and 1,022 controls for polymorphisms in GSTM1, GSTT1, and GSTP1. Gene deletion of GSTM1 or GSTT1 was not specifically associated with susceptibility to t-AML. Individuals with at least one GSTP1 codon 105 Val allele were significantly over-represented in t-AML cases compared with de novo AML cases [odds ratio (OR), 1.81; 95% confidence interval (CI), 1.11-2.94]. Moreover, relative to de novo AML, the GSTP1 codon 105 Val allele occurred more often among t-AML patients with prior exposure to chemotherapy (OR, 2.66; 95% CI, 1.39-5.09), particularly among those with prior exposure to known GSTP1 substrates (OR, 4.34; 95% CI, 1.43-13.20), and not among those t-AML patients with prior exposure to radiotherapy alone (OR,1.01; 95% CI, 0.50-2.07). These data suggest that inheritance of at least one Val allele at GSTP1 codon 105 confers a significantly increased risk of developing t-AML after cytotoxic chemotherapy, but not after radiotherapy.
Collapse
Affiliation(s)
- J M Allan
- Molecular Epidemiology Unit, Academic Unit of Epidemiology and Health Services Research, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|