1
|
Corridon PR. Still finding ways to augment the existing management of acute and chronic kidney diseases with targeted gene and cell therapies: Opportunities and hurdles. Front Med (Lausanne) 2023; 10:1143028. [PMID: 36960337 PMCID: PMC10028138 DOI: 10.3389/fmed.2023.1143028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
The rising global incidence of acute and chronic kidney diseases has increased the demand for renal replacement therapy. This issue, compounded with the limited availability of viable kidneys for transplantation, has propelled the search for alternative strategies to address the growing health and economic burdens associated with these conditions. In the search for such alternatives, significant efforts have been devised to augment the current and primarily supportive management of renal injury with novel regenerative strategies. For example, gene- and cell-based approaches that utilize recombinant peptides/proteins, gene, cell, organoid, and RNAi technologies have shown promising outcomes primarily in experimental models. Supporting research has also been conducted to improve our understanding of the critical aspects that facilitate the development of efficient gene- and cell-based techniques that the complex structure of the kidney has traditionally limited. This manuscript is intended to communicate efforts that have driven the development of such therapies by identifying the vectors and delivery routes needed to drive exogenous transgene incorporation that may support the treatment of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- *Correspondence: Peter R. Corridon,
| |
Collapse
|
2
|
Tang P, Das JR, Li J, Yu J, Ray PE. An HIV-Tat inducible mouse model system of childhood HIV-associated nephropathy. Dis Model Mech 2020; 13:dmm045641. [PMID: 32917744 PMCID: PMC7648609 DOI: 10.1242/dmm.045641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Modern antiretroviral therapies (ART) have decreased the prevalence of HIV-associated nephropathy (HIVAN). Nonetheless, we continue to see children and adolescents with HIVAN all over the world. Furthermore, once HIVAN is established in children, it is difficult to revert its long-term progression, and we need better animal models of childhood HIVAN to test new treatments. To define whether the HIV-1 trans-activator (Tat) gene precipitates HIVAN in young mice, and to develop an inducible mouse model of childhood HIVAN, an HIV-Tat gene cloned from a child with HIVAN was used to generate recombinant adenoviral vectors (rAd-Tat). rAd-Tat and LacZ control vectors (2×109) were expressed in the kidney of newborn wild-type and HIV-transgenic (Tg26) FVB/N mice without significant proteinuria (n=5; 8 per group). Mice were sacrificed 7 and 35 days later to assess their renal outcome, the expression of HIV-genes and growth factors, and markers of cell growth and differentiation by RT-qPCR, immunohistochemistry and/or western blots. HIV-Tat induced the expression of HIV-1 genes and heparin-binding growth factors in the kidney of HIV-Tg26 mice, and precipitated HIVAN in the first month of life. No significant renal changes were detected in wild-type mice infected with rAd-Tat vectors, suggesting that HIV-Tat alone does not induce renal disease. This new mouse model of childhood HIVAN highlights the critical role that HIV-Tat plays in the pathogenesis of HIVAN, and could be used to study the pathogenesis and treatment of HIVAN in children and adolescents.
Collapse
Affiliation(s)
- Pingtao Tang
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Jharna R Das
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Jinliang Li
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Jing Yu
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Patricio E Ray
- Child Health Research Center, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Abstract
Mutations in approximately 80 genes have been implicated as the cause of various genetic kidney diseases. However, gene delivery to kidney cells from the blood is inefficient because of the natural filtering functions of the glomerulus, and research into and development of gene therapy directed toward kidney disease has lagged behind as compared with hepatic, neuromuscular, and ocular gene therapy. This lack of progress is in spite of numerous genetic mouse models of human disease available to the research community and many vectors in existence that can theoretically deliver genes to kidney cells with high efficiency. In the past decade, several groups have begun to develop novel injection techniques in mice, such as retrograde ureter, renal vein, and direct subcapsular injections to help resolve the issue of gene delivery to the kidney through the blood. In addition, the ability to retarget vectors specifically toward kidney cells has been underutilized but shows promise. This review discusses how recent advances in gene delivery to the kidney and the field of gene therapy can leverage the wealth of knowledge of kidney genetics to work toward developing gene therapy products for patients with kidney disease.
Collapse
Affiliation(s)
- Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA
| | - Michael A Barry
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Abstract
A resurgence in the development of newer gene therapy systems has led to recent successes in the treatment of B cell cancers, retinal degeneration and neuromuscular atrophy. Gene therapy offers the ability to treat the patient at the root cause of their malady by restoring normal gene function and arresting the pathological progression of their genetic disease. The current standard of care for most genetic diseases is based upon the symptomatic treatment with polypharmacy while minimizing any potential adverse effects attributed to the off-target and drug-drug interactions on the target or other organs. In the kidney, however, the development of gene therapy modifications to specific renal cells has lagged far behind those in other organ systems. Some positive strides in the past few years provide continued enthusiasm to invest the time and effort in the development of new gene therapy vectors for medical intervention to treat kidney diseases. This mini-review will systematically describe the pros and cons of the most commonly tested gene therapy vector systems derived from adenovirus, retrovirus, and adeno-associated virus and provide insight about their potential utility as a therapy for various types of genetic diseases in the kidney.
Collapse
Affiliation(s)
- Lori Davis
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
5
|
Kurosaki T, Kawakami S, Higuchi Y, Suzuki R, Maruyama K, Sasaki H, Yamashita F, Hashida M. Kidney-selective gene transfection using anionic bubble lipopolyplexes with renal ultrasound irradiation in mice. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1829-38. [PMID: 24954382 DOI: 10.1016/j.nano.2014.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 06/08/2014] [Accepted: 06/11/2014] [Indexed: 11/18/2022]
Abstract
UNLABELLED This study assessed the ability of a new ultrasound (US) responsive gene delivery carrier, bubble lipopolyplexes, to deliver genes to the kidneys. The bubble lipopolyplexes showed highly selective gene expression in kidney tubules, but only after renal irradiation with US. These bubble lipopolyplexes, however, did not increase the expression of biomarkers of kidney injury, including blood urea nitrogen, serum creatinine, kidney injury molecule-1 mRNA, and clusterin mRNA, or induce any histopathological abnormalities in the kidney. Furthermore, pDNA containing CMV early enhancer/chicken beta-actin promoter prolonged gene expression by the bubble lipopolyplexes in the kidney for 42 days. This novel renal gene delivery method, in which transfection of bubble lipopolyplexes was followed by US irradiation of the kidneys, resulting in cell-selective, high, and long-term gene expression without renal injury in mice, may have future applications in patient treatment. FROM THE CLINICAL EDITOR This study demonstrates a novel gene delivery method to the kidneys, utilizing bubble resulting in highly selective gene expression in renal tubules after ultrasound irradiation. In the studied rodent model, there was no evidence for renal damage using this novel delivery system.
Collapse
Affiliation(s)
- Tomoaki Kurosaki
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; The Japan Society for the Promotion of Science (JSPS), Tokyo, Japan.
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ryo Suzuki
- Department of Biopharmaceutics, School of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Kazuo Maruyama
- Department of Biopharmaceutics, School of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; Institute of Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Corridon PR, Rhodes GJ, Leonard EC, Basile DP, Gattone VH, Bacallao RL, Atkinson SJ. A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors. Am J Physiol Renal Physiol 2013; 304:F1217-29. [PMID: 23467422 DOI: 10.1152/ajprenal.00070.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene therapy has been proposed as a novel alternative to treat kidney disease. This goal has been hindered by the inability to reliably deliver transgenes to target cells throughout the kidney, while minimizing injury. Since hydrodynamic forces have previously shown promising results, we optimized this approach and designed a method that utilizes retrograde renal vein injections to facilitate transgene expression in rat kidneys. We show, using intravital fluorescence two-photon microscopy, that fluorescent albumin and dextrans injected into the renal vein under defined conditions of hydrodynamic pressure distribute broadly throughout the kidney in live animals. We found injection parameters that result in no kidney injury as determined by intravital microscopy, histology, and serum creatinine measurements. Plasmids, baculovirus, and adenovirus vectors, designed to express EGFP, EGFP-actin, EGFP-occludin, EGFP-tubulin, tdTomato-H2B, or RFP-actin fusion proteins, were introduced into live kidneys in a similar fashion. Gene expression was then observed in live and ex vivo kidneys using two-photon imaging and confocal laser scanning microscopy. We recorded widespread fluorescent protein expression lasting more than 1 mo after introduction of transgenes. Plasmid and adenovirus vectors provided gene transfer efficiencies ranging from 50 to 90%, compared with 10-50% using baculovirus. Using plasmids and adenovirus, fluorescent protein expression was observed 1) in proximal and distal tubule epithelial cells; 2) within glomeruli; and 3) within the peritubular interstitium. In isolated kidneys, fluorescent protein expression was observed from the cortex to the papilla. These results provide a robust approach for gene delivery and the study of protein function in live mammal kidneys.
Collapse
Affiliation(s)
- Peter R Corridon
- Biomolecular Imaging and Biophysics Graduate Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Mattison PC, Soler-García ÁA, Das JR, Jerebtsova M, Perazzo S, Tang P, Ray PE. Role of circulating fibroblast growth factor-2 in lipopolysaccharide-induced acute kidney injury in mice. Pediatr Nephrol 2012; 27:469-83. [PMID: 21959768 PMCID: PMC3265667 DOI: 10.1007/s00467-011-2001-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 11/24/2022]
Abstract
Fibroblast growth factor-2 (FGF-2) is an angiogenic growth factor involved in renal growth and regeneration. Previous studies in rodents revealed that single intrarenal injections of FGF-2 improved the outcome of acute kidney injury (AKI). Septic children usually show elevated plasma levels of FGF-2, and are at risk of developing AKI. However, the role of circulating FGF-2 in the pathogenesis of AKI is not well understood. We have developed a mouse model to determine how FGF-2 released into the circulation modulates the outcome of AKI induced by lipopolysaccharide (LPS). Young FVB/N mice were infected with adenoviruses carrying a secreted form of human FGF-2 or control LacZ vectors. Subsequently, when the circulating levels of FGF-2 were similar to those seen in septic children, mice were injected with a non-lethal dose of LPS or control buffer. All mice injected with LPS developed hypotension and AKI, from which they recovered after 5 days. FGF-2 did not improve the outcome of AKI, and induced more significant renal proliferative and apoptotic changes during the recovery phase. These findings suggest that circulating FGF-2 may not necessarily prevent the development or improve the outcome of AKI. Moreover, the renal accumulation of FGF-2 might cause further renal damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Patricio E. Ray
- Corresponding author.: Patricio Ray, Room 5346, 5 floor, Children’s National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010. Phone: (202) 476-2912, Fax: (202) 476-4477,
| |
Collapse
|
8
|
Ghayur A, Liu L, Kolb M, Chawla A, Lambe S, Kapoor A, Margetts PJ. Adenovirus-mediated gene transfer of TGF-β1 to the renal glomeruli leads to proteinuria. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:940-951. [PMID: 22203053 DOI: 10.1016/j.ajpath.2011.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 11/01/2011] [Accepted: 11/11/2011] [Indexed: 10/14/2022]
Abstract
The mechanism of proteinuria in many common kidney diseases involves glomerular hemodynamic effects and local expression of angiogenic, fibrogenic, and vasoactive factors. Transforming growth factor (TGF)-β has been associated with many diseases involving proteinuria and renal fibrosis. TGF-β has been shown to induce podocyte dedifferentiation in vitro, but its in vivo effects on the glomerular filtration barrier are not well described. In this study, we used an adenovirus vector to transfer active TGF-β1 to the glomeruli of rat kidneys. Transient TGF-β1 overexpression induced significant proteinuria, podocyte foot process effacement, nephrin down-regulation, and nephrinuria. The expression of synaptopodin was also significantly down-regulated by TGF-β1. Increased glomerular expression of Snail, suggestive of an in vivo dedifferentiation process, was associated with a loss of podocyte epithelial markers. The expression of angiopoietin-1 and angiopoietin-2 was significantly increased in TGF-β1-transfected glomeruli, and TGF-β1 increased the expression of the angiopoietin receptor, Tie2, in podocyte cell culture. TGF-β1 down-regulated nephrin and synaptopodin expression in podocytes in cell culture; this effect was reversed by the blockade of both angiopoietin and Tie2 activities. These findings suggest that locally produced TGF-β1 can cause podocyte dedifferentiation marked by a loss of synaptopodin, nephrin, and foot process effacement, partly regulated by angiopoietins. This process represents a novel pathway that may explain proteinuria in a variety of common renal diseases.
Collapse
Affiliation(s)
- Ayesha Ghayur
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Limin Liu
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Arun Chawla
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Shahid Lambe
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Anil Kapoor
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Peter J Margetts
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
9
|
Jerebtsova M, Ye X, Ray PE. A simple technique to establish a long-term adenovirus mediated gene transfer to the heart of newborn mice. Cardiovasc Hematol Disord Drug Targets 2009; 9:136-40. [PMID: 19519372 DOI: 10.2174/187152909788488645] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies using different techniques have shown that adenoviral-mediated gene transfer to different tissues, including the kidney, is more efficient in neonatal mice. In this study, we report a simple technique that allows an efficient and long term expression of beta-galactosidase (beta-gal) in the heart of newborn mice. Newborn and adult C57BL6/J mice were subjected to a single retro-orbital venous plexus injection of recombinant adenoviral vectors (rAd) (2 x 10(9) particles/g body weight) carrying the lac Z gene. Seven days after the injection, positive beta-gal staining was systematically observed in the heart, lung, intestine, liver, kidney and spleen of newborn mice. However, only the heart showed persistent expression of beta-gal one year after the initial injection. In contrast, adult mice showed only significant but transient beta-gal expression mainly in the liver. In summary, we have found that a single retro-orbital intravenous injection can be used to establish a long-term adenoviral-mediated gene transfer to cardiac cells of newborn mice.
Collapse
Affiliation(s)
- Marina Jerebtsova
- Center for Molecular Physiology, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | |
Collapse
|
10
|
Mukai H, Kawakami S, Hashida M. [Development of nucleic acid transfection technology to the kidney]. YAKUGAKU ZASSHI 2008; 128:1577-86. [PMID: 18981692 DOI: 10.1248/yakushi.128.1577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The kidney is one of the most important organs that play a crucial role in homeostasis and, therefore, congenital or acquired renal dysfunction causes refractory diseases, i.e., Alport's syndrome, Fabry's disease, diabetic nephropathy, IgA nephropathy, kidney cancer, transplant glomerulopathy. Nucleic acid transfection technology to the kidney is indispensable for the progress of biomedical research and the realization of gene therapy and nucleic acid drug for renal diseases. Control of renal nucleic acid transfection was difficult because of the structural complexity; however, the study of recombinant virus, synthetic carrier and physical force-mediated nucleic acid transfection to the kidney has advanced. Recombinant virus and synthetic carrier-mediated methods require long-term block of the blood or urinary flow for efficient transfection of nucleic acid because of the rich blood flow of the kidney. In contrast, physical force-mediated methods that transfect with nucleic acid via transient membrane permeability do not apprehend ischemia-reperfusion injury and, therefore, may be beneficial for nucleic acid transfection to the kidney. In this article, we collect the information of therapeutic gene, target molecule of the nucleic acid drug and target cells for renal diseases and structural property of the kidney from the point of view of nucleic acid transfection. Additively, current status of nucleic acid transfection technology to the kidney is reviewed.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
11
|
Isaka Y. Gene therapy targeting kidney diseases: routes and vehicles. Clin Exp Nephrol 2006; 10:229-35. [PMID: 17186326 DOI: 10.1007/s10157-006-0442-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 10/02/2006] [Indexed: 11/24/2022]
Abstract
Renal gene therapy may offer new strategies to treat diseases of native and transplanted kidneys. Several experimental techniques have been developed and employed using nonviral, viral, and cellular vectors. The most efficient viral vector for in vivo transfection appears to be adenovirus. In addition, enhanced naked plasmid techniques, such as the hemagglutinating virus of Japan (HVJ)-liposome method, electroporation, the hydrodynamic method, and ultrasound with microbubbles, are promising. Trapping genetically modified macrophages in the inflamed kidneys is an elegant method for site-specific gene delivery. The choice of delivery vehicle as well as the administration route determines the site of transduction. In conclusion, for both in vivo and ex vivo renal transfection, enhanced naked plasmids, adenoviruses, and modified cell vectors offer the best prospects for effective clinical application. Moreover, the development of safer and nonimmunogenic vectors may realize clinical renal gene therapy in the near future.
Collapse
Affiliation(s)
- Yoshitaka Isaka
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.
| |
Collapse
|
12
|
Li Z, Jerebtsova M, Liu XH, Tang P, Ray PE. Novel cystogenic role of basic fibroblast growth factor in developing rodent kidneys. Am J Physiol Renal Physiol 2006; 291:F289-96. [PMID: 16597610 DOI: 10.1152/ajprenal.00382.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) is a heparin-binding growth factor that is accumulated in human dysplastic and cystic renal diseases. Previous studies have shown that bFGF can modulate the growth of developing renal tubules; however, its role in the pathogenesis of renal cyst formation is not clearly understood. Here, we tested the hypothesis that overexpression of bFGF in developing rodent kidneys induces cyst formation in vivo. We used two different adenoviral-mediated gene-transferring approaches to overexpress bFGF in developing rodent kidneys. Initially, metanephric kidney (MK) explants harvested from embryonic day 15 Sprague-Dawley rats were infected with adenoviral vectors (rAd) encoding human bFGF or LacZ genes and transplanted under the renal capsule of adult female rats. Subsequently, to determine whether bFGF could induce renal cysts in developing kidneys with an intact renal collecting system, we injected rAd-bFGF or LacZ vectors in the retroorbital plexus of newborn mice. Basic FGF induced a more efficient integration of the MK explants into the host kidneys and increased the vascularization and proliferation of developing tubules, leading to tubular dilatation and rapid formation of renal cysts. In addition, we successfully expressed human bFGF in the kidney of newborn mice in vivo and induced tubular dilatation and renal cysts. In contrast, mice injected with rAd-lacZ did not develop tubular dilatation or renal cysts. To the best of our knowledge, these experiments show for the first time that overexpression of bFGF in developing rodent kidneys can induce the formation of renal cysts in vivo.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Animals, Newborn/physiology
- Cell Proliferation
- Female
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/physiology
- Gene Expression Regulation, Developmental/physiology
- Gene Transfer Techniques
- Genetic Vectors/genetics
- Humans
- Kidney/chemistry
- Kidney/cytology
- Kidney/growth & development
- Kidney/physiology
- Kidney Diseases, Cystic/etiology
- Kidney Diseases, Cystic/physiopathology
- Kidney Tubules, Collecting/chemistry
- Kidney Tubules, Collecting/cytology
- Kidney Tubules, Collecting/growth & development
- Kidney Tubules, Collecting/physiology
- Mice
- Mice, Inbred C57BL
- Organ Culture Techniques
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Zhuangwu Li
- Center for Genetic Medicine, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
13
|
Jerebtsova M, Liu XH, Ye X, Ray PE. Adenovirus-mediated gene transfer to glomerular cells in newborn mice. Pediatr Nephrol 2005; 20:1395-400. [PMID: 16133067 DOI: 10.1007/s00467-005-1882-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 12/29/2004] [Accepted: 12/29/2004] [Indexed: 10/25/2022]
Abstract
The systemic delivery of recombinant adenoviral (rAd) vectors to renal glomeruli has been problematic due to the rapid clearance of the circulating virus by the liver. We have previously shown that prolonged retention of rAd vectors in the circulation by liver bypass improves the transduction of renal glomerular cells in adult mice and rats. This study was done to determine whether newborn mice have a delayed clearance of rAd vectors from the circulation and a more efficient transduction of glomerular cells after a systemic injection of rAd vectors. Newborn (1 day old) and adult (6 months old) C57Bl6/J mice ( n = 20 in each group) were injected with rAd vectors carrying the lacZ gene (rAd.lacZ) through the retro-orbital venous plexus (2 x 10(9 )particles/g body weight). The renal expression of Coxsackie and Adenoviral Receptors (CAR) and lacZ gene were evaluated at different time points by Western blots, immunohistochemistry, beta-galactosidase staining, enzyme assay activity, and RT-PCR studies in newborn and adult mice. The clearance rate of rAd.lacZ was significantly delayed in newborn mice, and the concentration of circulating virus in these mice was almost ten times higher than that in adult mice. Newborn kidneys showed increased expression of CAR, predominately localized in glomerular cells. These findings were associated with an efficient gene transfer of the lacZ gene into glomeruli and tubules of newborn mice. This study demonstrates for the first time the feasibility of using systemic intravenous injections of rAd vectors to express foreign genes in developing glomeruli of young mice.
Collapse
Affiliation(s)
- Marina Jerebtsova
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
14
|
Shin GT, Kim WH, Yim H, Kim MS, Kim H. Effects of suppressing intrarenal angiotensinogen on renal transforming growth factor-beta1 expression in acute ureteral obstruction. Kidney Int 2005; 67:897-908. [PMID: 15698429 DOI: 10.1111/j.1523-1755.2005.00154.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) mediates the up-regulation of fibrogenic factors such as transforming growth factor-beta1 (TGF-beta1) in chronic renal diseases. In addition, it has been proposed that the intrarenal renin-angiotensin system (RAS) is as important as the systemic RAS in kidney disease progression. METHODS We suppressed angiotensinogen (AGT) gene expression in the kidney by transferring recombinant adenoviral vectors carrying a transgene expressing AGT antisense mRNA, and determined the effect of the local inhibition of the RAS on TGF-beta1 synthesis in the kidneys of rats with unilateral ureteral obstruction (UUO). Immediately after UUO, recombinant adenovirus vectors were injected intraparenchymally into the cortex of obstructed kidneys. RESULTS beta-galactosidase (beta-gal)-stained kidney sections revealed the efficient transduction of the recombinant adenoviral vectors into tubular epithelial cells. Kidney cortex injected with AGT antisense showed significantly lower native AGT mRNA and protein expressions than control UUO kidneys at 24 hours and 5 days post-UUO. TGF-beta1 was significantly up-regulated in the renal cortex 24 hours and 5 days post-UUO, whereas AGT antisense-injected UUO rats showed significantly reduced TGF-beta1 expression compared to control UUO rats. Both fibronectin and collagen type I expressions were increased 24 hours and 5 days post-UUO, and these augmentations were considerably reduced by AGT antisense RNA treatment. CONCLUSION This study demonstrates that the suppression of intrarenal RAS prevents the formation of renal cortical TGF-beta1, and of related fibrogenic factors, in early UUO.
Collapse
Affiliation(s)
- Gyu-Tae Shin
- Department of Nephrology, Ajou University School of Medicine, Suwon, South Korea.
| | | | | | | | | |
Collapse
|
15
|
van der Wouden EA, Sandovici M, Henning RH, de Zeeuw D, Deelman LE. Approaches and methods in gene therapy for kidney disease. J Pharmacol Toxicol Methods 2004; 50:13-24. [PMID: 15233963 DOI: 10.1016/j.vascn.2004.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 03/08/2004] [Indexed: 11/22/2022]
Abstract
Renal gene therapy may offer new strategies to treat diseases of native and transplanted kidneys. Several experimental techniques have been developed and employed using nonviral, viral, and cellular vectors. The most efficient vector for in vivo transfection appears to be adenovirus. Glomeruli, blood vessels, interstitial cells, and pyelum can be transfected with high efficiency. In addition, electroporation and microbubbles with ultrasound, both being enhanced naked plasmid techniques, offer good opportunities. Trapping of mesangial cells into the glomeruli as well as natural targeting of monocytes or macrophages to inflamed kidneys are elegant methods for site-specific delivery of genes. For gene therapy in kidney transplantation, hemagglutinating virus of Japan liposomes are efficient vectors for tubular transfection, whereas enhanced naked plasmid techniques are suitable for glomerular transfection. However, adenovirus offers the best opportunities in a renal transplantation setup because varying parameters of graft perfusion allows targeting of different cell types. In renal grafts, lymphocytes can be used for selective targeting to sites of inflammation. In conclusion, for both in vivo and ex vivo renal transfection, enhanced naked plasmids and adenovirus offer the best perspectives for effective clinical application. Moreover, the development of safer, nonimmunogenic vectors and the large-scale production could make clinical renal gene therapy a realistic possibility for the near future.
Collapse
Affiliation(s)
- Els A van der Wouden
- Department of Clinical Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Haviv YS, Takayama K, Nagi PA, Tousson A, Cook W, Wang M, Lam JT, Naito S, Lei X, Carey DE, Curiel DT. Modulation of renal glomerular disease using remote delivery of adenoviral-encoded solubletype II TGF-beta receptor fusion molecule. J Gene Med 2004; 5:839-851. [PMID: 14533192 DOI: 10.1002/jgm.428] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Systemic adenoviral (Ad) gene therapy for renal disorders is largely hampered by the unique architecture of the kidney. Consequently, currently available Ad vectors are of only limited therapeutic utility in the context of glomerular and fibroproliferative renal diseases. METHODS The Ad vectors studied in the context of blocking renal fibrosis were AdTbeta-ExR and AdCATbeta-TR. AdTbeta-ExR encodes a chimeric soluble molecule comprising the entire ectodomain of the human type II TGF-beta receptor, genetically fused to the Fc fragment of the human IgG1 (sTbetaRII), while AdCATbeta-TR encodes only the dominant-negative truncated ectodomain of the human type II TGF-beta receptor. The biologic activity of the type II TGF-beta receptor was evaluated in vitro by its ability to inhibit cellular proliferation and in vivo in a unilateral ureter obstruction fibrosis model. Renal targeting with sTbetaRII was evaluated immunohistochemically after intramuscular (IM) delivery of AdTbeta-ExR. The renal antifibrotic effect of the Ad vectors was evaluated in a lupus murine model with both light and electron microscopy and urinalysis. RESULTS sTbetaRII was detected in the glomeruli after remote IM injection of AdTbeta-ExR, but not the control AdCATbeta-TR, indicating renal deposition of the heterologous soluble fusion protein after its expression in the muscle and secretion into the circulation. AdTbeta-ExR, but not AdCATbeta-TR, could transiently inhibit mesangial expansion, glomerular hypercellularity, proteinuria and cortical interstitial fibrosis in a murine lupus model. However, the autoimmune renal disease eventually surpassed the antifibrotic effect. CONCLUSIONS These results indicate the superiority of a soluble type II TGF-beta receptor over a dominant-negative, non-soluble type II TGF-beta receptor in the context of blocking renal fibrosis in murine models.
Collapse
Affiliation(s)
- Yosef S Haviv
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Koichi Takayama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Peter A Nagi
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Albert Tousson
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William Cook
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Minghui Wang
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John T Lam
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Seiji Naito
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Xiaosheng Lei
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Delicia E Carey
- Department of Medical Statistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David T Curiel
- Division of Human Gene Therapy, Departments of Medicine, Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Abstract
Somatic cell gene therapy has made considerable progress last five years and has shown clear success in some clinical trials. In the field of nephrology, both the elucidation of pathophysiology of renal diseases and the development of gene transfer technique have become driving force for new therapy of incurable renal diseases, such as Alport syndrome and polycystic kidney disease. Gene therapy of renal cancer, although its application is limited to advanced cancer, is the front-runner of clinical application. Erythropoietin gene therapy has provided encouraging results for the treatment of anemia in uremic rats and recently progressed to the inducible one in response to hypoxia. Gene therapy for glomerulonephritis and renal fibrosis showed prominent impact on experimental models, although the safety must be confirmed for prolonged treatment. Transplant kidney is an ideal material for gene modification and induction of tolerance in the transplant kidney is an attractive challenge. Emerging techniques are becoming available such as stem cell technology and messenger RNA silencing strategies. We believe that the future of gene therapy research is exciting and promising and it holds an enormous potential for clinical application.
Collapse
Affiliation(s)
- Enyu Imai
- Division of Nephrology, Department of Internal Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871
| | | |
Collapse
|
18
|
Choi YK, Kim YJ, Park HS, Choi K, Paik SG, Lee YI, Park JG. Suppression of glomerulosclerosis by adenovirus-mediated IL-10 expression in the kidney. Gene Ther 2003; 10:559-68. [PMID: 12646861 DOI: 10.1038/sj.gt.3301926] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glomerulosclerosis is a common morphologic result seen in almost all progressed renal diseases, and is the characteristic change in focal segmental glomerulosclerosis (FSGS). The most convincing hypothesis for glomerulosclerosis is cytokine-mediated injury by infiltrating immune cells in the glomerulus and tubulointerstitial area. This study investigated whether the anti-inflammatory effect of interleukin-10 (IL-10) when expressed by a recombinant adenoviral vector can prevent the onset of glomerulosclerosis in FGS/Kist mice (an animal model with naturally occurring renal failure initiated by FSGS). Each group of mice received recombinant adenoviruses encoding human IL-10 (Ad:hIL-10) by intraparenchymal injection at 6 weeks and were examined for cytokine expression, glomerular sclerotic index, and proteinuria. After injection of Ad:hIL-10 to the kidney, IL-10 expression was found to last over 20 days. Mice treated with Ad:hIL-10 were shown to have a significant reduction in the glomerular sclerotic index at 10 weeks when compared to control groups. The level of proteinuria in Ad:hIL-10-treated mice was also significantly reduced. About 50% of the urine samples of naive and Ad:LacZ-treated groups had severe levels of proteinuria. By contrast, at 10 weeks the group treated with Ad:hIL-10 had lower levels of proteinuria and transforming growth factor-beta1 (TGF-beta1) expression. These results demonstrate that IL-10 effectively prevents the development of glomerulosclerosis in FGS/Kist mice, and IL-10 gene therapy may be of use for the treatment of renal failure.
Collapse
Affiliation(s)
- Y-K Choi
- Department of Medical Genetic Engineering, Keimyung University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Gusella GL, Fedorova E, Hanss B, Marras D, Klotman ME, Klotman PE. Lentiviral gene transduction of kidney. Hum Gene Ther 2002; 13:407-14. [PMID: 11860707 DOI: 10.1089/10430340252792530] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene transfer into kidney holds great potential as a novel therapeutic approach. We have studied the transduction of kidney in vivo after delivery of lentiviral vectors by various routes of administration. A lentiviral vector expressing the bacterial lacZ gene from the cytomegalovirus early promoter was used. The lentiviral vector was delivered into the kidneys of BALB/c mice by retrograde infusion into the ureter, by injection into the renal vein or artery, or by direct injection into the renal parenchyma. Expression of the reporter gene was achieved independently of the route of administration, although it appeared more efficient after parenchymal or ureteral administration. After parenchymal or ureteral infusion, expression of the transgene was localized to the outer medulla and corticomedullary junction. In the case of parenchymal injection, expression of the reporter gene extended to the cortex. Detection of the transgene in the renal proximal tubules was confirmed by in situ polymerase chain reaction after parenchymal or ureteral infusion. On delivery of the lentiviral vector through the renal artery or vein, expression of the reporter gene was markedly lower than was observed with parenchymal or ureteral infusion and was limited to the inner medullary collecting ducts. No apparent histological abnormality was observed after virus administration and transgene expression was stable for at least 3 months. These results provide the first evidence that lentiviral vectors can stably transduce renal cells in vivo and may be effective vehicles for gene delivery to the kidney.
Collapse
Affiliation(s)
- G Luca Gusella
- Division of Nephrology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
BACKGROUND The expression of foreign genes into renal glomerular cells holds enormous potential to modulate the outcome of renal diseases. Recombinant adenoviruses (rAds) are promising gene transfer vectors because they have the ability to infect a wide range of nondividing cells. However, despite the fact that renal glomeruli are easily accessible via the renal circulation, adenovirus-mediated gene transfer into rodent glomeruli has been problematic. Here, we described our experience using rAd vectors to express foreign genes in rodent renal glomeruli in vivo and in cultured human renal glomerular cells. METHODS We developed two techniques--the "portal clamping" and "prolonged renal infusion"--to infect mouse and rat renal glomeruli in vivo, respectively. We used E-1-deleted rAd vectors carrying the lacZ gene encoding beta-galactosidase (Ad. CBlacZ) under the control of the cytomegalovirus enhancer and chicken beta-actin promoter. Cultured human renal glomerular podocytes, endothelial and mesangial cells were grown following standard techniques. Transgene expression was evaluated by doing beta-galactosidase staining and reverse transcription-polymerase chain reaction studies. RESULTS We found that both a prolonged exposure and a high concentration of circulating adenoviral vectors were required to achieve efficient gene transfer to renal glomerular cells in rodents. The virus-mediated transgene expression in renal glomeruli lasted for at least 42 days in mice and 21 days in rats without causing significant renal injury. CONCLUSIONS These data demonstrate the feasibility of using rAd vectors as a tool to express foreign genes in rodent renal glomerular cells and suggest that all types of human renal glomerular cells are equally susceptible to rAd infection.
Collapse
Affiliation(s)
- Xuehai Ye
- Centers for Genetic Medicine and Molecular Physiology, Children's Research Institute, Children's National Medical Center, and The George Washington University, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|