1
|
Zeng D, Tang Z, Wang W, Wang Z, Li J. Experimental investigation of the optimal driving pressure for a larger-volume controllable jet injection system. Med Eng Phys 2023; 119:104033. [PMID: 37634910 DOI: 10.1016/j.medengphy.2023.104033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Jet injection technology has become the alternative drug delivery method of conventional needle-based injection due to its obvious advantages. In order to meet the demand for larger volume injection, the pneumatic jet injection systems have efficiently administrated vaccine up to 1 mL in human. Our recent study has also demonstrated that controlling the driving pressure enabled the pneumatic jet injection system to deliver larger volumes of drugs to target sites at desired rates and times. This work continues to explore the optimal two-phase driving pressure combination with better injection efficiency for typical larger-volume (1.0 mL) jet injection with controllable pneumatic jet injection system. Under the combination of a first phase driving pressure of 1.00 MPa and a second phase driving pressure ranging from 0.25 to 0.90 MPa, dynamic characteristics, dispersion characteristics and pharmacokinetic characteristics of this controllable jet injection system were quantitatively analyzed. In all experiments, it was confirmed that the optimal driving pressure combination of 1.0 mL ejection volume was close to (1.00-0.50) MPa. That is, the injection velocities of 151.85 m/s and 102.01 m/s for the first and second phase respectively facilitated better injection performance with a controlled release of 1.0 mL ejection volume. This strategy is practical for facilitating the clinical application of large-volume controllable jet injection systems.
Collapse
Affiliation(s)
- Dongping Zeng
- School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, 410114, China.
| | - Zheng Tang
- School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Wei Wang
- School of Energy and Power Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Zefeng Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiamin Li
- Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Byrne J, Huang HW, McRae JC, Babaee S, Soltani A, Becker SL, Traverso G. Devices for drug delivery in the gastrointestinal tract: A review of systems physically interacting with the mucosa for enhanced delivery. Adv Drug Deliv Rev 2021; 177:113926. [PMID: 34403749 DOI: 10.1016/j.addr.2021.113926] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
The delivery of macromolecules via the gastrointestinal (GI) tract remains a significant challenge. A variety of technologies using physical modes of drug delivery have been developed and investigated to overcome the epithelial cell layer of the GI tract for local and systemic delivery. These technologies include direct injection, jetting, ultrasound, and iontophoresis, which have been largely adapted from transdermal drug delivery. Direct injection of agents using needles through endoscopy has been used clinically for over a century. Jetting, a needle-less method of drug delivery where a high-speed stream of fluid medication penetrates tissue, has been evaluated pre-clinically for delivery of agents into the buccal mucosa. Ultrasound has been shown to be beneficial in enhancing delivery of macromolecules, including nucleic acids, in pre-clinical animal models. The application of an electric field gradient to drive drugs into tissues through the technique of iontophoresis has been shown to deliver highly toxic chemotherapies into GI tissues. Here in, we provide an in-depth overview of these physical modes of drug delivery in the GI tract and their clinical and preclinical uses.
Collapse
Affiliation(s)
- James Byrne
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Harvard Radiation Oncology Program, Boston, MA 02114, USA; Department of Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52240, USA
| | - Hen-Wei Huang
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - James C McRae
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sahab Babaee
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Amin Soltani
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sarah L Becker
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Penny MA, Camponovo F, Chitnis N, Smith TA, Tanner M. Future use-cases of vaccines in malaria control and elimination. Parasite Epidemiol Control 2020; 10:e00145. [PMID: 32435704 PMCID: PMC7229487 DOI: 10.1016/j.parepi.2020.e00145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 02/18/2020] [Accepted: 03/29/2020] [Indexed: 11/29/2022] Open
Abstract
Malaria burden has significantly changed or decreased over the last 20 years, however, it remains an important health problem requiring the rigorous application of existing tools and approaches, as well as the development and use of new interventions. A malaria vaccine has long been considered a possible new intervention to aid malaria burden reduction. However, after decades of development, only one vaccine to protect children has completed phase 3 studies. Before being widely recommended for use, it must further demonstrate safety, impact and feasibility in ongoing pilot implementation studies. Now is an appropriate time to consider the use-cases and health targets of future malaria vaccines. These must be considered in the context of likely innovations in other malaria tools such as vector control, as well as the significant knowledge gaps on the appropriate target antigens, and the immunology of vaccine-induced protection. Here we discuss the history of malaria vaccines and suggest some future use-cases for future malaria vaccines that will support achieving malaria health goals in different settings.
Collapse
Affiliation(s)
| | - Flavia Camponovo
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Thomas A. Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
A Novel Controllable Pneumatic Needle-Free Injection System for Larger-Volume Drug Delivery. J Pharm Sci 2020; 109:1772-1779. [DOI: 10.1016/j.xphs.2020.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 11/21/2022]
|
6
|
Simmons JA, Davis J, Thomas J, Lopez J, Le Blanc A, Allison H, Slook H, Lewis P, Holtz J, Fisher P, Broderick KE, Marston JO. Characterization of skin blebs from intradermal jet injection: Ex-vivo studies. J Control Release 2019; 307:200-210. [PMID: 31252035 DOI: 10.1016/j.jconrel.2019.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/14/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023]
Abstract
This paper presents results from an ex-vivo study of intradermal jet injections, which is an attractive method to achieve both needle-free and fractional dose delivery of vaccines. Due to the fact that fluid properties of many novel therapeutics and vaccines can vary significantly, a key parameter for our study is the fluid viscosity, whilst the main focus is on determining the best correlation between the delivered volume and geometrical dimensions of the fluid deposit. For this we use a combination of top-view (skin wheal), underside (below the dermis), and cross-section (true skin bleb) perspectives and find that the top-view alone, as done in clinical practice, is insufficient to estimate the volume deposited in the dermis. Overall, the best correlation is found between the injection volume and cross-sectional diameter, however there is significant variation amongst the different fluids. For mean injection volumes of 60 μL the mean bleb diameter is ≈8 mm, with mean aspect ratio h¯/d=0.38, indicating the blebs are mostly oblate. However, the shape varies with viscosity and the higher viscosity does not spread laterally to the same degree as lower viscosity fluids. In addition, our high-speed video observations of the injection process, reveal some interesting dynamics of the jet injection method, and we modeled the bleb growth with an exponential saturation.
Collapse
Affiliation(s)
- Jonathan A Simmons
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America; Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Justin Davis
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - James Thomas
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Juan Lopez
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Andrew Le Blanc
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Haley Allison
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Haley Slook
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Paul Lewis
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Joshua Holtz
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America
| | - Paul Fisher
- Inovio Pharmaceuticals, 10480 Wateridge Circle, San Diego, CA 92121, United States of America
| | - Kate E Broderick
- Inovio Pharmaceuticals, 10480 Wateridge Circle, San Diego, CA 92121, United States of America
| | - Jeremy O Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States of America.
| |
Collapse
|
7
|
McKeage JW, Ruddy BP, Nielsen PM, Taberner AJ. Power-efficient controlled jet injection using a compound ampoule. J Control Release 2018; 291:127-134. [DOI: 10.1016/j.jconrel.2018.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 10/28/2022]
|
8
|
McKeage JW, Ruddy BP, Nielsen PMF, Taberner AJ. The effect of jet speed on large volume jet injection. J Control Release 2018; 280:51-57. [PMID: 29723614 DOI: 10.1016/j.jconrel.2018.04.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 01/18/2023]
Abstract
Jet injection presents a promising alternative to needle and syringe injection for transdermal drug delivery. The controllability of recently-developed jet injection devices now allows jet speed to be modulated during delivery, and has enabled efficient and accurate delivery of volumes up to 0.3 mL. However, recent attempts to inject larger volumes of up to 1 mL using the same methods have highlighted the different requirements for successful delivery at these larger volumes. This study aims to establish the jet speed requirements for delivery of 1 mL of liquid using a controllable, voice coil driven injection device. Additionally, the effectiveness of a two-phase jet speed profile is explored (where jet speed is deliberately decreased toward the end of the injection) and compared to the constant jet speed case. A controllable jet injection device was developed to deliver volumes of 1 mL of liquid at jet speeds >140 m/s. This device was used to deliver a series of injections into post-mortem porcine tissue in single and two-phase jet speed profiles. Single-phase injections were performed over the range 80 m/s to 140 m/s. Consistent delivery success (>80% of the liquid delivered) was observed at a jet speed of 130 m/s or greater. Consistent penetration into the muscle layer coincided with delivery success. Two-phase injections of 1 mL were performed with a first phase volume of 0.15 mL, delivered at 140 m/s, while the injection of the remainder of fluid was delivered at a second phase speed that was varied over the range 60 m/s to 120 m/s. Ten two-phase injections were performed with a second phase speed of 100 m/s producing a mean delivery volume of 0.8 mL ± 0.2 mL, while the single-phase injections at 100 m/s achieved a mean delivery volume of 0.4 mL ± 0.3 mL. These results demonstrate that a reduced jet speed can be used in the later stages of a 1 mL injection to achieve delivery success at a reduced energy cost. We found that a jet speed approaching 100 m/s was required following initial penetration to successfully deliver 1 mL, whereas speeds as low as 50 m/s have been used for volumes of <0.3 mL. These findings provide valuable insight into the effect of injection volume and speed on delivery success; this information is particularly useful for devices that have the ability to vary jet speed during drug delivery.
Collapse
Affiliation(s)
- James W McKeage
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Bryan P Ruddy
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
| | - Poul M F Nielsen
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
| | - Andrew J Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
9
|
|
10
|
|
11
|
Su Y, Romeu-Bonilla E, Anagnostou A, Fitz-Patrick D, Hearl W, Heiland T. Safety and long-term immunological effects of CryJ2-LAMP plasmid vaccine in Japanese red cedar atopic subjects: A phase I study. Hum Vaccin Immunother 2017; 13:2804-2813. [PMID: 28605294 PMCID: PMC5718801 DOI: 10.1080/21645515.2017.1329070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Japanese Red Cedar (JRC) pollen induced allergy affects one third of Japanese and the development of effective therapies remains an unachieved challenge. We designed a DNA vaccine encoding CryJ2 allergen from the JRC pollen and Lysosomal Associated Membrane Protein 1 (LAMP-1) to treat JRC allergy. These Phase IA and IB trials assessed safety and immunological effects of the investigational CryJ2-LAMP DNA vaccine in both non-sensitive and sensitive Japanese expatriates living in Honolulu, Hawaii. In the Phase IA trial, 6 JRC non-sensitive subjects and 9 JRC and/or Mountain Cedar (MC) sensitive subjects were given 4 vaccine doses (each 4mg/1ml) intramuscularly (IM) at 14-day intervals. Nine JRC and/or MC sensitive subjects were given 4 doses (2 mg/0.5 ml) IM at 14-day intervals. The safety and functional biomarkers were followed for 132 d. Following this, 17 of 24 subjects were recruited into the IB trial and received one booster dose (2 mg/0.5 ml) IM approximately 300 d after the first vaccination dose to which they were randomized in the first phase of the trial. All safety endpoints were met and all subjects tolerated CryJ2-LAMP vaccinations well. At the end of the IA trial, 10 out of 12 JRC sensitive and 6 out of 11 MC sensitive subjects experienced skin test negative conversion, possibly related to the CryJ2-LAMP vaccinations. Collectively, these data suggested that the CryJ2-LAMP DNA vaccine is safe and may be immunologically effective in treating JRC induced allergy.
Collapse
Affiliation(s)
- Yan Su
- a Immunomic Therapeutics, Inc. (ITI) , Rockville , MD , USA
| | | | | | | | - William Hearl
- a Immunomic Therapeutics, Inc. (ITI) , Rockville , MD , USA
| | - Teri Heiland
- a Immunomic Therapeutics, Inc. (ITI) , Rockville , MD , USA
| |
Collapse
|
12
|
A Plasmodium vivax Plasmid DNA- and Adenovirus-Vectored Malaria Vaccine Encoding Blood-Stage Antigens AMA1 and MSP1 42 in a Prime/Boost Heterologous Immunization Regimen Partially Protects Aotus Monkeys against Blood-Stage Challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00539-16. [PMID: 28179404 DOI: 10.1128/cvi.00539-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/06/2017] [Indexed: 01/30/2023]
Abstract
Malaria is caused by parasites of the genus Plasmodium, which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum, it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP142) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP142 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP142 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development.
Collapse
|
13
|
Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination. Sci Rep 2016; 6:33564. [PMID: 27658623 PMCID: PMC5034244 DOI: 10.1038/srep33564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
The delivery of plasmid DNA to the skin can target distinct subsets of dermal dendritic cells to confer a superior immune response. The needle-free immunization technology offers a reliable, safe and efficient means to administer intradermal (ID) injections. We report here that the ID injection of DNA vectors using an NF device (NF-ID) elicits a superior cell-mediated immune response, at much lesser DNA dosage, comparable in magnitude to the traditional intramuscular immunization. However, the humoral response is significantly impaired, possibly at the stage of B cell isotype switching. We found that the NF-ID administration deposits the DNA primarily on the epidermis resulting in a rapid loss of the DNA as well as the synthesized antigen due to the faster regeneration rate of the skin layers. Therefore, despite the immune-rich nature of the skin, the NF-ID immunization of DNA vectors may be limited by the impaired humoral response. Additional booster injections are required to augment the antibody response. As an alternative and a viable solution, we rescued the IgG response by coadministration of a Toll-like receptor 9 agonist, among other adjuvants examined. Our work has important implication for the optimization of the emerging needle-free technology for ID immunization.
Collapse
|
14
|
Su Y, Connolly M, Marketon A, Heiland T. CryJ-LAMP DNA Vaccines for Japanese Red Cedar Allergy Induce Robust Th1-Type Immune Responses in Murine Model. J Immunol Res 2016; 2016:4857869. [PMID: 27239481 PMCID: PMC4867073 DOI: 10.1155/2016/4857869] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/23/2016] [Accepted: 03/27/2016] [Indexed: 12/29/2022] Open
Abstract
Allergies caused by Japanese Red Cedar (JRC) pollen affect up to a third of Japanese people, necessitating development of an effective therapeutic. We utilized the lysosomal targeting property of lysosomal-associated membrane protein-1 (LAMP-1) to make DNA vaccines that encode LAMP-1 and the sequences of immunodominant allergen CryJ1 or CryJ2 from the JRC pollen. This novel strategy is designed to skew the CD4 T cell responses to the target allergens towards a nonallergenic Th1 response. CryJ1-LAMP and CryJ2-LAMP were administrated to BALB/c mice and antigen-specific Th1-type IgG2a and Th2-type IgG1 antibodies, as well as IgE antibodies, were assayed longitudinally. We also isolated different T cell populations from immunized mice and adoptively transferred them into naïve mice followed by CryJ1/CryJ2 protein boosts. We demonstrated that CryJ-LAMP immunized mice produce high levels of IFN-γ and anti-CryJ1 or anti-CryJ2 IgG2a antibodies and low levels of IgE antibodies, suggesting that a Th1 response was induced. In addition, we found that CD4(+) T cells are the immunological effectors of DNA vaccination in this allergy model. Together, our results suggest the CryJ-LAMP Vaccine has a potential as an effective therapeutic for JRC induced allergy by skewing Th1/Th2 responses.
Collapse
Affiliation(s)
- Yan Su
- Department of R&D, Immunomic Therapeutics, Inc. (ITI), Rockville, MD 20850, USA
| | - Michael Connolly
- Department of R&D, Immunomic Therapeutics, Inc. (ITI), Rockville, MD 20850, USA
| | - Anthony Marketon
- Department of R&D, Immunomic Therapeutics, Inc. (ITI), Rockville, MD 20850, USA
| | - Teri Heiland
- Department of R&D, Immunomic Therapeutics, Inc. (ITI), Rockville, MD 20850, USA
| |
Collapse
|
15
|
Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines 2015; 14:1509-23. [PMID: 26313239 DOI: 10.1586/14760584.2015.1081067] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The many factors impacting the efficacy of a vaccine can be broadly divided into three categories: features of the vaccine itself, including immunogen design, vaccine type, formulation, adjuvant and dosing; individual variations among vaccine recipients and vaccine administration-related parameters. While much literature exists related to vaccines, and recently systems biology has started to dissect the impact of individual subject variation on vaccine efficacy, few studies have focused on the role of vaccine administration-related parameters on vaccine efficacy. Parenteral and mucosal vaccinations are traditional approaches for licensed vaccines; novel vaccine delivery approaches, including needless injection and adjuvant formulations, are being developed to further improve vaccine safety and efficacy. This review provides a brief summary of vaccine administration-related factors, including vaccination approach, delivery route and method of administration, to gain a better understanding of their potential impact on the safety and immunogenicity of candidate vaccines.
Collapse
Affiliation(s)
- Lu Zhang
- a 1 Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,b 2 China-US Vaccine Research Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wei Wang
- c 3 Wang Biologics, LLC, Chesterfield, MO 63017, USA ; Current affiliation: Bayer HealthCare, Berkeley, CA 94710, USA
| | - Shixia Wang
- d 4 Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
16
|
Recent insights into cutaneous immunization: How to vaccinate via the skin. Vaccine 2015; 33:4663-74. [PMID: 26006087 DOI: 10.1016/j.vaccine.2015.05.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 12/24/2022]
Abstract
Technologies and strategies for cutaneous vaccination have been evolving significantly during the past decades. Today, there is evidence for increased efficacy of cutaneously delivered vaccines allowing for dose reduction and providing a minimally invasive alternative to traditional vaccination. Considerable progress has been made within the field of well-established cutaneous vaccination strategies: Jet and powder injection technologies, microneedles, microporation technologies, electroporation, sonoporation, and also transdermal and transfollicular vaccine delivery. Due to recent advances, the use of cutaneous vaccination can be expanded from prophylactic vaccination for infectious diseases into therapeutic vaccination for both infectious and non-infectious chronic conditions. This review will provide an insight into immunological processes occurring in the skin and introduce the key innovations of cutaneous vaccination technologies.
Collapse
|
17
|
Sarwar UN, Novik L, Enama ME, Plummer SA, Koup RA, Nason MC, Bailer RT, McDermott AB, Roederer M, Mascola JR, Ledgerwood JE, Graham BS. Homologous boosting with adenoviral serotype 5 HIV vaccine (rAd5) vector can boost antibody responses despite preexisting vector-specific immunity in a randomized phase I clinical trial. PLoS One 2014; 9:e106240. [PMID: 25264782 PMCID: PMC4179264 DOI: 10.1371/journal.pone.0106240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 07/30/2014] [Indexed: 12/31/2022] Open
Abstract
Background Needle-free delivery improves the immunogenicity of DNA vaccines but is also associated with more local reactogenicity. Here we report the first comparison of Biojector and needle administration of a candidate rAd5 HIV vaccine. Methods Thirty-one adults, 18–55 years, 20 naive and 11 prior rAd5 vaccine recipients were randomized to receive single rAd5 vaccine via needle or Biojector IM injection at 1010 PU in a Phase I open label clinical trial. Solicited reactogenicity was collected for 5 days; clinical safety and immunogenicity follow-up was continued for 24 weeks. Results Overall, injections by either method were well tolerated. There were no serious adverse events. Frequency of any local reactogenicity was 16/16 (100%) for Biojector compared to 11/15 (73%) for needle injections. There was no difference in HIV Env-specific antibody response between Biojector and needle delivery. Env-specific antibody responses were more than 10-fold higher in subjects receiving a booster dose of rAd5 vaccine than after a single dose delivered by either method regardless of interval between prime and boost. Conclusions Biojector delivery did not improve antibody responses to the rAd5 vaccine compared to needle administration. Homologous boosting with rAd5 gene-based vectors can boost insert-specific antibody responses despite pre-existing vector-specific immunity. Trial Registration Clinicaltrials.gov NCT00709605 NCT00709605
Collapse
Affiliation(s)
- Uzma N. Sarwar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Mary E. Enama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Sarah A. Plummer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Martha C. Nason
- Biostatistics Research Branch, Division of Clinical Research, NIAID, NIH, Bethesda, MD, United States of America
| | - Robert T. Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| | | |
Collapse
|
18
|
Luo K, Zhang H, Zavala F, Biragyn A, Espinosa DA, Markham RB. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities. PLoS One 2014; 9:e90413. [PMID: 24599116 PMCID: PMC3943962 DOI: 10.1371/journal.pone.0090413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/30/2014] [Indexed: 12/31/2022] Open
Abstract
Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80–100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.
Collapse
Affiliation(s)
- Kun Luo
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Hong Zhang
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Fidel Zavala
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Diego A. Espinosa
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Richard B. Markham
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
Parasitic diseases caused by protozoan and helminth parasites are among the leading causes of morbidity and mortality in tropical and subtropical regions of the world. Unfortunately, at present, there is no vaccine against any human parasitic disease. Conventional vaccine methods have largely failed against parasitic infections. This is due, in part, to the complexity of the parasite life cycle, the ability of the parasite to evade the immune system, and difficulties in identifying and eliciting the desired protective immune responses. The discovery of DNA vaccines has renewed hope for vaccine development against parasites. In the last decade, DNA vaccines were successful in inducing at least partial protection against several parasitic diseases. This review discusses the latest developments in DNA vaccines against tropical parasitic diseases.
Collapse
Affiliation(s)
- Akram A Da'dara
- Department of Immunology and Infectious Disease, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA.
| | | |
Collapse
|
20
|
Abstract
Many vaccine candidates are highly purified, sometimes monomeric antigens and as a result, not very immunogenic. Antigen delivery systems optimize the presentation of antigens. They also play a major role in solving the problem of there being an increasing number of vaccines but limited opportunities in which to include these vaccines in immunization programs. The number of injections is restricted and combining vaccines may lead to immunological and physicochemical incompatibility. In this review, the current status with respect to parenteral and mucosal delivery systems is discussed. These include lipid-based systems such as liposomes and immunostimulating complexes, as well as polymeric microspheres. In addition, developments in needle-free, dermal delivery devices such as jet injectors, microneedles and patches are presented.
Collapse
Affiliation(s)
- Gideon Kersten
- Netherlands Vaccine Institute, Unit Research and Development, P.O. Box 457, 3720 BA BILHOVEN, The Netherlands.
| | | |
Collapse
|
21
|
Inducing humoral and cellular responses to multiple sporozoite and liver-stage malaria antigens using exogenous plasmid DNA. Infect Immun 2013; 81:3709-20. [PMID: 23897618 DOI: 10.1128/iai.00180-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A vaccine candidate that elicits humoral and cellular responses to multiple sporozoite and liver-stage antigens may be able to confer protection against Plasmodium falciparum malaria; however, a technology for formulating and delivering such a vaccine has remained elusive. Here, we report the preclinical assessment of an optimized DNA vaccine approach that targets four P. falciparum antigens: circumsporozoite protein (CSP), liver stage antigen 1 (LSA1), thrombospondin-related anonymous protein (TRAP), and cell-traversal protein for ookinetes and sporozoites (CelTOS). Synthetic DNA sequences were designed for each antigen with modifications to improve expression and were delivered using in vivo electroporation (EP). Immunogenicity was evaluated in mice and nonhuman primates (NHPs) and assessed by enzyme-linked immunosorbent assay (ELISA), gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay, and flow cytometry. In mice, DNA with EP delivery induced antigen-specific IFN-γ production, as measured by ELISpot assay and IgG seroconversion against all antigens. Sustained production of IFN-γ, interleukin-2, and tumor necrosis factor alpha was elicited in both the CD4(+) and CD8(+) T cell compartments. Furthermore, hepatic CD8(+) lymphocytes produced LSA1-specific IFN-γ. The immune responses conferred to mice by this approach translated to the NHP model, which showed cellular responses by ELISpot assay and intracellular cytokine staining. Notably, antigen-specific CD8(+) granzyme B(+) T cells were observed in NHPs. Collectively, the data demonstrate that delivery of gene sequences by DNA/EP encoding malaria parasite antigens is immunogenic in animal models and can harness both the humoral and cellular arms of the immune system.
Collapse
|
22
|
Tamminga C, Sedegah M, Maiolatesi S, Fedders C, Reyes S, Reyes A, Vasquez C, Alcorta Y, Chuang I, Spring M, Kavanaugh M, Ganeshan H, Huang J, Belmonte M, Abot E, Belmonte A, Banania J, Farooq F, Murphy J, Komisar J, Richie NO, Bennett J, Limbach K, Patterson NB, Bruder JT, Shi M, Miller E, Dutta S, Diggs C, Soisson LA, Hollingdale MR, Epstein JE, Richie TL. Human adenovirus 5-vectored Plasmodium falciparum NMRC-M3V-Ad-PfCA vaccine encoding CSP and AMA1 is safe, well-tolerated and immunogenic but does not protect against controlled human malaria infection. Hum Vaccin Immunother 2013; 9:2165-77. [PMID: 23899517 PMCID: PMC3906401 DOI: 10.4161/hv.24941] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: In a prior study, a DNA prime / adenovirus boost vaccine (DNA/Ad) expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) (NMRC-M3V-D/Ad-PfCA Vaccine) induced 27% protection against controlled human malaria infection (CHMI). To investigate the contribution of DNA priming, we tested the efficacy of adenovirus vaccine alone (NMRC-M3V-Ad-PfCA ) in a Phase 1 clinical trial. Methodology/Principal Findings: The regimen was a single intramuscular injection with two non-replicating human serotype 5 adenovectors encoding CSP and AMA1, respectively. One x 1010 particle units of each construct were combined prior to administration. The regimen was safe and well-tolerated. Four weeks later, 18 study subjects received P. falciparum CHMI administered by mosquito bite. None were fully protected although one showed delayed onset of parasitemia. Antibody responses were low, with geometric mean CSP ELISA titer of 381 (range < 50–1626) and AMA1 ELISA of 4.95 µg/mL (range 0.2–38). Summed ex vivo IFN-γ ELISpot responses to overlapping peptides were robust, with geometric mean spot forming cells/million peripheral blood mononuclear cells [sfc/m] for CSP of 273 (range 38–2550) and for AMA1 of 1303 (range 435–4594). CD4+ and CD8+ T cell IFN-γ responses to CSP were positive by flow cytometry in 25% and 56% of the research subjects, respectively, and to AMA1 in 94% and 100%, respectively. Significance: In contrast to DNA/Ad, Ad alone did not protect against CHMI despite inducing broad, cell-mediated immunity, indicating that DNA priming is required for protection by the adenovirus-vectored vaccine. ClinicalTrials.gov Identifier: NCT00392015.
Collapse
Affiliation(s)
| | | | | | | | - Sharina Reyes
- Naval Medical Research Center; Silver Spring, MD USA
| | | | | | | | - Ilin Chuang
- Naval Medical Research Center; Silver Spring, MD USA
| | - Michele Spring
- Armed Forces Research Institute of Medical Sciences; Bangkok, Thailand
| | | | | | - Jun Huang
- Naval Medical Research Center; Silver Spring, MD USA
| | | | - Esteban Abot
- Naval Medical Research Center; Silver Spring, MD USA
| | | | | | - Fouzia Farooq
- Naval Medical Research Center; Silver Spring, MD USA
| | | | - Jack Komisar
- Walter Reed Army Institute of Research; Silver Spring, MD USA
| | - Nancy O Richie
- Walter Reed Army Institute of Research; Silver Spring, MD USA
| | - Jason Bennett
- Walter Reed Army Institute of Research; Silver Spring, MD USA
| | - Keith Limbach
- Naval Medical Research Center; Silver Spring, MD USA
| | | | | | - Meng Shi
- Walter Reed Army Institute of Research; Silver Spring, MD USA
| | | | - Sheetij Dutta
- Walter Reed Army Institute of Research; Silver Spring, MD USA
| | | | | | | | | | | |
Collapse
|
23
|
Graham BS, Enama ME, Nason MC, Gordon IJ, Peel SA, Ledgerwood JE, Plummer SA, Mascola JR, Bailer RT, Roederer M, Koup RA, Nabel GJ. DNA vaccine delivered by a needle-free injection device improves potency of priming for antibody and CD8+ T-cell responses after rAd5 boost in a randomized clinical trial. PLoS One 2013; 8:e59340. [PMID: 23577062 PMCID: PMC3620125 DOI: 10.1371/journal.pone.0059340] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/12/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND DNA vaccine immunogenicity has been limited by inefficient delivery. Needle-free delivery of DNA using a CO2-powered Biojector® device was compared to delivery by needle and syringe and evaluated for safety and immunogenicity. METHODS Forty adults, 18-50 years, were randomly assigned to intramuscular (IM) vaccinations with DNA vaccine, VRC-HIVDNA016-00-VP, (weeks 0, 4, 8) by Biojector® 2000™ or needle and syringe (N/S) and boosted IM at week 24 with VRC-HIVADV014-00-VP (rAd5) with N/S at 10(10) or 10(11) particle units (PU). Equal numbers per assigned schedule had low (≤500) or high (>500) reciprocal titers of preexisting Ad5 neutralizing antibody. RESULTS 120 DNA and 39 rAd5 injections were given; 36 subjects completed follow-up research sample collections. IFN-γ ELISpot response rates were 17/19 (89%) for Biojector® and 13/17 (76%) for N/S delivery at Week 28 (4 weeks post rAd5 boost). The magnitude of ELISpot response was about 3-fold higher in Biojector® compared to N/S groups. Similar effects on response rates and magnitude were observed for CD8+, but not CD4+ T-cell responses by ICS. Env-specific antibody responses were about 10-fold higher in Biojector-primed subjects. CONCLUSIONS DNA vaccination by Biojector® was well-tolerated and compared to needle injection, primed for greater IFN-γ ELISpot, CD8+ T-cell, and antibody responses after rAd5 boosting. TRIAL REGISTRATION ClinicalTrials.gov NCT00109629.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adolescent
- Adult
- Antibodies, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- DNA, Recombinant/genetics
- Dose-Response Relationship, Immunologic
- Female
- HIV-1/immunology
- HIV-1/metabolism
- Humans
- Immunity, Cellular/immunology
- Immunity, Humoral/immunology
- Immunization, Secondary/methods
- Injections
- Male
- Middle Aged
- Peptide Fragments/metabolism
- Safety
- Vaccination/instrumentation
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Young Adult
Collapse
Affiliation(s)
- Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chuang I, Sedegah M, Cicatelli S, Spring M, Polhemus M, Tamminga C, Patterson N, Guerrero M, Bennett JW, McGrath S, Ganeshan H, Belmonte M, Farooq F, Abot E, Banania JG, Huang J, Newcomer R, Rein L, Litilit D, Richie NO, Wood C, Murphy J, Sauerwein R, Hermsen CC, McCoy AJ, Kamau E, Cummings J, Komisar J, Sutamihardja A, Shi M, Epstein JE, Maiolatesi S, Tosh D, Limbach K, Angov E, Bergmann-Leitner E, Bruder JT, Doolan DL, King CR, Carucci D, Dutta S, Soisson L, Diggs C, Hollingdale MR, Ockenhouse CF, Richie TL. DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity. PLoS One 2013; 8:e55571. [PMID: 23457473 PMCID: PMC3573028 DOI: 10.1371/journal.pone.0055571] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/24/2012] [Indexed: 12/25/2022] Open
Abstract
Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. Trial Registration ClinicalTrials.govNCT00870987.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Adolescent
- Adult
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- CD8-Positive T-Lymphocytes/immunology
- Female
- Humans
- Immunity, Cellular
- Interferon-gamma/immunology
- Malaria Vaccines/adverse effects
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/therapeutic use
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Male
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Middle Aged
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Vaccines, DNA/adverse effects
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
- Young Adult
Collapse
Affiliation(s)
- Ilin Chuang
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Martha Sedegah
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Susan Cicatelli
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Michele Spring
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mark Polhemus
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Cindy Tamminga
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Noelle Patterson
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Melanie Guerrero
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jason W. Bennett
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Shannon McGrath
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Harini Ganeshan
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Maria Belmonte
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Fouzia Farooq
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Esteban Abot
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Jo Glenna Banania
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Jun Huang
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Rhonda Newcomer
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Lisa Rein
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Dianne Litilit
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Nancy O. Richie
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Chloe Wood
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jittawadee Murphy
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Robert Sauerwein
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | - Andrea J. McCoy
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Edwin Kamau
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - James Cummings
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jack Komisar
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Awalludin Sutamihardja
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Meng Shi
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Judith E. Epstein
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Santina Maiolatesi
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Donna Tosh
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Keith Limbach
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Evelina Angov
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Elke Bergmann-Leitner
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | - Denise L. Doolan
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - C. Richter King
- GenVec, Inc., Gaithersburg, Maryland, United States of America
| | - Daniel Carucci
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Sheetij Dutta
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | - Carter Diggs
- USAID, Washington, D. C., United States of America
| | - Michael R. Hollingdale
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Christian F. Ockenhouse
- US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Thomas L. Richie
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Hirobe S, Okada N, Nakagawa S. Transcutaneous vaccines--current and emerging strategies. Expert Opin Drug Deliv 2013; 10:485-98. [PMID: 23316778 DOI: 10.1517/17425247.2013.760542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Vaccination, which is the major fundamental prophylaxis against illness and death from infectious disease, has greatly contributed to the global improvement of human health. However, the disadvantages of conventional injection systems hamper the delivery of vaccination technologies to developing countries. The imminent practice of easy-to-use vaccination methods is expected to overcome certain issues associated with injectable vaccinations. One innovative method is the transcutaneous immunization (TCI) system. AREAS COVERED Two major strategies for TCI are discussed in this review. One is to promote antigen permeation of the skin barrier by patch systems or nanoparticles. The other is the delivery of antigens into the skin by electroporation and microneedles in order to physically overcome the skin barrier. Moreover, adjuvant development for TCI is discussed. EXPERT OPINION Many different approaches have been developed for TCI, which have the potential to be effective, easy-to-use and painless methods of vaccination. However, in practical terms, the guidelines concerning the manufacturing processes and clinical trial evaluation of the procedures have not kept pace with the development of these novel formulations. The accumulation of information regarding skin characteristics and the properties of TCI devices will help refine TCI system development guidelines and thus lead to the improvement of transcutaneous vaccination.
Collapse
Affiliation(s)
- Sachiko Hirobe
- Osaka University, Graduate School of Pharmaceutical Sciences, Laboratory of Biotechnology and Therapeutics, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
26
|
The development of gene-based vectors for immunization. Vaccines (Basel) 2013. [PMCID: PMC7151937 DOI: 10.1016/b978-1-4557-0090-5.00064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
|
28
|
Richie TL, Charoenvit Y, Wang R, Epstein JE, Hedstrom RC, Kumar S, Luke TC, Freilich DA, Aguiar JC, Sacci JB, Sedegah M, Nosek RA, De La Vega P, Berzins MP, Majam VF, Abot EN, Ganeshan H, Richie NO, Banania JG, Baraceros MFB, Geter TG, Mere R, Bebris L, Limbach K, Hickey BW, Lanar DE, Ng J, Shi M, Hobart PM, Norman JA, Soisson LA, Hollingdale MR, Rogers WO, Doolan DL, Hoffman SL. Clinical trial in healthy malaria-naïve adults to evaluate the safety, tolerability, immunogenicity and efficacy of MuStDO5, a five-gene, sporozoite/hepatic stage Plasmodium falciparum DNA vaccine combined with escalating dose human GM-CSF DNA. Hum Vaccin Immunother 2012; 8:1564-84. [PMID: 23151451 PMCID: PMC3601132 DOI: 10.4161/hv.22129] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When introduced in the 1990s, immunization with DNA plasmids was considered potentially revolutionary for vaccine development, particularly for vaccines intended to induce protective CD8 T cell responses against multiple antigens. We conducted, in 1997−1998, the first clinical trial in healthy humans of a DNA vaccine, a single plasmid encoding Plasmodium falciparum circumsporozoite protein (PfCSP), as an initial step toward developing a multi-antigen malaria vaccine targeting the liver stages of the parasite. As the next step, we conducted in 2000–2001 a clinical trial of a five-plasmid mixture called MuStDO5 encoding pre-erythrocytic antigens PfCSP, PfSSP2/TRAP, PfEXP1, PfLSA1 and PfLSA3. Thirty-two, malaria-naïve, adult volunteers were enrolled sequentially into four cohorts receiving a mixture of 500 μg of each plasmid plus escalating doses (0, 20, 100 or 500 μg) of a sixth plasmid encoding human granulocyte macrophage-colony stimulating factor (hGM-CSF). Three doses of each formulation were administered intramuscularly by needle-less jet injection at 0, 4 and 8 weeks, and each cohort had controlled human malaria infection administered by five mosquito bites 18 d later. The vaccine was safe and well-tolerated, inducing moderate antigen-specific, MHC-restricted T cell interferon-γ responses but no antibodies. Although no volunteers were protected, T cell responses were boosted post malaria challenge. This trial demonstrated the MuStDO5 DNA and hGM-CSF plasmids to be safe and modestly immunogenic for T cell responses. It also laid the foundation for priming with DNA plasmids and boosting with recombinant viruses, an approach known for nearly 15 y to enhance the immunogenicity and protective efficacy of DNA vaccines.
Collapse
|
29
|
Cherif MS, Shuaibu MN, Kurosaki T, Helegbe GK, Kikuchi M, Yanagi T, Tsuboi T, Sasaki H, Hirayama K. Immunogenicity of novel nanoparticle-coated MSP-1 C-terminus malaria DNA vaccine using different routes of administration. Vaccine 2011; 29:9038-50. [PMID: 21939717 DOI: 10.1016/j.vaccine.2011.09.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 08/31/2011] [Accepted: 09/09/2011] [Indexed: 01/08/2023]
Abstract
An important aspect in optimizing DNA vaccination is antigen delivery to the site of action. In this way, any alternative delivery system having higher transfection efficiency and eventual superior antibody production needs to be further explored. The novel nanoparticle, pDNA/PEI/γ-PGA complex, is one of a promising delivery system, which is taken up by cells and is shown to have high transfection efficiency. The immunostimulatory effect of this novel nanoparticle (NP) coated plasmid encoding Plasmodium yoelii MSP1-C-terminus was examined. Groups of C57BL/6 mice were immunized either with NP-coated MSP-1 plasmid, naked plasmid or NP-coated blank plasmid, by three different routes of administration; intravenous (i.v.), intraperitoneal (i.p.) and subcutaneous (s.c). Mice were primed and boosted twice at 3-week intervals, then challenged 2 weeks after; and 100%, 100% and 50% mean of survival was observed in immunized mice with coated DNA vaccine by i.p., i.v. and s.c., respectively. Coated DNA vaccine showed significant immunogenicity and elicited protective levels of antigen specific IgG and its subclass antibody, an increased proportion of CD4(+) and CD8(+) T cells and INF-γ and IL-12 levels in the serum and cultured splenocyte supernatant, as well as INF-γ producing cells in the spleen. We demonstrate that, NP-coated MSP-1 DNA-based vaccine confers protection against lethal P. yoelii challenge in murine model across the various route of administration and may therefore, be considered a promising delivery system for vaccination.
Collapse
Affiliation(s)
- Mahamoud Sama Cherif
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University 1-12-4 Sakamoto, 852-8523, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
This review provides a detailed look at the attributes and immunologic mechanisms of plasmid DNA vaccines and their utility as laboratory tools as well as potential human vaccines. The immunogenicity and efficacy of DNA vaccines in a variety of preclinical models is used to illustrate how they differ from traditional vaccines in novel ways due to the in situ antigen production and the ease with which they are constructed. The ability to make new DNA vaccines without needing to handle a virulent pathogen or to adapt the pathogen for manufacturing purposes demonstrates the potential value of this vaccine technology for use against emerging and epidemic pathogens. Similarly, personalized anti-tumor DNA vaccines can also readily be made from a biopsy. Because DNA vaccines bias the T-helper (Th) cell response to a Th1 phenotype, DNA vaccines are also under development for vaccines against allergy and autoimmune diseases. The licensure of four animal health products, including two prophylactic vaccines against infectious diseases, one immunotherapy for cancer, and one gene therapy delivery of a hormone for a food animal, provides evidence of the efficacy of DNA vaccines in multiple species including horses and pigs. The size of these target animals provides evidence that the somewhat disappointing immunogenicity of DNA vaccines in a number of human clinical trials is not due simply to the larger mass of humans compared with most laboratory animals. The insights gained from the mechanisms of protection in the animal vaccines, the advances in the delivery and expression technologies for increasing the potency of DNA vaccines, and encouragingly potent human immune responses in certain clinical trials, provide insights for future efforts to develop DNA vaccines into a broadly useful vaccine and immunotherapy platform with applications for human and animal health.
Collapse
|
31
|
Abstract
Intradermal (ID) vaccination can offer improved immunity and simpler logistics of delivery, but its use in medicine is limited by the need for simple, reliable methods of ID delivery. ID injection by the Mantoux technique requires special training and may not reliably target skin, but is nonetheless used currently for BCG and rabies vaccination. Scarification using a bifurcated needle was extensively used for smallpox eradication, but provides variable and inefficient delivery into the skin. Recently, ID vaccination has been simplified by introduction of a simple-to-use hollow microneedle that has been approved for ID injection of influenza vaccine in Europe. Various designs of hollow microneedles have been studied preclinically and in humans. Vaccines can also be injected into skin using needle-free devices, such as jet injection, which is receiving renewed clinical attention for ID vaccination. Projectile delivery using powder and gold particles (i.e., gene gun) have also been used clinically for ID vaccination. Building off the scarification approach, a number of preclinical studies have examined solid microneedle patches for use with vaccine coated onto metal microneedles, encapsulated within dissolving microneedles or added topically to skin after microneedle pretreatment, as well as adapting tattoo guns for ID vaccination. Finally, technologies designed to increase skin permeability in combination with a vaccine patch have been studied through the use of skin abrasion, ultrasound, electroporation, chemical enhancers, and thermal ablation. The prospects for bringing ID vaccination into more widespread clinical practice are encouraging, given the large number of technologies for ID delivery under development.
Collapse
Affiliation(s)
- Marcel B.M. Teunissen
- , Department of Dermatology, University of Amsterdam, Academic Medica, Meibergdreef 9, Amsterdam, 1105 AZ Netherlands
| |
Collapse
|
32
|
Shuaibu MN, Cherif MS, Kurosaki T, Helegbe GK, Kikuchi M, Yanagi T, Sasaki H, Hirayama K. Effect of nanoparticle coating on the immunogenicity of plasmid DNA vaccine encoding P. yoelii MSP-1 C-terminal. Vaccine 2011; 29:3239-47. [PMID: 21354479 DOI: 10.1016/j.vaccine.2011.02.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/03/2011] [Accepted: 02/12/2011] [Indexed: 11/30/2022]
Abstract
In order to assess a new strategy for DNA vaccine formulation and delivery, plasmid encoding Plasmodium yoelii MSP-1 C-terminal was formulated with newly designed nanoparticle-an anionic ternary complex of polyethylenimine and γ-polyglutamic acid (pVAX-MSP-1/PEI/γ-PGA), and intravenously administered to C57BL/6 mice in four different doses, three times at 3-week interval. Antibody response as determined by ELISA, IFA and Western blot, was dose-dependent and subsequent challenge with 10(5)P. yoelii-infected red blood cells revealed 33-60% survival in repeated experiments at a dose of 80 μg pDNA/mouse. IgG subtypes and cytokine levels in the serum and culture supernatants of stimulated spleen cells were also measured. Antigen-specific IgG response provoked by the DNA vaccination was dominated by IgG1 and IgG2b. Although the elevation of IL-12p40 and IFN-γ was marginal (P≥0.354) in the coated group, interleukin-4 levels were significantly higher (P≥0.013) in the coated group than in the naked or control group, suggesting a predominant Th2-type CD4(+) T cell response. These results therefore, overall indicate the possibility of selection and optimization of DNA vaccine formulation for intravenous delivery and may be useful in designing a nanoparticle-coated DNA vaccine that could optimally elicit a desired antibody response for various disease conditions.
Collapse
Affiliation(s)
- M N Shuaibu
- Department of Immunogenetics, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bal SM, Ding Z, van Riet E, Jiskoot W, Bouwstra JA. Advances in transcutaneous vaccine delivery: Do all ways lead to Rome? J Control Release 2010; 148:266-82. [DOI: 10.1016/j.jconrel.2010.09.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/13/2010] [Indexed: 01/09/2023]
|
34
|
Abstract
The concept of a malaria vaccine has sparked great interest for decades; however, the challenge is proving to be a difficult one. Immune dysregulation by Plasmodium and the ability of the parasite to mutate critical epitopes in surface antigens have proved to be strong defense weapons. This has led to reconsideration of polyvalent and whole parasite strategies and ways to enhance cellular immunity to malaria that may be more likely to target conserved antigens and an expanded repertoire of antigens. These and other concepts will be discussed in this review.
Collapse
|
35
|
Mohammed AJ, AlAwaidy S, Bawikar S, Kurup PJ, Elamir E, Shaban MMA, Sharif SM, van der Avoort HGAM, Pallansch MA, Malankar P, Burton A, Sreevatsava M, Sutter RW. Fractional doses of inactivated poliovirus vaccine in Oman. N Engl J Med 2010; 362:2351-9. [PMID: 20573923 DOI: 10.1056/nejmoa0909383] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND We conducted a clinical trial of fractional doses of inactivated poliovirus vaccine administered to infants in Oman, in order to evaluate strategies for making the vaccine affordable for use in developing countries. METHODS We compared fractional doses of inactivated poliovirus vaccine (0.1 ml, representing one fifth of a full dose) given intradermally with the use of a needle-free jet injector device, with full doses of vaccine given intramuscularly, with respect to immunogenicity and reactogenicity. Infants were randomly assigned at birth to receive either a fractional dose or a full dose of inactivated poliovirus vaccine at 2, 4, and 6 months. We also administered a challenge dose of monovalent type 1 oral poliovirus vaccine at 7 months and collected stool samples before and 7 days after administration of the challenge dose. RESULTS A total of 400 infants were randomized, of whom 373 (93.2%) fulfilled the study requirements. No significant baseline differences between the groups were detected. Thirty days after completion of the three-dose schedule, the rates of seroconversion to types 1, 2, and 3 poliovirus were 97.3%, 95.7%, and 97.9%, respectively, in the fractional-dose group, as compared with 100% seroconversion to all serotypes in the full-dose group (P=0.01 for the comparison with respect to type 2 poliovirus; results with respect to types 1 and 3 poliovirus were not significant). The median titers were significantly lower in the fractional-dose group than in the full-dose group (P<0.001 for all three poliovirus serotypes). At 7 months, 74.8% of the infants in the fractional-dose group and 63.1% of those in full-dose group excreted type 1 poliovirus (P=0.03). Between birth and 7 months, 42 hospitalizations were reported, all related to infectious causes, anemia, or falls, with no significant difference between vaccination groups. CONCLUSIONS These data show that fractional doses of inactivated poliovirus vaccine administered intradermally at 2, 4, and 6 months, as compared with full doses of inactivated poliovirus vaccine given intramuscularly on the same schedule, induce similar levels of seroconversion but significantly lower titers. (Current Controlled Trials number, ISRCTN17418767.)
Collapse
|
36
|
Klinman DM, Klaschik S, Tross D, Shirota H, Steinhagen F. FDA guidance on prophylactic DNA vaccines: analysis and recommendations. Vaccine 2010; 28:2801-5. [PMID: 19941989 PMCID: PMC2847045 DOI: 10.1016/j.vaccine.2009.11.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/06/2009] [Indexed: 01/08/2023]
Abstract
The FDA has been regulating the conduct of prophylactic DNA vaccine trials in the US for nearly 15 years. This work describes the evolution of FDA policy over that period, the status of current regulatory guidance, and provides recommendations for further changes to facilitate development in this field.
Collapse
Affiliation(s)
- Dennis M Klinman
- Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
37
|
Dobaño C, Sedegah M, Rogers WO, Kumar S, Zheng H, Hoffman SL, Doolan DL. Plasmodium: Mammalian codon optimization of malaria plasmid DNA vaccines enhances antibody responses but not T cell responses nor protective immunity. Exp Parasitol 2009; 122:112-23. [DOI: 10.1016/j.exppara.2009.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 12/27/2008] [Accepted: 02/18/2009] [Indexed: 11/24/2022]
|
38
|
Sandström E, Nilsson C, Hejdeman B, Bråve A, Bratt G, Robb M, Cox J, Vancott T, Marovich M, Stout R, Aboud S, Bakari M, Pallangyo K, Ljungberg K, Moss B, Earl P, Michael N, Birx D, Mhalu F, Wahren B, Biberfeld G. Broad immunogenicity of a multigene, multiclade HIV-1 DNA vaccine boosted with heterologous HIV-1 recombinant modified vaccinia virus Ankara. J Infect Dis 2009; 198:1482-90. [PMID: 18808335 DOI: 10.1086/592507] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND A human immunodeficiency virus (HIV) vaccine that limits disease and transmission is urgently needed. This clinical trial evaluated the safety and immunogenicity of an HIV vaccine that combines a plasmid-DNA priming vaccine and a modified vaccinia virus Ankara (MVA) boosting vaccine. METHODS Forty healthy volunteers were injected with DNA plasmids containing gp160 of HIV-1 subtypes A, B, and C; rev B; p17/p24 gag A and B, and RTmut B by use of a needle-free injection system. The vaccine was administered intradermally or intramuscularly, with or without recombinant granulocyte macrophage colony-stimulating factor, and boosted with a heterologous MVA containing env, gag, and pol of CRF01A_E. Immune responses were monitored with HIV-specific interferon (IFN)-gamma and interleukin (IL)-2 ELISpot and lymphoproliferative assays (LPAs). RESULTS Vaccine-related adverse events were mild and tolerable. After receipt of the DNA priming vaccine, 11 (30%) of 37 vaccinees had HIV-specific IFN-gamma responses. After receipt of the MVA boosting vaccine, ELISpot assays showed that 34 (92%) of 37 vaccinees had HIV-specific IFN-gamma responses, 32 (86%) to Gag and 24 (65%) to Env. IFN-gamma production was detected in both the CD8(+) T cell compartment (5 of 9 selected vaccinees) and the CD4(+) T cell compartment (9 of 9). ELISpot results showed that 25 (68%) of 37 vaccinees had a positive IL-2 response and 35 (92%) of 38 had a positive LPA response. Of 38 subjects, a total of 37 (97%) were responders. One milligram of HIV-1 DNA administered intradermally was as effective as 4 mg administered intramuscularly in priming for the MVA boosting vaccine. CONCLUSION This HIV-DNA priming-MVA boosting approach is safe and highly immunogenic. TRIALS REGISTRATION International Standard Randomised Controlled Trial number: ISRCTN32604572 .
Collapse
Affiliation(s)
- Eric Sandström
- Department of Clinical Science and Education, Södersjukhuset, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Since the discovery, over a decade and a half ago, that genetically engineered DNA can be delivered in vaccine form and elicit an immune response, there has been much progress in understanding the basic biology of this platform. A large amount of data has been generated in preclinical model systems, and more sustained cellular responses and more consistent antibody responses are being observed in the clinic. Four DNA vaccine products have recently been approved, all in the area of veterinary medicine. These results suggest a productive future for this technology as more optimized constructs, better trial designs and improved platforms are being brought into the clinic.
Collapse
Affiliation(s)
- Michele A Kutzler
- Division of Infectious Diseases and HIV Medicine, The Department of Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | |
Collapse
|
40
|
Multifunctional T-cell characteristics induced by a polyvalent DNA prime/protein boost human immunodeficiency virus type 1 vaccine regimen given to healthy adults are dependent on the route and dose of administration. J Virol 2008; 82:6458-69. [PMID: 18448544 DOI: 10.1128/jvi.00068-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A phase I clinical vaccine study of a human immunodeficiency virus type 1 (HIV-1) vaccine regimen comprising a DNA prime formulation (5-valent env and monovalent gag) followed by a 5-valent Env protein boost for seronegative adults was previously shown to induce HIV-1-specific T cells and anti-Env antibodies capable of neutralizing cross-clade viral isolates. In light of these initial findings, we sought to more fully characterize the HIV-1-specific T cells by using polychromatic flow cytometry. Three groups of participants were vaccinated three times with 1.2 mg of DNA administered intradermally (i.d.; group A), 1.2 mg of DNA administered intramuscularly (i.m.; group B), or 7.2 mg of DNA administered i.m. (high-dose group C) each time. Each group subsequently received one or two doses of 0.375 mg each of the gp120 protein boost vaccine (i.m.). Env-specific CD4 T-cell responses were seen in the majority of participants; however, the kinetics of responses differed depending on the route of DNA administration. The high i.m. dose induced the responses of the greatest magnitude after the DNA vaccinations, while the i.d. group exhibited the responses of the least magnitude. Nevertheless, after the second protein boost, the magnitude of CD4 T-cell responses in the i.d. group was indistinguishable from those in the other two groups. After the DNA vaccinations and the first protein boost, a greater number of polyfunctional Env-specific CD4 T cells (those with > or = 2 functions) were seen in the high-dose group than in the other groups. Gag-specific CD4 T cells and Env-specific CD8 T cells were seen only in the high-dose group. These findings demonstrate that the route and dose of DNA vaccines significantly impact the quality of immune responses, yielding important information for future vaccine design.
Collapse
|
41
|
Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 2008; 26:3197-208. [PMID: 18486285 DOI: 10.1016/j.vaccine.2008.03.095] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/17/2008] [Accepted: 03/24/2008] [Indexed: 11/23/2022]
Abstract
There has been a recent resurgence of interest in intradermal vaccine delivery. The physiological advantages of intradermal vaccine delivery have been known for some time, but the difficulties associated with performing an intradermal injection have historically limited its use. New delivery systems currently in development facilitate convenient intradermal vaccination, unlocking the potential advantages of this delivery route, and potentially transforming vaccine delivery.
Collapse
|
42
|
Goubier A, Fuhrmann L, Forest L, Cachet N, Evrad-Blanchard M, Juillard V, Fischer L. Superiority of needle-free transdermal plasmid delivery for the induction of antigen-specific IFNγ T cell responses in the dog. Vaccine 2008; 26:2186-90. [DOI: 10.1016/j.vaccine.2008.01.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 12/28/2022]
|
43
|
Preventing contamination between injections with multiple-use nozzle needle-free injectors: A safety trial. Vaccine 2008; 26:1344-52. [DOI: 10.1016/j.vaccine.2007.12.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/08/2007] [Accepted: 12/19/2007] [Indexed: 11/17/2022]
|
44
|
|
45
|
Luxembourg A, Evans CF, Hannaman D. Electroporation-based DNA immunisation: translation to the clinic. Expert Opin Biol Ther 2007; 7:1647-64. [DOI: 10.1517/14712598.7.11.1647] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Weiss WR, Kumar A, Jiang G, Williams J, Bostick A, Conteh S, Fryauff D, Aguiar J, Singh M, O'Hagan DT, Ulmer JB, Richie TL. Protection of rhesus monkeys by a DNA prime/poxvirus boost malaria vaccine depends on optimal DNA priming and inclusion of blood stage antigens. PLoS One 2007; 2:e1063. [PMID: 17957247 PMCID: PMC2031826 DOI: 10.1371/journal.pone.0001063] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 09/11/2007] [Indexed: 11/21/2022] Open
Abstract
Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher interferon-γ ELIspot responses to the PkCSP antigen correlated with earlier appearance of parasites in the blood, despite the fact that PkCSP vaccines had a protective effect.
Collapse
Affiliation(s)
- Walter R Weiss
- Naval Medical Research Center, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jiang G, Charoenvit Y, Moreno A, Baraceros MF, Banania G, Richie N, Abot S, Ganeshan H, Fallarme V, Patterson NB, Geall A, Weiss WR, Strobert E, Caro-Aquilar I, Lanar DE, Saul A, Martin LB, Gowda K, Morrissette CR, Kaslow DC, Carucci DJ, Galinski MR, Doolan DL. Induction of multi-antigen multi-stage immune responses against Plasmodium falciparum in rhesus monkeys, in the absence of antigen interference, with heterologous DNA prime/poxvirus boost immunization. Malar J 2007; 6:135. [PMID: 17925026 PMCID: PMC2147027 DOI: 10.1186/1475-2875-6-135] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 10/09/2007] [Indexed: 12/04/2022] Open
Abstract
The present study has evaluated the immunogenicity of single or multiple Plasmodium falciparum (Pf) antigens administered in a DNA prime/poxvirus boost regimen with or without the poloxamer CRL1005 in rhesus monkeys. Animals were primed with PfCSP plasmid DNA or a mixture of PfCSP, PfSSP2/TRAP, PfLSA1, PfAMA1 and PfMSP1-42 (CSLAM) DNA vaccines in PBS or formulated with CRL1005, and subsequently boosted with ALVAC-Pf7, a canarypox virus expressing the CSLAM antigens. Cell-mediated immune responses were evaluated by IFN-γ ELIspot and intracellular cytokine staining, using recombinant proteins and overlapping synthetic peptides. Antigen-specific and parasite-specific antibody responses were evaluated by ELISA and IFAT, respectively. Immune responses to all components of the multi-antigen mixture were demonstrated following immunization with either DNA/PBS or DNA/CRL1005, and no antigen interference was observed in animals receiving CSLAM as compared to PfCSP alone. These data support the down-selection of the CSLAM antigen combination. CRL1005 formulation had no apparent effect on vaccine-induced T cell or antibody responses, either before or after viral boost. In high responder monkeys, CD4+IL-2+ responses were more predominant than CD8+ T cell responses. Furthermore, CD8+ IFN-γ responses were detected only in the presence of detectable CD4+ T cell responses. Overall, this study demonstrates the potential for multivalent Pf vaccines based on rational antigen selection and combination, and suggests that further formulation development to increase the immunogenicity of DNA encoded antigens is warranted.
Collapse
Affiliation(s)
- George Jiang
- Malaria Program, Naval Medical Research Center, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wolchok JD, Yuan J, Houghton AN, Gallardo HF, Rasalan TS, Wang J, Zhang Y, Ranganathan R, Chapman PB, Krown SE, Livingston PO, Heywood M, Riviere I, Panageas KS, Terzulli SL, Perales MA. Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol Ther 2007; 15:2044-50. [PMID: 17726460 DOI: 10.1038/sj.mt.6300290] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Immunity to self antigens on cancer is constrained by tolerance/ignorance. DNA vaccines encoding xenogeneic differentiation antigens, such as tyrosinase (TYR), mediate tumor protection and regression in implantable mouse models, and dogs with spontaneous melanoma. We conducted a trial of mouse and human TYR DNA vaccines in stage III/IV melanoma patients. Eighteen human leukocyte antigen (HLA)-A*0201(+) melanoma patients were randomized as follows: one group received three mouse TYR DNA injections followed by three human TYR DNA injections; the other group received the same vaccines in opposite sequence. The study was conducted at three dose levels: 100, 500, and 1,500 microg DNA/injection, administered intramuscularly (IM) every 3 weeks. Most toxicities were grade 1 injection site reactions. Seven patients developed CD8(+) T-cell responses, defined by a >3 SD increase in baseline reactivity to TYR peptide in tetramer or intracellular cytokine staining (ICS) assays. There was found to be no relationship between dose, assigned schedule, and T-cell response. At a median of 42 months follow-up, median survival has not been reached. Mouse and human TYR DNA vaccines were found safe and induced CD8(+) T-cell responses in 7 of 18 patients. T cells recognizing a native TYR peptide had a phenotype consistent with that of effector memory cells.
Collapse
Affiliation(s)
- Jedd D Wolchok
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dobaño C, Rogers WO, Gowda K, Doolan DL. Targeting antigen to MHC Class I and Class II antigen presentation pathways for malaria DNA vaccines. Immunol Lett 2007; 111:92-102. [PMID: 17604849 DOI: 10.1016/j.imlet.2007.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/04/2007] [Accepted: 05/24/2007] [Indexed: 10/23/2022]
Abstract
An effective malaria vaccine which protects against all stages of Plasmodium infection may need to elicit robust CD8(+) and CD4(+) T cell and antibody responses. To achieve this, we have investigated strategies designed to improve the immunogenicity of DNA vaccines encoding the Plasmodium yoelii pre-erythrocytic stage antigens PyCSP and PyHEP17, by targeting the encoded proteins to the MHC Classes I and II processing and presentation pathways. For enhancement of CD8(+) T cell responses, we targeted the antigens for degradation by the ubiquitin (Ub)/proteosome pathway following the N-terminal rule. We constructed plasmids containing PyCSP or PyHEP17 genes fused to the Ub gene: plasmids where the N-terminal antigen residues were mutated from the stabilizing amino acid methionine to destabilizing arginine, plasmids where the C-terminal residues of Ub were mutated from glycine to alanine, and plasmids in which the potential hydrophobic leader sequences of the antigens were deleted. For enhancement of CD4(+) T cell and antibody responses, we targeted the antigens for degradation by the endosomal/lysosomal pathway by linking the antigen to the lysosome-associated membrane protein (LAMP). We found that immunization with DNA vaccine encoding PyHEP17 fused to Ub and bearing arginine induced higher IFN-gamma, cytotoxic and proliferative T cell responses than unmodified vaccines. However, no effect was seen for PyCSP using the same targeting strategies. Regarding Class II antigen targeting, fusion to LAMP did not enhance antibody responses to either PyHEP17 or PyCSP, and resulted in a marginal increase in lymphoproliferative CD4(+) T cell responses. Our data highlight the antigen dependence of immune enhancement strategies that target antigen to the MHC Class I and II pathways for vaccine development.
Collapse
Affiliation(s)
- Carlota Dobaño
- Malaria Program, Naval Medical Research Center, Silver Spring, MD 20910-7500, United States.
| | | | | | | |
Collapse
|
50
|
Wintermeyer P, Wands JR. Vaccines to prevent chronic hepatitis C virus infection: current experimental and preclinical developments. J Gastroenterol 2007; 42:424-32. [PMID: 17671756 DOI: 10.1007/s00535-007-2057-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 02/04/2023]
Affiliation(s)
- Philip Wintermeyer
- The Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | |
Collapse
|