1
|
Viktorova EG, Khattar S, Samal S, Belov GA. Poliovirus Replicon RNA Generation, Transfection, Packaging, and Quantitation of Replication. ACTA ACUST UNITED AC 2018; 48:15H.4.1-15H.4.15. [PMID: 29512114 DOI: 10.1002/cpmc.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poliovirus is a prototype member of the Enterovirus genus of the Picornaviridae family of small positive strand RNA viruses, which include important human and animal pathogens. Quantitative assessment of viral replication is very important for investigation of the virus biology and the development of anti-viral strategies. The poliovirus genome structure allows replacement of structural genes with a reporter protein, such as a luciferase or a fluorescent protein, whose signals can be detected and quantified in vivo, thus permitting observation of replication kinetics in live cells. This paper presents protocols for poliovirus replicon RNA production, purification, packaging and transfection, as well as techniques for monitoring Renilla luciferase replication signal in living cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ekaterina G Viktorova
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Sunil Khattar
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Siba Samal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland
| |
Collapse
|
2
|
Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology 2017; 120:63-80. [PMID: 26905292 PMCID: PMC5929167 DOI: 10.1016/j.neuropharm.2016.02.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/07/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Neurological disorders - disorders of the brain, spine and associated nerves - are a leading contributor to global disease burden with a shockingly large associated economic cost. Various treatment approaches - pharmaceutical medication, device-based therapy, physiotherapy, surgical intervention, among others - have been explored to alleviate the resulting extent of human suffering. In recent years, gene therapy using viral vectors - encoding a therapeutic gene or inhibitory RNA into a "gutted" viral capsid and supplying it to the nervous system - has emerged as a clinically viable option for therapy of brain disorders. In this Review, we provide an overview of the current state and advances in the field of viral vector-mediated gene therapy for neurological disorders. Vector tools and delivery methods have evolved considerably over recent years, with the goal of providing greater and safer genetic access to the central nervous system. Better etiological understanding of brain disorders has concurrently led to identification of improved therapeutic targets. We focus on the vector technology, as well as preclinical and clinical progress made thus far for brain cancer and various neurodegenerative and neurometabolic disorders, and point out the challenges and limitations that accompany this new medical modality. Finally, we explore the directions that neurological gene therapy is likely to evolve towards in the future. This article is part of the Special Issue entitled "Beyond small molecules for neurological disorders".
Collapse
Affiliation(s)
- Sourav R Choudhury
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Eloise Hudry
- Alzheimer's Disease Research Unit, Harvard Medical School & Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Casey A Maguire
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Xandra O Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Paola Grandi
- Department of Neurological Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15219, USA.
| |
Collapse
|
3
|
Freistadt M, Eberle KE, Huang W, Schwarzenberger P. CD34+ hematopoietic stem cells support entry and replication of poliovirus: a potential new gene introduction route. Cancer Gene Ther 2013; 20:201-7. [PMID: 23392202 DOI: 10.1038/cgt.2013.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pluripotent hematopoietic stem cells (HSC) are critical in sustaining and constantly renewing the blood and immune system. The ability to alter biological characteristics of HSC by introducing and expressing genes would have enormous therapeutic possibilities. Previous unpublished work suggested that human HSC co-express CD34 (cluster of differentiation 34; an HSC marker) and CD155 (poliovirus receptor; also called Necl-5/Tage4/PVR/CD155). In the present study, we demonstrate the co-expression of CD34 and CD155 in primary human HSC. In addition, we demonstrate that poliovirus infects and replicates in human hematopoietic progenitor cell lines. Finally, we show that poliovirus replicates in CD34+ enriched primary HSC. CD34+ enriched HSC co-express CD155 and support poliovirus replication. These data may help further understanding of poliovirus spread in vivo and also demonstrate that human HSC may be amenable for gene therapy via poliovirus-capsid-based vectors. They may also help elucidate the normal function of Necl-5/Tage4/PVR/CD155.
Collapse
Affiliation(s)
- M Freistadt
- Science and Math, Delgado Community College, New Orleans, LA 70119, USA.
| | | | | | | |
Collapse
|
4
|
Rhoades RE, Tabor-Godwin JM, Tsueng G, Feuer R. Enterovirus infections of the central nervous system. Virology 2011; 411:288-305. [PMID: 21251690 PMCID: PMC3060663 DOI: 10.1016/j.virol.2010.12.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022]
Abstract
Enteroviruses (EV) frequently infect the central nervous system (CNS) and induce neurological diseases. Although the CNS is composed of many different cell types, the spectrum of tropism for each EV is considerable. These viruses have the ability to completely shut down host translational machinery and are considered highly cytolytic, thereby causing cytopathic effects. Hence, CNS dysfunction following EV infection of neuronal or glial cells might be expected. Perhaps unexpectedly given their cytolytic nature, EVs may establish a persistent infection within the CNS, and the lasting effects on the host might be significant with unanticipated consequences. This review will describe the clinical aspects of EV-mediated disease, mechanisms of disease, determinants of tropism, immune activation within the CNS, and potential treatment regimes.
Collapse
Affiliation(s)
| | | | | | - Ralph Feuer
- Corresponding author. Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, 5500 Campanile Drive; San Diego, CA 92182-4614, USA. Fax: +1 619 594 0777.
| |
Collapse
|
5
|
Abstract
Glioblastoma multiforme is the most common form of primary brain cancer. In the past decade, virotherapy of tumors has gained credence, particularly in glioma management, as these tumors are not completely resectable and tend to micro-metastasize. Adenoviral vectors have an advantage over other viral vectors in that they are relatively non-toxic and do not integrate in the genome. However, the lack of coxsackie and adenovirus receptors on surface of gliomas provides for inefficient transduction of wild-type adenoviral vectors in these tumors. By targeting receptors that are overexpressed in gliomas, modified adenoviral constructs have been shown to efficiently infect glioma cells. In addition, by taking advantage of tumor-specific promoter elements, oncolytic adenoviral vectors offer the promise of selective tumor-specific replication. This dual targeting strategy has enabled specificity in both laboratory and pre-clinical settings. This review examines current trends in adenoviral virotherapy of gliomas, with an emphasis on targeting modalities and future clinical applications.
Collapse
Affiliation(s)
- Suvobroto Nandi
- The University of Chicago, The Brain Tumor Center, Chicago, Illinois 60637, USA
| | | |
Collapse
|
6
|
Cooperative effect of the attenuation determinants derived from poliovirus sabin 1 strain is essential for attenuation of enterovirus 71 in the NOD/SCID mouse infection model. J Virol 2007; 82:1787-97. [PMID: 18057246 DOI: 10.1128/jvi.01798-07] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and is also associated with serious neurological disorders. An attenuated EV71 strain [EV71(S1-3')] has been established in the cynomolgus monkey infection model; this strain contains the attenuation determinants derived from the type 1 poliovirus vaccine strain, Sabin 1 [PV1(Sabin)], in the 5' nontranslated region (NTR), 3D polymerase, and 3' NTR. In this study, we analyzed the effect of the attenuation determinants of PV1(Sabin) on EV71 infection in a NOD/SCID mouse infection model. We isolated a mouse-adapted EV71 strain [EV71(NOD/SCID)] that causes paralysis of the hind limbs in 3- to 4-week-old NOD/SCID mice by adaptation of the virulent EV71(Nagoya) strain in the brains of NOD/SCID mice. A single mutation at nucleotide 2876 that caused an amino acid change in capsid protein VP1 (change of the glycine at position 145 to glutamic acid) was essential for the mouse-adapted phenotype in NOD/SCID mice. Next, we introduced attenuation determinants derived from PV1(Sabin) along with the mouse adaptation mutation into the EV71(Nagoya) genome. In 4-week-old mice, the determinants in the 3D polymerase and 3' NTR, which are the major temperature-sensitive determinants, had a strong effect on attenuation. In contrast, the effect of individual determinants was weak in 3-week-old NOD/SCID mice, and all the determinants were required for substantial attenuation. These results suggest that a cooperative effect of the attenuation determinants of PV1(Sabin) is essential for attenuated neurovirulence of EV71.
Collapse
|
7
|
Arita M, Nagata N, Sata T, Miyamura T, Shimizu H. Quantitative analysis of poliomyelitis-like paralysis in mice induced by a poliovirus replicon. J Gen Virol 2006; 87:3317-3327. [PMID: 17030866 DOI: 10.1099/vir.0.82172-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poliovirus (PV) infection causes severe paralysis, typically of the legs, by destruction of the motor neurons in the spinal cord. In this study, the relationship between PV replication in the spinal cord, damage in the motor neurons and poliomyelitis-like paralysis was analysed in transgenic mice expressing the human PV receptor (TgPVR21). First, a PV replicon encoding firefly luciferase in place of the capsid genes (PV-Fluc mc) was trans-encapsidated in 293T cells and the trans-encapsidated PV-Fluc mc (TE-PV-Fluc mc) was then inoculated into the spinal cords of TgPVR21 mice. TE-PV-Fluc mc was recovered with a titre of 6.3 x 10(7) infectious units ml(-1), which was comparable to those of PV1 strains. TgPVR21 mice inoculated with TE-PV-Fluc mc showed non-lethal paralysis of the hindlimbs, with severity ranging from a decline in grip strength to complete flaccid paralysis. The replication of TE-PV-Fluc mc in the spinal cord reached peak levels at 10 h post-inoculation (p.i.), followed by the appearance of paralysis at as early as 12 h p.i., reaching a plateau at 16 h p.i. Histological analysis showed a correlation between the lesion and the severity of the clinical symptoms in most mice. However, severe paralysis could also be observed with an apparently low lesion score, where as few as 5.3 x 10(2) motor neurons (1.4 % of the susceptible cells in the lumbar cord) were infected by TE-PV-Fluc mc. These results indicate that PV replication in a small population of the motor neurons was critical for severe residual poliomyelitis-like paralysis in TgPVR21 mice.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tetsutaro Sata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
8
|
Pulkkanen KJ, Yla-Herttuala S. Gene therapy for malignant glioma: current clinical status. Mol Ther 2006; 12:585-98. [PMID: 16095972 DOI: 10.1016/j.ymthe.2005.07.357] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 07/06/2005] [Accepted: 07/06/2005] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma is an aggressive brain tumor with a dismal prognosis. Gene therapy may offer a new option for the treatment of these patients. Several gene therapy approaches have shown anti-tumor efficiency in experimental studies, and the first clinical trials for the treatment of malignant glioma were conducted in the 1990s. HSV-tk gene therapy has been the pioneering and most commonly used approach, but oncolytic conditionally replicating adenoviruses and herpes simplex virus mutant vectors, p53, interleukins, interferons, and antisense oligonucleotides have also been used. During the past few years, adenoviruses have become the most popular gene transfer vectors, and some recent randomized, controlled trials have shown significant anti-tumor efficacy in clinical use. However, efficient gene delivery into the brain still presents a major problem, and there is a lack of definitive phase III trials, which would avoid potential problems associated with a small number of patients, inadvertent patient selection, and overinterpretation of results based on a few long-time survivors. For clinical efficacy, median survival is one of the most rigorous endpoints. It is used here to evaluate the usefulness of various treatment approaches and current clinical status of gene therapy for malignant glioma.
Collapse
Affiliation(s)
- Kalevi J Pulkkanen
- Department of Molecular Medicine, AI Virtanen Institute, University of Kuopio, Finland
| | | |
Collapse
|
9
|
Fedorova E, Battini L, Prakash-Cheng A, Marras D, Gusella GL. Lentiviral gene delivery to CNS by spinal intrathecal administration to neonatal mice. J Gene Med 2006; 8:414-24. [PMID: 16389638 DOI: 10.1002/jgm.861] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Direct injection of lentivectors into the central nervous system (CNS) mostly results in localized parenchymal transgene expression. Intrathecal gene delivery into the spinal canal may produce a wider dissemination of the transgene and allow diffusion of secreted transgenic proteins throughout the cerebrospinal fluid (CSF). Herein, we analyze the distribution and expression of LacZ and SEAP transgenes following the intrathecal delivery of lentivectors into the spinal canal. METHODS Four weeks after intrathecal injection into the spinal canal of newborn mice, the expression of the LacZ gene was assessed by histochemical staining and by in situ polymer chain reaction (PCR). Following the spinal infusion of a lentivector carrying the SEAP gene, levels of enzymatically active SEAP were measured in the CSF, blood serum, and in brain extracts. RESULTS Intrathecal spinal canal delivery of lentivectors to newborn mice resulted in patchy, widely scattered areas of beta-gal expression mostly in the meninges. The transduction of the meningeal cells was confirmed by in situ PCR. Following the spinal infusion of a lentivector carrying the SEAP gene, sustained presence of the reporter protein was detected in the CSF, as well as in blood serum, and brain extracts. CONCLUSIONS These findings indicate that intrathecal injections of lentivectors can provide significant levels of transgene expression in the meninges. Unlike intracerebral injections of lentivectors, intrathecal gene delivery through the spinal canal appears to produce a wider diffusion of the transgene. This approach is less invasive and may be useful to address those neurological diseases that benefit from the ectopic expression of soluble factors impermeable to the blood-brain barrier.
Collapse
Affiliation(s)
- Elena Fedorova
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
10
|
Jackson CA, Messinger J, Peduzzi JD, Ansardi DC, Morrow CD. Enhanced functional recovery from spinal cord injury following intrathecal or intramuscular administration of poliovirus replicons encoding IL-10. Virology 2005; 336:173-83. [DOI: 10.1016/j.virol.2005.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 03/03/2005] [Accepted: 03/15/2005] [Indexed: 11/26/2022]
|
11
|
Wang J, Gao SJ, Zhang PC, Wang S, Mao HQ, Leong KW. Polyphosphoramidate gene carriers: effect of charge group on gene transfer efficiency. Gene Ther 2004; 11:1001-10. [PMID: 14985789 DOI: 10.1038/sj.gt.3302248] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cationic polymeric carriers have been widely used for gene delivery. However, the structure-function relationship, especially the effect of charge groups of cationic polymeric carriers on the transfection activity, is poorly understood. To examine this important parameter, a series of cationic polymers, polyphosphoramidates (PPAs) with an identical backbone, same side chain spacer, similar molecular weights but different charge groups containing primary to quaternary amino groups (PPA-EA, PPA-MEA, PPA-DMA and PPA-TMA, Figure 1) were synthesized. The DNA-binding affinity of these four PPAs increased in the order of PPA-EA<PPA-MEA<PPA-DMA approximately PPA-TMA. The cytotoxicity decreased in the order of PPA-EA>PPA-MEA>PPA-DMA>PPA-TMA. Particle size and zeta potential of four different types of PPA/DNA nanoparticles did not show significant correlation with PPA structure. These PPAs did not show significant buffering capacity within pH 5-7, even though transfection mediated by PPA-EA was the only one that seemed to be limited by endolysomal escape. Endocytosis of DNA mediated by PPAs was also similar (17-22%) for all four PPAs. However, the transfection efficiency of these PPAs varied significantly. In vitro transfection efficiency of PPAs decreased in the order of PPA-EA>PPA-MEA>PPA-DMA approximately PPA-TMA. Nanoparticles with PPA-EA containing primary amino groups gave the highest transfection efficiency in cell lines at the charge ratios from 6/1 to 20/1 (+/-). Matching the trend of transfection efficiency observed in vitro, PPA-EA mediated the highest transgene expression, comparable to that of polyethylenimine, in the spinal cord following intrathecal injection of the nanoparticles. These results establish that PPA gene carriers with primary amino group side chains are more potent than those with secondary, tertiary or quaternary amino groups in vitro and in the intrathecal gene delivery model.
Collapse
Affiliation(s)
- J Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
12
|
Fultz PN, Stallworth J, Porter D, Novak M, Anderson MJ, Morrow CD. Immunogenicity in pig-tailed macaques of poliovirus replicons expressing HIV-1 and SIV antigens and protection against SHIV-89.6P disease. Virology 2003; 315:425-37. [PMID: 14585346 DOI: 10.1016/s0042-6822(03)00546-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the search for an effective vaccine against the human immunodeficiency virus (HIV), novel ways to deliver viral antigens are being evaluated. One such approach is the use of nonreplicating viral vectors encoding HIV and/or SIV genes that are expressed after infection of host cells. Nonreplicating poliovirus vectors, termed replicons, that expressed HIV-1/HXB2 and SIVmac239 gag and various HIV-1 env genes from different clades were tested for immunogenicity and protective efficacy against intravenous challenge of pig-tailed macaques with SHIV-89.6P. To maximize both cellular and humoral immune responses, a prime-boost regimen was used. Initially, macaques were immunized four times over 35 weeks by either the intranasal and intrarectal or the intramuscular (im) route with mixtures of poliovirus replicons expressing HIV-1 gag and multiple env genes. Immunization with replicons alone induced both serum antibodies and lymphocyte proliferative responses. After boosting with purified Env protein, neutralizing antibodies to SHIV-89.6P were induced in four of five immunized animals. In a second experiment, four macaques were immunized im three times over 27 weeks with replicons expressing the SIVmac239 gag and HIV-1/HXB2 env genes. All immunized animals were then boosted twice with purified HIV-1-89.6 rgp140-Env and SIVmac239 p55-Gag proteins. Four control animals received only the two protein inoculations. Immunized and control animals were then challenged intravenously with the pathogenic SHIV-89.6P. After challenge the animals were monitored for virus isolation from peripheral blood mononuclear cells and plasma viremia and for changes in virus-specific antibody titers. Naïve pig-tailed macaques experienced rapid loss of CD4(+) T cells and died between 38 and 62 weeks after infection. In contrast, macaques immunized with replicons and proteins rapidly cleared plasma virus and did not experience sustained loss of CD4(+) lymphocytes. Furthermore, two of the four macaques that were immunized only with purified proteins maintained high viral burdens and lost greater than 95% of their CD4(+) lymphocytes within 2 to 4 weeks after challenge. Thus, poliovirus replicons expressing HIV-1 and SIV antigens were immunogenic in pig-tailed macaques and appeared to enhance the protective effects observed after administration of purified proteins alone.
Collapse
Affiliation(s)
- Patricia N Fultz
- Department of Microbiology, University of Alabama School of Medicine Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Novak MJ, Moldoveanu Z, Huang WQ, Jackson CA, Palmer MT, McPherson SA, Morrow CD. Intramuscular immunization with poliovirus replicons primes for a humoral and cellular immune response to soluble antigen. Viral Immunol 2003; 16:169-82. [PMID: 12828868 DOI: 10.1089/088282403322017901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vaccines that stimulate both cellular and humoral immunity will probably be needed to control many infectious diseases. Previously, our laboratory generated a vaccine vector that uses poliovirus genomes (replicons) in which the capsid genes have been replaced by foreign proteins. In the current study, we have evaluated the immune responses induced by immunization using poliovirus replicons encoding green fluorescent protein (GFP). Although intramuscular administration of replicons resulted in GFP expression in the muscle, the levels of anti-GFP antibodies in serum were low compared to those of mice immunized with soluble, recombinant GFP (rGFP). Intramuscular booster immunization with rGFP in animals primed with replicons encoding GFP resulted in production of both serum IgG1 and IgG2a GFP-specific antibodies. The cells isolated from spleens of animals primed with replicons and boosted with rGFP secreted IFN-gamma after in vitro stimulation with rGFP. Intramuscular immunization of animals with a single dose of replicons encoding GFP followed by two intranasal applications of rGFP resulted in serum GFP-specific IgG1 and IgG2a isotypes, consistent with induction of both humoral and cellular responses. The results of this study establish that immunization with replicons followed by boost with soluble antigen, even at a different site, can generate a more diverse immune response compared with immunization regimen using soluble antigen alone. This strategy could be exploited for the development of new vaccine approaches against infectious diseases.
Collapse
Affiliation(s)
- Miroslav J Novak
- The Department of Microbiology, Research University of Alabama at Birmingham, Birmingham, Alabama 35294-0024, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Jackson CA, Messinger J, Palmer MT, Peduzzi JD, Morrow CD. Gene expression in the muscle and central nervous system following intramuscular inoculation of encapsidated or naked poliovirus replicons. Virology 2003; 314:45-61. [PMID: 14517059 DOI: 10.1016/s0042-6822(03)00385-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The spread of intramuscularly inoculated poliovirus to the central nervous system (CNS) has been documented in humans, monkeys, and mice transgenic for the human poliovirus receptor. Poliovirus spread is thought to be due to infection of the peripheral nerve and retrograde transport of poliovirus through the axon to the neuron cell body, where final virus uncoating occurs and translation/replication ensues. In previous studies, we have shown that polio-based vectors (replicons) can be used for gene delivery to motor neurons of the CNS. Using a replicon that encodes green fluorescent protein (GFP), we found that following intrathecal inoculation, GFP expression was confined to motorneurons of the spinal cord. To further characterize the gene expression of poliovirus in the periphery and CNS, we have intramuscularly inoculated transgenic mice with poliovirus replicons encoding GFP. Expression of GFP was demonstrated in the muscle, sciatic nerve, dorsal root ganglion, and the ventral horn motorneurons following intramuscular inoculation. There was no evidence of paralysis or behavioral abnormalities in the mice following intramuscular inoculation of the replicon encoding GFP. Injection of replicon RNA alone (naked RNA) into the muscle of transgenic mice or rats, which do not express the poliovirus receptor, also resulted in expression of GFP in the muscle, sciatic nerve, dorsal root ganglion, and ventral horn motorneurons, indicating that transport of the replicon RNA from the periphery to CNS had occurred. GFP expression was found in the muscles and sciatic nerve as early as 6 h after injection of replicons or replicon RNA, even after sciatic nerve section. Analysis at longer times postinjection revealed GFP expression similar to 6 h levels in the cut sciatic nerves and robust expression in the nerves of uncut animals. The infection and expression of GFP in the CNS following intramuscular inoculation of encapsidated replicons encoding GFP occurred in juvenile or adult animals. The expression of GFP in the CNS of juvenile animals was more intense and lasted for up to 5 weeks, in contrast to the duration of expression of approximately 96 h for adult animals. The results of these studies establish that poliovirus replicon RNA is expressed locally within the sciatic nerve and transported from the periphery to the CNS via axonal transport and support the potential of replicons for gene delivery to the CNS.
Collapse
Affiliation(s)
- Cheryl A Jackson
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
Systemic administration of analgesics can lead to serious adverse side effects compromising therapeutic benefit in some patients. Information coding pain transmits along an afferent neuronal network, the first synapses of which reside principally in the spinal cord. Delivery of compounds to spinal cord, the intended site of action for some analgesics, is potentially a more efficient and precise method for inhibiting the pain signal. Activation of specific proteins that reside in spinal neuronal membranes can result in hyperpolarization of secondary neurons, which can prevent transmission of the pain signal. This is one of the mechanisms by which opioids induce analgesia. The spinal cord is enriched in such molecular targets, the activation of which inhibit the transmission of the pain signal early in the afferent neuronal network. This review describes the pre-clinical models that enable new target discovery and development of novel analgesics for site-directed pain management.
Collapse
|
16
|
Shi L, Tang GP, Gao SJ, Ma YX, Liu BH, Li Y, Zeng JM, Ng YK, Leong KW, Wang S. Repeated intrathecal administration of plasmid DNA complexed with polyethylene glycol-grafted polyethylenimine led to prolonged transgene expression in the spinal cord. Gene Ther 2003; 10:1179-88. [PMID: 12833127 DOI: 10.1038/sj.gt.3301970] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene delivery into the spinal cord provides a potential approach to the treatment of spinal cord traumatic injury, amyotrophic lateral sclerosis, and spinal muscular atrophy. These disorders progress over long periods of time, necessitating a stable expression of functional genes at therapeutic levels for months or years. We investigated in this study the feasibility of achieving prolonged transgene expression in the rat spinal cord through repeated intrathecal administration of plasmid DNA complexed with 25 kDa polyethylenimine (PEI) into the lumbar subarachnoid space. With a single injection, DNA/PEI complexes could provide transgene expression in the spinal cord 40-fold higher than naked plasmid DNA. The transgene expression at the initial level persisted for about 5 days, with a low-level expression being detectable for at least 8 weeks. When repeated dosing was tested, a 70% attenuation of gene expression was observed following reinjection at a 2-week interval. This attenuation was associated with apoptotic cell death and detected even using complexes containing a noncoding DNA that did not mediate any gene expression. When each component of the complexes, PEI polymer or naked DNA alone, were tested in the first dosing, no reduction was found. Using polyethylene glycol (PEG)-grafted PEI for DNA complexes, no attenuation of gene expression was detected after repeated intrathecal injections, even in those rats receiving three doses, administered 2 weeks apart. Lumbar puncture is a routine and relatively nontraumatic clinical procedure. Repeated administration of DNA complexed with PEG-grafted PEI through this less invasive route may prolong the time span of transgene expression when needed, providing a viable strategy for the gene therapy of spinal cord disorders.
Collapse
Affiliation(s)
- L Shi
- Molecular and Biomaterials Laboratory, Institute of Materials Research & Engineering, National University of Singapore, 3 Research Link, Singapore 117602, Republic of Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tang GP, Zeng JM, Gao SJ, Ma YX, Shi L, Li Y, Too HP, Wang S. Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials 2003; 24:2351-62. [PMID: 12699673 DOI: 10.1016/s0142-9612(03)00029-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Poor solubility of polycation complexes with DNA is one drawback for their in vivo use as gene delivery systems. PEGylation often can improve the solubility of the complexes, minimize their aggregation and reduce their interaction with proteins in the physiological fluid. We investigated in vivo application of polyethylene glycol (PEG) modified polyethylenimine (PEI) for gene expression in the central nervous system. Varied numbers of linear PEG (2 kDa) were grafted to branched PEI (25 kDa) from the average number of PEG per one PEI macromolecule at 1-14.5. While higher degrees of PEG grafting did not improve gene expression, a PEI conjugate with one segment of PEG was able to mediate transgene expression in the spinal cord up to 11-fold higher than PEI homopolymer after intrathecal administration of its DNA complexes into the lumbar spinal cord subarachnoid space. Improved gene expression with this conjugate was observed as well in the brain after the lumbar injection. As assessed in in vitro studies, the PEI conjugate with a low degree of PEG grafting was able to reduce the size of polymer DNA complexes, prevent the aggregation of complexes, decrease the interactions of the complexes with serum proteins, counter the inhibition of serum to gene transfer, and enhance transfection efficiency, although not significant in affecting complex formation and reducing in vitro cell toxicity of PEI. The study provides the in vivo evidence that an appropriate degree of PEG modification is decisive in improving gene transfer mediated by PEGylated polymers.
Collapse
Affiliation(s)
- G P Tang
- Molecular and Biomaterials Lab, Institute of Materials Research & Engineering, National University of Singapore, 3 Research Link, Singapore 117602, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Davidson BL, Breakefield XO. Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 2003; 4:353-64. [PMID: 12728263 DOI: 10.1038/nrn1104] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Beverly L Davidson
- Program in Gene Therapy, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|