1
|
Buzalewicz I, Kaczorowska A, Fijałkowski W, Pietrowska A, Matczuk AK, Podbielska H, Wieliczko A, Witkiewicz W, Jędruchniewicz N. Quantifying the Dynamics of Bacterial Biofilm Formation on the Surface of Soft Contact Lens Materials Using Digital Holographic Tomography to Advance Biofilm Research. Int J Mol Sci 2024; 25:2653. [PMID: 38473902 DOI: 10.3390/ijms25052653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The increase in bacterial resistance to antibiotics in recent years demands innovative strategies for the detection and combating of biofilms, which are notoriously resilient. Biofilms, particularly those on contact lenses, can lead to biofilm-related infections (e.g., conjunctivitis and keratitis), posing a significant risk to patients. Non-destructive and non-contact sensing techniques are essential in addressing this threat. Digital holographic tomography emerges as a promising solution. This allows for the 3D reconstruction of the refractive index distribution in biological samples, enabling label-free visualization and the quantitative analysis of biofilms. This tool provides insight into the dynamics of biofilm formation and maturation on the surface of transparent materials. Applying digital holographic tomography for biofilm examination has the potential to advance our ability to combat the antibiotic bacterial resistance crisis. A recent study focused on characterizing biofilm formation and maturation on six soft contact lens materials (three silicone hydrogels, three hydrogels), with a particular emphasis on Staphylococcus epidermis and Pseudomonas aeruginosa, both common culprits in ocular infections. The results revealed species- and time-dependent variations in the refractive indexes and volumes of biofilms, shedding light on cell dynamics, cell death, and contact lens material-related factors. The use of digital holographic tomography enables the quantitative analysis of biofilm dynamics, providing us with a better understanding and characterization of bacterial biofilms.
Collapse
Affiliation(s)
- Igor Buzalewicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, 73A H. M. Kamienskiego St., 51-124 Wroclaw, Poland
| | - Aleksandra Kaczorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 14a F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | | | - Aleksandra Pietrowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Anna Karolina Matczuk
- Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 31 C.K. Norwida St., 51-375 Wroclaw, Poland
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Alina Wieliczko
- Department of Epizootiology and Veterinary Administration with Clinic of Infectious Diseases, Wroclaw University of Environmental and Life Sciences, 45 Grunwaldzki Square, 50-366 Wroclaw, Poland
| | - Wojciech Witkiewicz
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, 73A H. M. Kamienskiego St., 51-124 Wroclaw, Poland
| | - Natalia Jędruchniewicz
- Research and Development Centre, Regional Specialist Hospital in Wroclaw, 73A H. M. Kamienskiego St., 51-124 Wroclaw, Poland
| |
Collapse
|
2
|
Chowdhary A, Van Gelder RN, Sundararajan M. Methodologic Considerations for Studying the Ocular Surface Microbiome. OPHTHALMOLOGY SCIENCE 2023; 3:100408. [PMID: 38025161 PMCID: PMC10654231 DOI: 10.1016/j.xops.2023.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
The ocular surface microbiome, unlike that of the skin or gut, has not been well characterized. Culture experiments historically suggested a nearly sterile ocular surface, but initial application of molecular methods such as 16S ribosomal RNA and high-throughput sequencing demonstrated a surprisingly rich ocular surface microbiome. However, a major limitation in studying such a low-biomass niche is the potential for artifactual results when amplification-based techniques such as ribosomal polymerase chain reaction and shotgun sequencing are used. It will be essential to establish standards across the field for sample collection, positive and negative controls, and limitation of contamination in both the laboratory setting and computational analysis. New developments in ocular microbiome research, including the generation of reference reagents and fluoroscopic imaging techniques, provide improved means to validate sequencing results and to visualize complex interactions between host cells and bacteria. Through more thorough characterization of the ocular surface microbiome, the connections between a dysregulated surface and ophthalmic disease may be better understood. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Apoorva Chowdhary
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Russell N. Van Gelder
- Department of Ophthalmology, University of Washington, Seattle, Washington
- Roger and Angie Karalis Johnson Retina Center, Seattle, Washington
- Department of Biological Structure, University of Washington, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Miel Sundararajan
- Department of Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
3
|
Das T, Joseph J, Simunovic MP, Grzybowski A, Chen KJ, Dave VP, Sharma S, Staropoli P, Flynn H. Consensus and controversies in the science of endophthalmitis management: Basic research and clinical perspectives. Prog Retin Eye Res 2023; 97:101218. [PMID: 37838286 DOI: 10.1016/j.preteyeres.2023.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
Infectious endophthalmitis is a severe intraocular infection caused by bacteria, or less commonly by fungi. It can occur after penetrating eye procedures, trauma, or the spread of infection from contiguous structures or via emboli from distant organs. Because of the time-critical nature of the treatment, endophthalmitis is treated with the clinical diagnosis and modified by the microbiological report of the intraocular contents. The current strategy for managing endophthalmitis relies on pre-clinical literature, case series, and one large multi-center randomized clinical trial on post-cataract surgery endophthalmitis. Culture-susceptibility of the microorganisms from undiluted vitreous guides the definitive treatment in non-responsive cases. Strategies to reduce the incidence of endophthalmitis after penetrating eye procedures have been developed concurrently with refined means of treatment. Despite these advances, outcomes remain poor for many patients. Although consensus articles have been published on managing endophthalmitis, treatment patterns vary, and controversies remain. These include (1) the use of newer methods for early and precise microbiological diagnosis; (2) the choice of intravitreal antibiotics; (3) the need for systemic therapy; (4) early and complete vitrectomy. Here, we review the current consensus and address controversies in diagnosing and managing endophthalmitis. This review is intended to familiarize physicians and ophthalmologists with different aspects of endophthalmitis management to make informed decisions.
Collapse
Affiliation(s)
- Taraprasad Das
- Anant Bajaj Retina Institute, Srimati Kanuri Santhamma Centre for Vitreoretinal Disease, L V, Prasad Eye Institute, Hyderabad, India.
| | - Joveeta Joseph
- Jhaveri Microbiology Center, L V Prasad Eye Institute, Hyderabad, India.
| | - Matthew P Simunovic
- Save Sight Institute, University of Sydney, NSW, 2006, Australia; Sydney Eye Hospital, 8 Macquarie St., Sydney, NSW, 2000, Australia.
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland.
| | - Kuan-Jen Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Vivek Pravin Dave
- Anant Bajaj Retina Institute, Srimati Kanuri Santhamma Centre for Vitreoretinal Disease, L V Prasad Eye Institute, Hyderabad, India.
| | - Savitri Sharma
- Jhaveri Microbiology Center, L V Prasad Eye Institute, Hyderabad, India.
| | - Patrick Staropoli
- Anant Bajaj Retina Institute, Srimati Kanuri Santhamma Centre for Vitreoretinal Disease, L V Prasad Eye Institute, Hyderabad, India.
| | - Harry Flynn
- Bascom Palmer Eye Institute, Miami, FL, USA.
| |
Collapse
|
4
|
Das S, Ahmad Z, Singh S, Singh S, Wright RE, Giri S, Kumar A. Oral administration of S-nitroso-L-glutathione (GSNO) provides anti-inflammatory and cytoprotective effects during ocular bacterial infections. Cell Mol Life Sci 2023; 80:309. [PMID: 37770649 PMCID: PMC11072052 DOI: 10.1007/s00018-023-04963-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023]
Abstract
Bacterial endophthalmitis is a severe complication of eye surgeries that can lead to vision loss. Current treatment involves intravitreal antibiotic injections that control bacterial growth but not inflammation. To identify newer therapeutic targets to promote inflammation resolution in endophthalmitis, we recently employed an untargeted metabolomics approach. This led to the discovery that the levels of S-nitroso-L-glutathione (GSNO) were significantly reduced in an experimental murine Staphylococcus aureus (SA) endophthalmitis model. In this study, we tested the hypothesis whether GSNO supplementation via different routes (oral, intravitreal) provides protection during bacterial endophthalmitis. Our results show that prophylactic administration of GSNO via intravitreal injections ameliorated SA endophthalmitis. Therapeutically, oral administration of GSNO was found to be most effective in reducing intraocular inflammation and bacterial burden. Moreover, oral GSNO treatment synergized with intravitreal antibiotic injections in reducing the severity of endophthalmitis. Furthermore, in vitro experiments using cultured human retinal Muller glia and retinal pigment epithelial (RPE) cells showed that GSNO treatment reduced SA-induced inflammatory mediators and cell death. Notably, both in-vivo and ex-vivo data showed that GSNO strengthened the outer blood-retinal barrier during endophthalmitis. Collectively, our study demonstrates GSNO as a potential therapeutic agent for the treatment of intraocular infections due to its dual anti-inflammatory and cytoprotective properties.
Collapse
Affiliation(s)
- Susmita Das
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Zeeshan Ahmad
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Sneha Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Robert Emery Wright
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
5
|
Shivaji S, Nagapriya B, Ranjith K. Differential Susceptibility of Mixed Polymicrobial Biofilms Involving Ocular Coccoid Bacteria ( Staphylococcus aureus and S. epidermidis) and a Filamentous Fungus ( Fusarium solani) on Ex Vivo Human Corneas. Microorganisms 2023; 11:microorganisms11020413. [PMID: 36838378 PMCID: PMC9964441 DOI: 10.3390/microorganisms11020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilms confer several advantages to the organisms associated with them, such as increased resistances to antibacterial and antifungal compounds compared to free living cells. Compared to monomicrobial biofilms involving a single microorganism, biofilms composed of microorganisms affiliated to bacterial and fungal kingdoms are predominant in nature. Despite the predominance of polymicrobial biofilms, and more so mixed polymicrobial biofilms, they are rarely studied. The objective of the current study is to evaluate the potential of ocular bacteria and a filamentous fungus to form monomicrobial and mixed polymicrobial biofilms on synthetic and natural substrates and to monitor their response to antibiotics. In this sense, we demonstrated that the ocular pathogens Staphylococcus aureus, S. epidermidis, and Fusarium solani form monomicrobial and mixed polymicrobial biofilms both on tissue culture polystyrene plates and on ex vivo human corneas from cadavers using confocal microscopy and scanning electron microscopy. Additionally, the mixed polymicrobial biofilms involving the above ocular bacteria and a filamentous fungus were less susceptible to different antibacterials and antifungals in relation to the corresponding control planktonic cells. Further, the MICs to the screened antibacterials and antifungals in polymicrobial biofilms involving a bacterium or a fungus was either increased, decreased, or unchanged compared to the corresponding individual bacterial or fungal biofilm. The results would be useful to the ophthalmologist to plan effective treatment regimens for the eye since these are common pathogens of the eye causing keratitis, endophthalmitis, conjunctivitis, etc.
Collapse
|
6
|
Holban AM, Gregoire CM, Gestal MC. Conquering the host: Bordetella spp. and Pseudomonas aeruginosa molecular regulators in lung infection. Front Microbiol 2022; 13:983149. [PMID: 36225372 PMCID: PMC9549215 DOI: 10.3389/fmicb.2022.983149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
When bacteria sense cues from the host environment, stress responses are activated. Two component systems, sigma factors, small RNAs, ppGpp stringent response, and chaperones start coordinate the expression of virulence factors or immunomodulators to allow bacteria to respond. Although, some of these are well studied, such as the two-component systems, the contribution of other regulators, such as sigma factors or ppGpp, is increasingly gaining attention. Pseudomonas aeruginosa is the gold standard pathogen for studying the molecular mechanisms to sense and respond to environmental cues. Bordetella spp., on the other hand, is a microbial model for studying host-pathogen interactions at the molecular level. These two pathogens have the ability to colonize the lungs of patients with chronic diseases, suggesting that they have the potential to share a niche and interact. However, the molecular networks that facilitate adaptation of Bordetella spp. to cues are unclear. Here, we offer a side-by-side comparison of what is known about these diverse molecular mechanisms that bacteria utilize to counteract host immune responses, while highlighting the relatively unexplored interactions between them.
Collapse
Affiliation(s)
- Alina M. Holban
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Courtney M. Gregoire
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
- *Correspondence: Monica C. Gestal, ;
| |
Collapse
|
7
|
Antimicrobial Efficacy of Extracts of Saudi Arabian Desert Terfezia claveryi Truffles. Saudi J Biol Sci 2022; 29:103462. [PMID: 36267911 PMCID: PMC9576567 DOI: 10.1016/j.sjbs.2022.103462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/24/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Background Terfezia claveryi truffles are known for their nutritional value and have been considered among traditional treatments for ophthalmic infections and ailments. Objectives We sought to investigate the in vitro antimicrobial efficacy of several T. claveryi extracts from Saudi Arabia. Certain pathogenic fungi and gram-negative and gram-positive bacteria were included. Methods Dry extracts were prepared using methanol, ethyl acetate, and distilled water, while the latter was used for preparing fresh extracts. The extracts were microbiologically evaluated through the disc-diffusion agar method; the zones of inhibition of microbial growth were measured post-incubation. The minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) were determined in Müller-Hinton Broth through the microdilution susceptibility method. anti-biofilm activity was assessed for potent extracts. Results Dry extracts showed potent activity (>16-mm inhibition zones) against gram-positive (Bacillus subtilis IFO3007 and Staphylococcus aureus IFO3060) and gram-negative (Pseudomonas aeruginosa IFO3448 and Escherichia coli IFO3301) bacteria. The activity against fungi was moderate (12–16-mm inhibition zones) for both Aspergillus oryzae IFO4177 and Candida albicans IFO0583; there was no activity against Aspergillus niger IFO4414 growth. Methanolic extract had the lowest MIC and MBC, exhibiting remarkable activity against B. subtilis growth. Fresh extract showed moderate activity against bacterial growth and inactivity against fungal growth. Methanolic extract showed potent anti-biofilm activity (IC50, 2.0 ± 0.18 mg/mL) against S. aureus. Conclusions T. claveryi extracts showed antibacterial effects potentially suitable for clinical application, which warrants further in-depth analysis of their individual isolated compounds.
Collapse
|
8
|
Yam JKH, Aung TT, Chua SL, Cheng Y, Kohli GS, Zhou J, Constancias F, Liu Y, Cai Z, Salido MMS, Drautz-Moses DI, Rice SA, Schuster SC, Boo ZZ, Wu B, Kjelleberg S, Tolker-Nielsen T, Lakshminarayanan R, Beuerman RW, Yang L, Givskov M. Elevated c-di-GMP Levels and Expression of the Type III Secretion System Promote Corneal Infection by Pseudomonas aeruginosa. Infect Immun 2022; 90:e0006122. [PMID: 35913171 PMCID: PMC9387266 DOI: 10.1128/iai.00061-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
Pseudomonas aeruginosa is generally believed to establish biofilm-associated infections under the regulation of the secondary messenger c-di-GMP. To evaluate P. aeruginosa biofilm physiology during ocular infections, comparative transcriptomic analysis was performed on wild-type P. aeruginosa PAO1, a ΔwspF mutant strain (high c-di-GMP levels), and a plac-yhjH-containing strain (low c-di-GMP levels) from mouse corneal infection, as well as in vitro biofilm and planktonic cultures. The c-di-GMP content in P. aeruginosa during corneal infection was monitored using a fluorescent c-di-GMP reporter strain. Biofilm-related genes were induced in in vivo PAO1 compared to in vitro planktonic bacteria. Several diguanylate cyclases and phosphodiesterases were commonly regulated in in vivo PAO1 and in vitro biofilm compared to in vitro planktonic bacteria. Several exopolysaccharide genes and motility genes were induced and downregulated, respectively, in in vivo PAO1 and the in vivo ΔwspF mutant compared to the in vivo plac-yhjH-containing strain. Elevation of c-di-GMP levels in P. aeruginosa began as early as 2 h postinfection. The ΔwspF mutant was less susceptible to host clearance than the plac-yhjH-containing strain and could suppress host immune responses. The type III secretion system (T3SS) was induced in in vivo PAO1 compared to in vitro biofilm bacteria. A ΔwspF mutant with a defective T3SS was more susceptible to host clearance than a ΔwspF mutant with a functional T3SS. Our study suggests that elevated intracellular c-di-GMP levels and T3SS activity in P. aeruginosa are necessary for establishment of infection and modulation of host immune responses in mouse cornea.
Collapse
Affiliation(s)
- Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Thet Tun Aung
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Yingying Cheng
- Forensics Genomics International (FGI), BGI-Shenzhen, Shenzhen, China
| | - Gurjeet Singh Kohli
- Alfred Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | | | - Yang Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - May Margarette Santillan Salido
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Daniela I. Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- CSIRO, Agriculture and Food, Microbiomes for One Systems Health, Canberra, Australia
| | - Stephan Christoph Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhao Zhi Boo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- Academic Clinical Program in Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Roger W. Beuerman
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, Singapore
- SRP Neuroscience and Behavioural Disorders and Emerging Infectious Diseases, Duke-NUS, Singapore, Singapore
- Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Ranjith K, Nagapriya B, Shivaji S. Polymicrobial biofilms of ocular bacteria and fungi on ex vivo human corneas. Sci Rep 2022; 12:11606. [PMID: 35803992 PMCID: PMC9270462 DOI: 10.1038/s41598-022-15809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
Microbes residing in biofilms confer several fold higher antimicrobial resistances than their planktonic counterparts. Compared to monomicrobial biofilms, polymicrobial biofilms involving multiple bacteria, multiple fungi or both are more dominant in nature. Paradoxically, polymicrobial biofilms are less studied. In this study, ocular isolates of Staphylococcus aureus, S. epidermidis and Candida albicans, the etiological agents of several ocular infections, were used to demonstrate their potential to form mono- and polymicrobial biofilms both in vitro and on human cadaveric corneas. Quantitative (crystal violet and XTT methods) and qualitative (confocal and scanning electron microscopy) methods demonstrated that they form polymicrobial biofilms. The extent of biofilm formation was dependent on whether bacteria and fungi were incubated simultaneously or added to a preformed biofilm. Additionally, the polymicrobial biofilms exhibited increased resistance to different antimicrobials compared to planktonic cells. When the MBECs of different antibacterial and antifungal agents were monitored it was observed that the MBECs in the polymicrobial biofilms was either identical or decreased compared to the monomicrobial biofilms. The results are relevant in planning treatment strategies for the eye. This study demonstrates that ocular bacteria and fungi form polymicrobial biofilms and exhibit increase in antimicrobial resistance compared to the planktonic cells.
Collapse
Affiliation(s)
- Konduri Ranjith
- Jhaveri Microbiology Centre, Prof. Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, 500034, India
| | - Banka Nagapriya
- Jhaveri Microbiology Centre, Prof. Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, 500034, India
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre, Prof. Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, 500034, India.
| |
Collapse
|
10
|
Rodriguez-Urretavizcaya B, Pascual N, Pastells C, Martin-Gomez MT, Vilaplana L, Marco MP. Diagnosis and Stratification of Pseudomonas aeruginosa Infected Patients by Immunochemical Quantitative Determination of Pyocyanin From Clinical Bacterial Isolates. Front Cell Infect Microbiol 2022; 11:786929. [PMID: 34970510 PMCID: PMC8712664 DOI: 10.3389/fcimb.2021.786929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/12/2021] [Indexed: 12/04/2022] Open
Abstract
The development of a highly sensitive, specific, and reliable immunochemical assay to detect pyocyanin (PYO), one of the most important virulence factors (VFs) of Pseudomonas aeruginosa, is here reported. The assay uses a high-affinity monoclonal antibody (mAb; C.9.1.9.1.1.2.2.) raised against 1-hydroxyphenazine (1-OHphz) hapten derivatives (PC1; a 1:1 mixture of 9-hydroxy- and 6-hydroxy-phenazine-2-carobxylic acids). Selective screening using PYO and 1-OHphz on several cloning cycles allowed the selection of a clone able to detect PYO at low concentration levels. The microplate-based ELISA developed is able to achieve a limit of detection (LoD) of 0.07 nM, which is much lower than the concentrations reported to be found in clinical samples (130 μM in sputa and 2.8 μM in ear secretions). The ELISA has allowed the investigation of the release kinetics of PYO and 1-OHphz (the main metabolite of PYO) of clinical isolates obtained from P. aeruginosa-infected patients and cultured in Mueller–Hinton medium. Significant differences have been found between clinical isolates obtained from patients with an acute or a chronic infection (~6,000 nM vs. ~8 nM of PYO content, respectively) corroborated by the analysis of PYO/1-OHphz levels released by 37 clinical isolates obtained from infected patients at different stages. In all cases, the levels of 1-OHphz were much lower than those of PYO (at the highest levels 6,000 nM vs. 300 nM for PYO vs. 1-OHphz, respectively). The results found point to a real potential of PYO as a biomarker of P. aeruginosa infection and the possibility to use such VF also as a biomarker for patient stratification[2] and for an effective management of these kinds of infections.
Collapse
Affiliation(s)
- Barbara Rodriguez-Urretavizcaya
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC)-Spanish National Research Council (CSIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Nuria Pascual
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC)-Spanish National Research Council (CSIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Carme Pastells
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC)-Spanish National Research Council (CSIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | | | - Lluïsa Vilaplana
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC)-Spanish National Research Council (CSIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Maria-Pilar Marco
- Nanobiotechnology for Diagnostics (Nb4D), Institute of Advanced Chemistry of Catalonia, Institute for Advanced Chemistry of Catalonia (IQAC)-Spanish National Research Council (CSIC), Barcelona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
11
|
Baek SC, Cho CH, Lee SB. Comparative Clinical Analysis of Polymicrobial and Monomicrobial Bacterial Keratitis. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2021. [DOI: 10.3341/jkos.2021.62.11.1465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose: We comparatively analyzed the microbiological profiles, predisposing factors, clinical aspects, and treatment outcomes of patients with polymicrobial and monomicrobial bacterial keratitis.Methods: A total of 194 cases of culture-proven bacterial keratitis treated between January 2007 and December 2016 were reviewed. Microbiological profiles, the epidemiology, predisposing factors, clinical characteristics, and treatment outcomes were compared between the polymicrobial group (polymicrobial bacterial keratitis [PBK]; 29 eyes, 62 isolates) and monomicrobial (monomicrobial bacterial keratitis [MBK]; 165 eyes, 165 isolates) group.Results: The most common isolates were Enterobacter (24%) in the PBK group and Staphylococcus (22%) in the MBK group. There were no significant differences between the two groups in previous ocular surface disease, previous ocular surgery, prior topical steroid use, epithelial defect size, and hypopyon. Age ≥60 years (PBK vs. MBK, 31% vs. 51%, p = 0.048), symptom duration (4.7 days vs. 8.0 days, p = 0.009), and contact lens use (34% vs. 18%, p = 0.036) were significantly different between the two groups. Regarding treatment outcomes, epithelial healing time ≥10 days, the final best-corrected visual acuity (BCVA), a need for surgical intervention, and the rate of poor clinical outcome were not significantly different between the two groups. Significant risk factors for a poor clinical outcome in all patients were an initial BCVA <0.1 (Z = 6.33, two-proportion Z-test), an epithelial defect size ≥5 mm2 (Z = 4.56), and previous ocular surface disease (Z = 4.36).Conclusions: Polymicrobial bacterial keratitis, compared to monomicrobial bacterial keratitis, was more significantly associated with younger age, contact lens use, and shorter symptom duration.
Collapse
|
12
|
In Vitro Antimicrobial Activity of a New Ophthalmic Solution Containing Hexamidine Diisethionate 0.05% (Keratosept). Cornea 2021; 39:1415-1418. [PMID: 32452982 DOI: 10.1097/ico.0000000000002375] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess the in vitro antimicrobial activity of a new commercial ophthalmic solution containing hexamidine diisethionate 0.05% (Keratosept). METHODS Staphylococcus aureus American Type Culture Collection (ATCC 43300), Pseudomonas aeruginosa ATCC 27853, 3 ocular bacterial isolates (1 Staphylococcus epidermidis, 1 S. aureus, and 1 P. aeruginosa), and 5 Candida species were used. The bacterial and fungal isolates were cultured on Columbia blood agar base and Sabouraud-dextrose agar plates, respectively, and incubated overnight at 37°C. Suspensions were prepared in a sterile saline solution with optical density equal to 0.5 McFarland standard (∼10 CFU/mL). Isolate suspensions were made in Keratosept solution to obtain a concentration of 10 CFU/mL. The suspensions were then distributed in conical tubes with a final volume of 1 mL and incubated at 37°C. After 1, 5, 10, 15, 20, 25, 30 minutes, and 24 hours, 10 μL of each suspension was removed, seeded on Columbia blood agar base and Sabouraud-dextrose agar plates and then incubated for 24 hours at 37°C. RESULTS After 1-minute incubation, there was no growth on the plates seeded with S. aureus ATCC 43300, S. aureus clinical isolate, S. epidermidis clinical isolate, and all 5 Candida species tested. Conversely, Keratosept solution failed to kill the Pseudomonas isolates after 30 minutes exposure and needed 24 hours to eradicate the organisms. CONCLUSIONS Keratosept ophthalmic solution showed in vitro antimicrobial activity against S. epidermidis, S. aureus, and Candida species. Results suggest that it may be a potential candidate for the treatment of staphylococcal and Candida infections of the ocular surface and have some role in antimicrobial prophylaxis before intravitreal injections.
Collapse
|
13
|
Ahmed NH, Xess I, Singh G, Satpathy G, Sharma N, Agarwal T, Hussain T, Chawla R, Tandon R. Species identification, antifungal susceptibility profiles and biofilm formation attributes of Rhodotorula isolates from ocular infections. Mycoses 2021; 64:1183-1196. [PMID: 34228832 DOI: 10.1111/myc.13349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Members of genus Rhodotorula are widely distributed in nature and have been traditionally considered non-pathogenic. Last few decades have seen the yeast as an emerging pathogen. We observed increase in numbers of Rhodotorula isolates from ocular infections in last few years, thus this prospective study was planned. OBJECTIVES To identify the species of Rhodotorula isolates from ocular infections. To know the antifungal susceptibilities and study the biofilm formation attributes of the isolates. MATERIALS AND METHODS Rhodotorula isolates were speciated using conventional methods, Matrix Assisted Laser Desorption and Ionisation - Time of Flight (MALDI- TOF) and sequencing of ITS region of ribosomal DNA. Antifungal susceptibility testing (AFST) was done using disc diffusion and E-test. Biofilm formation was studied using XTT [2,3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetra-zolium-5-carboxanilide] assay. RESULTS Twenty four isolates (92.3%) were identified as R. mucilaginosa and two as R. Minuta. AFST showed high MICs against Fluconazole, Amphotericin-B, Caspofungin, Micafungin and Flucytosine; MIC distribution from low to very high against Voriconazole, Itraconazole and Natamycin; and very low MICs against Posaconazole 57.7% of isolates were strong biofilm producers, 23.1% were moderate, and 19.2% were non producers. CONCLUSIONS This is the first prospective study on species distribution, antifungal susceptibility and biofilm production attributes of Rhodotorula isolates from ocular infections; also first time demonstrating the utility of proteomics based MALDI-TOF in diagnosing Rhodotorula up to species level. The study has shown high MICs against the conventional azoles, Amphotericin-B and Flucytosine. However, low MICs against Posaconazole and Natamycin give a hope for their possible therapeutic use.
Collapse
Affiliation(s)
- Nishat Hussain Ahmed
- Ocular Microbiology, Dr. RP Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Immaculata Xess
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Gagandeep Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Gita Satpathy
- Ocular Microbiology, Dr. RP Centre, All India Institute of Medical Sciences, New Delhi, India.,Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Namrata Sharma
- Ophthalmology, Dr. RP Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Tushar Agarwal
- Ophthalmology, Dr. RP Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rohan Chawla
- Ophthalmology, Dr. RP Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Radhika Tandon
- Ophthalmology, Dr. RP Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Konduri R, Saiabhilash CR, Shivaji S. Biofilm-Forming Potential of Ocular Fluid Staphylococcus aureus and Staphylococcus epidermidis on Ex Vivo Human Corneas from Attachment to Dispersal Phase. Microorganisms 2021; 9:microorganisms9061124. [PMID: 34067392 PMCID: PMC8224674 DOI: 10.3390/microorganisms9061124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
The biofilm-forming potential of Staphylococcus aureus and Staphylococcus epidermidis, isolated from patients with Endophthalmitis, was monitored using glass cover slips and cadaveric corneas as substrata. Both the ocular fluid isolates exhibited biofilm-forming potential by the Congo red agar, Crystal violet and 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-(phenylamino) carbonyl-2H-tetra-zolium hydroxide (XTT) methods. Confocal microscopy demonstrated that the thickness of the biofilm increased from 4–120 h of biofilm formation. Scanning electron microscopic studies indicated that the biofilms grown on cover slips and ex vivo corneas of both the isolates go through an adhesion phase at 4 h followed by multilayer clumping of cells with intercellular connections and copious amounts of extracellular polymeric substance. Clumps subsequently formed columns and eventually single cells were visible indicative of dispersal phase. Biofilm formation was more rapid when the cornea was used as a substratum. In the biofilms grown on corneas, clumping of cells, formation of 3D structures and final appearance of single cells indicative of dispersal phase occurred by 48 h compared to 96–120 h when biofilms were grown on cover slips. In the biofilm phase, both were several-fold more resistant to antibiotics compared to planktonic cells. This is the first study on biofilm forming potential of ocular fluid S. aureus and S. epidermidis on cadaveric cornea, from attachment to dispersal phase of biofilm formation.
Collapse
|
15
|
Cendra MDM, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv 2021; 49:107734. [PMID: 33785375 DOI: 10.1016/j.biotechadv.2021.107734] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa biofilms and the capacity of the bacterium to coexist and interact with a broad range of microorganisms have a substantial clinical impact. This review focuses on the main traits of P. aeruginosa biofilms, such as the structural composition and regulatory networks involved, placing particular emphasis on the clinical challenges they represent in terms of antimicrobial susceptibility and biofilm infection clearance. Furthermore, the ability of P. aeruginosa to grow together with other microorganisms is a significant pathogenic attribute with clinical relevance; hence, the main microbial interactions of Pseudomonas are especially highlighted and detailed throughout this review. This article also explores the infections caused by single and polymicrobial biofilms of P. aeruginosa and the current models used to recreate them under laboratory conditions. Finally, the antimicrobial and antibiofilm strategies developed against P. aeruginosa mono and multispecies biofilms are detailed at the end of this review.
Collapse
Affiliation(s)
- Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain.
| |
Collapse
|
16
|
Yee A, Walsh K, Schulze M, Jones L. The impact of patient behaviour and care system compliance on reusable soft contact lens complications. Cont Lens Anterior Eye 2021; 44:101432. [PMID: 33678542 DOI: 10.1016/j.clae.2021.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
Reusable soft daily wear contact lenses (CLs) remain popular and were fit to just over half of all wearers in the most recent international CL prescribing survey. Unlike daily disposable CLs, reusables require cleaning and disinfecting after every use, along with storage in a CL case. These additional requirements add a number of steps to the daily wear and care routine, increasing the opportunities for CL wearers to exhibit non-compliant behaviour. The impact of non-compliance ranges from poor lens comfort through to potentially sight-threatening infective keratitis. The coronavirus pandemic has refocused the profession on the importance of hand hygiene in particular, and the need for promoting safe CL wear in general. This review summarises typical non-compliant behaviour related to reusable CLs, and examines strategies and opportunities to better support wearers. Patient education has a central role in encouraging compliant behaviour, although patient recall of information is low, and personal belief systems may result in continuation of non-compliant behaviour despite awareness of the risks. CL care solutions are required for the daily disinfection of lenses, however misuse of multipurpose solutions (MPS) and hydrogen peroxide (H2O2)-based care systems can challenge their ability to be fully efficacious. Standard efficacy testing is reviewed, with consideration of how well current protocols model real-world use of CL solutions. Although some recommendations are in place for the inclusion of additional variables such as lens cases, CL materials, organic soil and efficacy against Acanthamoeba, opportunity still exists to reevaluate global standards to ensure consistency of testing in all markets. Finally, potential future innovations are discussed which may further support increased safety in reusable lens wear through novel antimicrobial additions to both CL materials and cases.
Collapse
Affiliation(s)
- Alan Yee
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Canada.
| | - Karen Walsh
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Canada.
| | - Marc Schulze
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Canada.
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, Canada.
| |
Collapse
|
17
|
Ranjith K, Sharma S, Shivaji S. Microbes of the human eye: Microbiome, antimicrobial resistance and biofilm formation. Exp Eye Res 2021; 205:108476. [PMID: 33549582 DOI: 10.1016/j.exer.2021.108476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND The review focuses on the bacteria associated with the human eye using the dual approach of detecting cultivable bacteria and the total microbiome using next generation sequencing. The purpose of this review was to highlight the connection between antimicrobial resistance and biofilm formation in ocular bacteria. METHODS Pubmed was used as the source to catalogue culturable bacteria and ocular microbiomes associated with the normal eyes and those with ocular diseases, to ascertain the emergence of anti-microbial resistance with special reference to biofilm formation. RESULTS This review highlights the genetic strategies used by microorganisms to evade the lethal effects of anti-microbial agents by tracing the connections between candidate genes and biofilm formation. CONCLUSION The eye has its own microbiome which needs to be extensively studied under different physiological conditions; data on eye microbiomes of people from different ethnicities, geographical regions etc. are also needed to understand how these microbiomes affect ocular health.
Collapse
Affiliation(s)
- Konduri Ranjith
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| | - Savitri Sharma
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| |
Collapse
|
18
|
Harrell JE, Hahn MM, D'Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front Cell Infect Microbiol 2021; 10:624622. [PMID: 33604308 PMCID: PMC7885405 DOI: 10.3389/fcimb.2020.624622] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Within the species of Salmonella enterica, there is significant diversity represented among the numerous subspecies and serovars. Collectively, these account for microbes with variable host ranges, from common plant and animal colonizers to extremely pathogenic and human-specific serovars. Despite these differences, many Salmonella species find commonality in the ability to form biofilms and the ability to cause acute, latent, or chronic disease. The exact outcome of infection depends on many factors such as the growth state of Salmonella, the environmental conditions encountered at the time of infection, as well as the infected host and immune response elicited. Here, we review the numerous biofilm lifestyles of Salmonella (on biotic and abiotic surfaces) and how the production of extracellular polymeric substances not only enhances long-term persistence outside the host but also is an essential function in chronic human infections. Furthermore, careful consideration is made for the events during initial infection that allow for gut transcytosis which, in conjunction with host immune functions, often determine the progression of disease. Both typhoidal and non-typhoidal salmonellae can cause chronic and/or secondary infections, thus the adaptive immune responses to both types of bacteria are discussed with particular attention to the differences between Salmonella Typhi, Salmonella Typhimurium, and invasive non-typhoidal Salmonella that can result in differential immune responses. Finally, while strides have been made in our understanding of immunity to Salmonella in the lymphoid organs, fewer definitive studies exist for intestinal and hepatobiliary immunity. By examining our current knowledge and what remains to be determined, we provide insight into new directions in the field of Salmonella immunity, particularly as it relates to chronic infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erin M Vasicek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Jenna L Sandala
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
19
|
Kang Y, Zhang H, Hu M, Ma Y, Chen P, Zhao Z, Li J, Ye Y, Zheng M, Lou Y. Alterations in the Ocular Surface Microbiome in Traumatic Corneal Ulcer Patients. Invest Ophthalmol Vis Sci 2021; 61:35. [PMID: 32543662 PMCID: PMC7415308 DOI: 10.1167/iovs.61.6.35] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Corneal ulcers are a common eye inflammatory disease that can cause visual impairment or even blindness if not treated promptly. Ocular trauma is a major risk factor for corneal ulcers, and corneal trauma in agricultural work can rapidly progress to corneal ulcers. This study aims to evaluate the changes in the ocular surface (OS) microbiome of patients with traumatic corneal ulcer (TCU). Methods Among 20 healthy control (HC) subjects and 22 patients with TCU, 42 eyes were examined to investigate the OS microbial flora using metagenomic shotgun sequencing. Results At the taxonomic composition level, our findings showed that dysbiosis (alterations in richness and community structure) occurs in the OS microbiome of patients with TCU. Notably, Pseudomonas was present at a greater than 30% relative abundance in all individuals in the TCU group. At the species level, the abundance of Pseudomonas fluorescens and Pseudomonas aeruginosa was significantly elevated in the TCU group compared to the HC group. At the functional level, we identified significant differences in the HC and TCU groups. We observed that inflammation-related pathways involved in bacterial chemotaxis, flagellar assembly, and biofilm formation were significantly more abundant in the TCU group. Besides, the pathways related to biosynthesis, degradation, and metabolism were also increased significantly in the TCU group. Conclusions These findings indicate an altered OS microbiome in the affected eyes of patients with TCU. Further research is needed to determine whether these alterations contribute to the pathogenesis of TCU or impact disease progression.
Collapse
|
20
|
Raksha L, Gangashettappa N, Shantala GB, Nandan BR, Sinha D. Study of biofilm formation in bacterial isolates from contact lens wearers. Indian J Ophthalmol 2020; 68:23-28. [PMID: 31856459 PMCID: PMC6951123 DOI: 10.4103/ijo.ijo_947_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose: To detect biofilm forming capacity of bacterial isolates obtained from the conjunctiva, contact lens and accessories of contact lens wearers using phenotypic and genotypic methods. Methods: Bacterial strains were collected from the conjunctiva, contact lens and lens storage cases of contact lens wearers. The phenotypic detection of biofilm production was done using the tube method and congo red agar method. The biofilm-forming related genes, icaA, of Coagulase negative Staphylococcus (CONS) and Staphylococcus aureus, and pslA, of P. aeruginosa, were detected using PCR. Results: A total of 265 bacterial isolates which included S. aureus, CONS, Pseudomonas, Nil-fermenter Gram-negative bacilli (NFGNB), Bacillus spp, Diphtheroids, Micrococci, Klebsiella pneumonia, Klebsiella oxytoca, E. coli, Proteus mirabilis, Proteus vulgaris, Citrobacter koseri, Citrobacter freundii, Enterobacter cloacae, Moraxella were obtained. Of the 265 isolates, 53.5% were moderately positive, 33.2% strongly positive and 13.2% negative for biofilm production by tube method and 36.6% were moderately positive, 40% strongly positive and 23.3% negative for biofilm production by congo red agar method. Of the four S. aureus isolates, two (50%) showed the presence of icaA gene. Of the 23 CONS isolates, three (13%) showed the presence of icaA gene. All the Pseudomonas isolates were negative for presence pslA (1119 bp) gene though most of them were phenotypically positive for biofilm formation. Conclusion: Most of the bacterial isolates obtained from contact lens wearers had the potential to produce biofilms. Tube method and Congo red agar method exhibited significant statistical correlation (P-value = 0.006) and picked up a good number of biofilm-forming isolates, hence may be used for detection of biofilm production. The absence of biofilm-forming gene did not rule out the possibility for phenotypic biofilm production by bacteria.
Collapse
Affiliation(s)
- L Raksha
- Department of Microbiology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Nagaraju Gangashettappa
- Department of Ophthalmology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - G B Shantala
- Department of Microbiology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Bhavna R Nandan
- Department of Ophthalmology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Deepa Sinha
- Department of Microbiology, Bangalore Medical College and Research Institute, Bengaluru, Karnataka, India
| |
Collapse
|
21
|
Mencucci R, Favuzza E, Bottino P, Mazzantini C, Zanotto E, Pellegrini-Giampietro DE, Landucci E. A new ophthalmic formulation containing antiseptics and dexpanthenol: In vitro antimicrobial activity and effects on corneal and conjunctival epithelial cells. Exp Eye Res 2020; 201:108269. [PMID: 32980315 DOI: 10.1016/j.exer.2020.108269] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022]
Abstract
Antibiotic resistance is increasing even in ocular pathogens, therefore the interest towards antiseptics in Ophthalmology is growing. The aim of this study was to analyze the in vitro antimicrobial efficacy and the in vitro effects of an ophthalmic formulation containing hexamidine diisethionate 0.05%, polyhexamethylene biguanide (PHMB) 0.0001% disodium edetate (EDTA) 0.01%, dexpanthenol 5% and polyvinyl alcohol 1.25% (Keratosept, Bruschettini, Genova, Italy) on cultured human corneal and conjunctival cells. The in vitro antimicrobial activity was tested on Staphylococcus aureus, Methicillin-Resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Streptococcus pneumoniae, Streptococcus pyogenes and Streptococcus mitis. For each microbial strain 10 μL of a 0.5 MacFarland standardized bacterial inoculum were incubated at 25 °C with 100 μL of ophthalmic solution for up to 6 h. After different periods of time, samples were inoculated on blood agar with 5% sheep blood. Moreover, a 0.5 MacFarland bacterial inoculum was seeded in triplicate on Mueller-Hinton Agar or on Mueller-Hinton Fastidious Agar; then a cellulose disc soaked with 50 μL of ophthalmic solution was applied on the surface of agar and plates were incubated for 18 h at 37 °C, in order to evaluate the inhibition of bacterial growth around the disc. Human corneal and conjunctival epithelial cells in vitro were incubated for 5, 10 and 15 min with Keratosept or its components. The cytotoxicity was assessed through the release of cytoplasmic enzyme lactate dehydrogenase (LDH) into the medium immediately after exposure to the drugs; the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate the metabolic cell activity. Our results show that Keratosept ophthalmic solution gave an average logarithmic (log) reduction of bacterial load of 2.14 ± 0.35 within 6 h of exposure (p-value < 0.05 versus control saline solution). On agar plates, all microbial strains, excluding P. Aeruginosa, showed an inhibition zone of growth around the Keratosept-soaked discs. Keratosept and its components after 5 and 10 min did not show any cytotoxic effect on cultured corneal and conjunctival cells, and only after 15 min a significant reduction of cell viability and an increase of cytotoxicity compared to control (vehicle) was seen; dexpanthenol 5% and polyvinyl alcohol accelerated the wounding of corneal cells in vitro. In conclusion, Keratosept showed good antimicrobial activity on the tested strains; the ophthalmic solution and its components were safe and non-toxic for the corneal and conjunctival epithelial cells for 5 and 10 min at the concentrations analyzed, and dexpanthenol 5% and polyvinyl alcohol promoted the wounding of corneal cells.
Collapse
Affiliation(s)
- Rita Mencucci
- Eye Clinic, Department of Neurosciences, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | - Eleonora Favuzza
- Eye Clinic, Department of Neurosciences, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | - Paolo Bottino
- AOU Città della Salute e della Scienza di Torino, Microbiology and Virology Unit, Turin, Italy.
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | - Elisa Zanotto
- AOU Città della Salute e della Scienza di Torino, Microbiology and Virology Unit, Turin, Italy.
| | - Domenico E Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
22
|
In Vitro Biofilm Formation and Antibiotic Susceptibility Patterns of Bacteria from Suspected External Eye Infected Patients Attending Ophthalmology Clinic, Southwest Ethiopia. Int J Microbiol 2020; 2020:8472395. [PMID: 32318110 PMCID: PMC7155758 DOI: 10.1155/2020/8472395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/10/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Background Ocular disease with its complications is a major public health problem which has significant impacts on the quality of life particularly in developing countries. An eye infection due to bacterial agents can lead to reduced vision and blindness. This study was aimed to assess the antimicrobial susceptibility pattern and biofilm-forming potential of bacteria isolated from suspected external eye infected patients in Jimma. Method A cross-sectional facility-based study was conducted on 319 suspect patients with external eye infections from March to June 2017 at Jimma University Medical Center (JUMC) Ophthalmology Department in Ethiopia. External ocular specimens were collected and standard operating procedures were followed to handle and culture throughout the study period. Antimicrobial susceptibility was determined by the disk diffusion method according to CLSI guidelines. Microtiter (96 wells) plate method was used to screen biofilm formation by ELISA reader at 570 nm. Results Out of 319 study participants with an external eye infection, the prevalence of bacterial pathogens was 46.1%. The predominant bacterial isolates were coagulase-negative staphylococcus (CoNS) (27.7%) followed by Staphylococcus aureus (19.7%). Among Gram-negative groups, Pseudomonas aeruginosa (6.8%) was the leading isolate. Increased antimicrobial resistance was observed for tetracycline (64%), erythromycin (66.7%), and penicillin (77.1%). Amoxicillin-clavulanic acid, ciprofloxacin, and gentamicin were the most effective drugs for external eye infections due to susceptibility ranging from 70 to 100% among both Gram-negative and Gram-positive groups. Methicillin-resistant S. aureus (MRSA) accounted for 13.8%. Multidrug resistance (MDR) accounted for 68.7%. The overall biofilm formation rate of bacterial ocular pathogens was 66.1%, where P. aeruginosa (40%), CoNS (34.1%), and S. aureus (31%) formed strong biofilm phenotype. Conclusion The prevalence rate of bacterial isolates was high. Almost all bacterial isolates were resistant to at least one or more drugs. MDR pathogens were observed increasingly among biofilm formers or vice versa.
Collapse
|
23
|
Pinna A, Donadu MG, Usai D, Dore S, D'Amico‐Ricci G, Boscia F, Zanetti S. In vitro antimicrobial activity of a new ophthalmic solution containing povidone-iodine 0.6% (IODIM ® ). Acta Ophthalmol 2020; 98:e178-e180. [PMID: 31486592 DOI: 10.1111/aos.14243] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To assess the in vitro antimicrobial activity of a new commercial ophthalmic solution containing povidone-iodine 0.6% (IODIM® ). METHODS Staphylococcus aureus ATCC 43300, Pseudomonas aeruginosa ATCC 27853, three ocular bacterial isolates (1 S. epidermidis, 1 S. aureus, 1 P. aeruginosa) and five Candida species were used. The bacterial and fungal isolates were cultured on Columbia blood agar base plates and Sabouraud-dextrose agar plates, respectively and incubated overnight at 37°C. Bacterial and fungal suspensions in sterile saline solution were prepared to an optical density equal to 0.5 McFarland standard (approximately 108 CFU/ml). Suspensions of the isolates were made in IODIM® solution to obtain a final concentration of 106 CFU/ml. The suspensions were then distributed in conical tubes in a final volume of 1 ml and incubated at 37°C. At different time-points (1, 5, 10, 15, 20, 25, 30 min and 24 hr), 10 μl of each suspension was removed, seeded on Columbia blood agar base and Sabouraud-dextrose agar plates and then incubated for 24 hr at 37°C. Positive and negative controls were included in all experiments. RESULTS After 5-min incubation, there was no bacterial growth on any plate. Conversely, IODIM® failed to kill the Candida isolates after 30 min' exposure and needed 24 hr to eradicate the organisms. CONCLUSION IODIM® ophthalmic solution showed in vitro antimicrobial activity against S. epidermidis, S. aureus, P. aeruginosa and Candida species. Results suggest that it may be a potential candidate for the treatment of ocular surface infections and antimicrobial prophylaxis before intravitreal injections.
Collapse
Affiliation(s)
- Antonio Pinna
- Department of Medical, Surgical, and Experimental Sciences University of Sassari Sassari Italy
- Azienda Ospedaliero‐Universitaria di Sassari Sassari Italy
| | | | - Donatella Usai
- Department of Biomedical Sciences University of Sassari Sassari Italy
| | - Stefano Dore
- Department of Medical, Surgical, and Experimental Sciences University of Sassari Sassari Italy
- Azienda Ospedaliero‐Universitaria di Sassari Sassari Italy
| | | | - Francesco Boscia
- Department of Medical, Surgical, and Experimental Sciences University of Sassari Sassari Italy
- Azienda Ospedaliero‐Universitaria di Sassari Sassari Italy
| | - Stefania Zanetti
- Department of Biomedical Sciences University of Sassari Sassari Italy
| |
Collapse
|
24
|
Huang Z, Nazifi S, Jafari P, Karim A, Ghasemi H. Networked Zwitterionic Durable Antibacterial Surfaces. ACS APPLIED BIO MATERIALS 2020; 3:911-919. [DOI: 10.1021/acsabm.9b00982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zixu Huang
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| | - Sina Nazifi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| | - Parham Jafari
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| | - Hadi Ghasemi
- Department of Mechanical Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4006, United States
| |
Collapse
|
25
|
Kıvanç SA, Arık G, Akova-Budak B, Kıvanç M. Biofilm forming capacity and antibiotic susceptibility of Staphylococcus spp. with the icaA/icaD/bap genotype isolated from ocular surface of patients with diabetes. Malawi Med J 2019; 30:243-249. [PMID: 31798802 PMCID: PMC6863420 DOI: 10.4314/mmj.v30i4.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction Bacterial biofilm is an exopolysaccharide matrix that is produced by bacteria while they adhere on abiotic or biotic surfaces. The bacteria living in this matrix are more resistant to antibiotics than planctonic bacteria. The biofilm formation property of the bacteria is determined by genes; and this is related to virulence of the microorganism. In ophthalmology, biofilms form especially on abiotic surfaces such as silicon tubes, contact lenses, intraocular lenses etc. Aim Our aim was to investigate genotypic and phenotypic structures of biofilms that are produced by Staphylococcus spp., which was obtained from the eyes of diabetic patients and determine the effect on antibiotic susceptibility. Methods The study group was comprised with 83 isolates from diabetic patients and 21 isolates from non-diabetic patients. Presumptive isolates were detected and confirmed by a microbial identification system VITEK II. Automated EcoRI Ribotyping was performed. Biofilm production was detected by Congo Red Agar Plate and Microtiter Plate Assay. Disc diffusion method was used for determination of antibiotic susceptibility of isolates. Results Out of the 83 isolates from diabetic patients, 25 were weakly (30%), 20 were moderately (24%), and 25 were strongly (30%) biofilm positive. Seven isolates of S. aureus, 11 isolates of S.epidermidis, 2 isolates of S. warneri, 3 isolates of S.hominis, and 2 isolates of S.lugdunensis were identified as strong biofilm producers. Out of the 83 Staphylococcus isolates, 37 were cefuroxime, 18 ciprofloxacin, 11 vancomycin, 12 gatifloxacin, and 18 moxifloxacin resistant. In total, 37 strains were resistant to three or more antibiotics. There was a statistically significant relation between biofilm formation and multidrug resistance (against three or more antibiotics, p<0.001). In nondiabetic patients, 15(71%) isolates were non adherent or weakly adherent, and 2(10%) were strongly adherent biofilm positive. Conclusion In conclusion, bacterial conjunctival flora of patients with diabetes is likely to produce biofilm. Biofilm formation is associated with multidrug rsistance in patients with diabetes.
Collapse
Affiliation(s)
- Sertaç Argun Kıvanç
- Uludag University, School of Medicine, Department of Ophthalmology, Görükle, Bursa/Turkey
| | - Gizem Arık
- Anadolu University, Faculty of Science, Department of Microbiology, Eskişehir/Turkey
| | - Berna Akova-Budak
- Uludag University, School of Medicine, Department of Ophthalmology, Görükle, Bursa/Turkey
| | - Merih Kıvanç
- Anadolu University, Faculty of Science, Department of Microbiology, Eskişehir/Turkey
| |
Collapse
|
26
|
Pseudomonas aeruginosa Keratitis: Protease IV and PASP as Corneal Virulence Mediators. Microorganisms 2019; 7:microorganisms7090281. [PMID: 31443433 PMCID: PMC6780138 DOI: 10.3390/microorganisms7090281] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of bacterial keratitis, especially in users of contact lenses. These infections are characterized by extensive degradation of the corneal tissue mediated by Pseudomonas protease activities, including both Pseudomonas protease IV (PIV) and the P. aeruginosa small protease (PASP). The virulence role of PIV was determined by the reduced virulence of a PIV-deficient mutant relative to its parent strain and the mutant after genetic complementation (rescue). Additionally, the non-ocular pathogen Pseudomonas putida acquired corneal virulence when it produced active PIV from a plasmid-borne piv gene. The virulence of PIV is not limited to the mammalian cornea, as evidenced by its destruction of respiratory surfactant proteins and the cytokine interleukin-22 (IL-22), the key inducer of anti-bacterial peptides. Furthermore, PIV contributes to the P. aeruginosa infection of both insects and plants. A possible limitation of PIV is its inefficient digestion of collagens; however, PASP, in addition to cleaving multiple soluble proteins, is able to efficiently cleave collagens. A PASP-deficient mutant lacks the corneal virulence of its parent or rescue strain evidencing its contribution to corneal damage, especially epithelial erosion. Pseudomonas-secreted proteases contribute importantly to infections of the cornea, mammalian lung, insects, and plants.
Collapse
|
27
|
Tang A, Caballero AR, Marquart ME, Bierdeman MA, O'Callaghan RJ. Mechanism of Pseudomonas aeruginosa Small Protease (PASP), a Corneal Virulence Factor. Invest Ophthalmol Vis Sci 2019; 59:5993-6002. [PMID: 30572344 PMCID: PMC6306078 DOI: 10.1167/iovs.18-25834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Pseudomonas aeruginosa is the leading cause of contact lens-associated bacterial keratitis. Secreted bacterial proteases have a key role in keratitis, including the P. aeruginosa small protease (PASP), a proven corneal virulence factor. We investigated the mechanism of PASP and its importance to corneal toxicity. Methods PASP, a serine protease, was tested for activity on various substrates. The catalytic triad of PASP was sought by bioinformatic analysis and site-directed mutagenesis. All mutant constructs were expressed in a P. aeruginosa PASP-deficient strain; the resulting proteins were purified using ion-exchange, gel filtration, or affinity chromatography; and the proteolytic activity was assessed by gelatin zymography and a fluorometric assay. The purified PASP proteins with single amino acid changes were injected into rabbit corneas to determine their pathological effects. Results PASP substrates were cleaved at arginine or lysine residues. Alanine substitution of PASP residues Asp-29, His-34, or Ser-47 eliminated protease activity, whereas PASP with substitution for Ser-59 (control) retained activity. Computer modeling and Western blot analysis indicated that formation of a catalytic triad required dimer formation, and zymography demonstrated the protease activity of the homodimer, but not the monomer. PASP with the Ser-47 mutation, but not with the control mutation, lacked corneal toxicity, indicating the importance of protease activity. Conclusions PASP is a secreted serine protease that can cleave proteins at arginine or lysine residues and PASP activity requires dimer or larger aggregates to create a functional active site. Most importantly, proteolytic PASP molecules demonstrated highly significant toxicity for the rabbit cornea.
Collapse
Affiliation(s)
- Aihua Tang
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Armando R Caballero
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Michael A Bierdeman
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Richard J O'Callaghan
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
28
|
Mitra S, Chayani N, Mohapatra D, Barik MR, Sharma S, Basu S. High Prevalence of Biofilm-Forming MRSA in the Conjunctival Flora in Chronic Dacryocystitis. Semin Ophthalmol 2019; 34:74-79. [PMID: 30794029 DOI: 10.1080/08820538.2019.1578382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To report the microbiological spectrum of conjunctival flora and prevalence of biofilm-forming Methicillin-resistant Staphylococcus aureus (MRSA) in conjunctival flora in chronic dacryocystitis. DESIGN Prospective, case-control study. METHODS We included patients with unilateral chronic dacryocystitis, and their unaffected eyes as control. Microbiological profile and antibiotic susceptibility of the isolates was determined by standard microbiological procedures. S. aureus isolates were further evaluated for Methicillin resistance by Oxacillin resistance screening agar method and mecA polymerase chain reaction (PCR) and for biofilm synthesis by Congo red agar method, Microtitre plate (MTP) assay, and ica A and ica D PCR. RESULTS We found 95 patients with unilateral chronic dacryocystitis. Aerobic Gram-positive isolates (74.2%, n = 72) were more than Gram-negative (25.7%, n = 25) or anaerobic isolates (20.5%, n = 25). S. aureus was most common (46.4%, n = 45), followed by Pseudomonas aeruginosa (10.3%, n = 10). Gram-positive isolates showed highest sensitivity to Linezolid (100%) and higher generation fluoroquinolones. Gram-negative isolates showed good sensitivity (>90%) to all tested antibiotics. S. aureus isolates showed MRSA prevalence as 93.5% and 96.9% by Oxacillin resistance screening agar method and mecA PCR, respectively. Biofilm formation was found in 71.8% MRSA isolates by MTP assay and 58.1% MRSA isolates were resistant to ≥3 classes of antibiotics. CONCLUSIONS Gram-positive organisms, specifically S. aureus, are the major etiological agent in chronic dacryocystitis. There is high prevalence of MRSA in these isolates and concurrent biofilm formation.
Collapse
Affiliation(s)
- Sanchita Mitra
- a Ocular Microbiology Service , L V Prasad Eye Institute , Bhubaneswar and Hyderabad , India
| | - Nirupama Chayani
- b Department of Microbiology , SCB Medical College , Cuttack , India
| | | | - Manas Ranjan Barik
- a Ocular Microbiology Service , L V Prasad Eye Institute , Bhubaneswar and Hyderabad , India
| | - Savitri Sharma
- a Ocular Microbiology Service , L V Prasad Eye Institute , Bhubaneswar and Hyderabad , India
| | - Soumyava Basu
- c Retina and Uveitis Services , L V Prasad Eye Institute , Bhubaneswar , India
| |
Collapse
|
29
|
Development of a Broad-Spectrum Antimicrobial Combination for the Treatment of Staphylococcus aureus and Pseudomonas aeruginosa Corneal Infections. Antimicrob Agents Chemother 2018; 63:AAC.01929-18. [PMID: 30420484 DOI: 10.1128/aac.01929-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/25/2018] [Indexed: 10/28/2022] Open
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are two of the most common causes of bacterial keratitis and corresponding corneal blindness. Accordingly, such infections are predominantly treated with broad-spectrum fluoroquinolones, such as moxifloxacin. Yet, the rising fluoroquinolone resistance has necessitated the development of alternative therapeutic options. Herein, we describe the development of a polymyxin B-trimethoprim (PT) ophthalmic formulation containing the antibiotic rifampin, which exhibits synergistic antimicrobial activity toward a panel of contemporary ocular clinical S. aureus and P. aeruginosa isolates, low spontaneous resistance frequency, and in vitro bactericidal kinetics and antibiofilm activities equaling or exceeding the antimicrobial properties of moxifloxacin. The PT plus rifampin combination also demonstrated increased efficacy in comparison to those of either commercial PT or moxifloxacin in a murine keratitis model of infection, resulting in bacterial clearance of 70% in the animals treated. These results suggest that the combination of PT and rifampin may represent a novel antimicrobial agent in the treatment of bacterial keratitis.
Collapse
|
30
|
Contact Lens Solutions and Contact Lens Discomfort: Examining the Correlations Between Solution Components, Keratitis, and Contact Lens Discomfort. Eye Contact Lens 2018; 44:355-366. [DOI: 10.1097/icl.0000000000000458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Abstract
PURPOSE Pseudomonas aeruginosa produces pyoverdine, encoded by the pvdE gene, for high-affinity iron uptake from transferrin and lactoferrin. This study investigated the contribution of pyoverdine to P. aeruginosa keratitis pathogenesis using in vitro and in vivo models. METHODS The P. aeruginosa strains examined were parental strain PAO1 and isogenic mutant strain pvdE (ΔpvdE) defective in pyoverdine. Bacterial growth in vitro was determined by PAO1 and ΔpvdE optical densities in Luria-Bertani (LB) broth. PAO1 or ΔpvdE (10 colony-forming units/mL) was inoculated onto cultured human corneal epithelial cells (HCECs) for 1 hour. The monolayers were examined for bacterial adhesion and invasion. In addition, the corneas of C57BL/6 mice were infected with PAO1 or ΔpvdE. Corneal virulence was evaluated by determining clinical scores and bacterial counts during infection. RESULTS The growth of PAO1 and ΔpvdE in LB broth was similar. Although adhesion of ΔpvdE onto HCECs was significantly increased compared with PAO1, the invasive capacity of ΔpvdE was significantly decreased. Clinical scores and bacterial numbers were significantly lower in ΔpvdE-infected eyes compared with PAO1-infected eyes at 6, 24, and 48 hours (P < 0.001). ΔpvdE was not detected in mouse corneas and did not induce corneal opacity at 6, 24, or 48 hours. CONCLUSIONS ΔpvdE lost invasive ability toward HCECs. Moreover, ΔpvdE did not cause keratitis in vivo. Thus, pvdE pyoverdine synthesis has critical roles in proliferation and invasion on ocular surfaces and could be a target for prevention of P. aeruginosa keratitis.
Collapse
|
32
|
Species-specific characteristics of the biofilm generated in silicone tube: an in vitro study. BMC Ophthalmol 2018; 18:85. [PMID: 29614999 PMCID: PMC5883301 DOI: 10.1186/s12886-018-0750-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/23/2018] [Indexed: 11/23/2022] Open
Abstract
Background To investigate characteristics of biofilm which is usually found in silicone tube for nasolacrimal duct surgery and can be the root of chronic bacterial infections eventually resulted in surgical failure. Methods To form a biofilm, sterile silicone tube was placed in culture media of Staphylococcus aureus, Corynebacterium matruchotii, Pseudomonas aeruginosa, or Streptococcus pneumonia. Biofilms formed on these silicone tubes were fixed with 95% ethanol and stained with 0.1% crystal violet. After staining, the optical densities of biofilms were measured using spectrophotometer on a weekly basis for 12 weeks. Results Staphylococcus aureus group and Pseudomonas aeruginosa group formed significantly more amounts of biofilms compared to the control group. The maximum optical densities of the two groups were found on week 3–4 followed by a tendency of decrease afterwards. However, the amounts of biofilms formed in other groups of silicone tubes were not statistically significant from that of the control group. Conclusions Bacterial species that could form biofilm on silicone tube included Staphylococcus aureus (week 3) and Pseudomonas aeruginosa (Week 4). It is important to first consider that the cause of infection around 1 month after silicone tube intubation can be Staphylococcus aureus and Pseudomonas aeruginosa.
Collapse
|
33
|
O'Callaghan RJ. The Pathogenesis of Staphylococcus aureus Eye Infections. Pathogens 2018; 7:pathogens7010009. [PMID: 29320451 PMCID: PMC5874735 DOI: 10.3390/pathogens7010009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a major pathogen of the eye able to infect the tear duct, eyelid, conjunctiva, cornea, anterior and posterior chambers, and the vitreous chamber. Of these infections, those involving the cornea (keratitis) or the inner chambers of the eye (endophthalmitis) are the most threatening because of their potential to cause a loss in visual acuity or even blindness. Each of these ocular sites is protected by the constitutive expression of a variety of antimicrobial factors and these defenses are augmented by a protective host response to the organism. Such infections often involve a predisposing factor that weakens the defenses, such as the use of contact lenses prior to the development of bacterial keratitis or, for endophthalmitis, the trauma caused by cataract surgery or intravitreal injection. The structural carbohydrates of the bacterial surface induce an inflammatory response able to reduce the bacterial load, but contribute to the tissue damage. A variety of bacterial secreted proteins including alpha-toxin, beta-toxin, gamma-toxin, Panton-Valentine leukocidin and other two-component leukocidins mediate tissue damage and contribute to the induction of the inflammatory response. Quantitative animal models of keratitis and endophthalmitis have provided insights into the S. aureus virulence and host factors active in limiting such infections.
Collapse
Affiliation(s)
- Richard J O'Callaghan
- Department of Microbiology and Immunology, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, USA.
| |
Collapse
|
34
|
Infectious crystalline keratopathy. Surv Ophthalmol 2017; 63:480-499. [PMID: 29097211 DOI: 10.1016/j.survophthal.2017.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/15/2017] [Accepted: 10/19/2017] [Indexed: 01/07/2023]
Abstract
Infectious crystalline keratopathy was first reported by Gorovoy and colleagues in 1983 when they identified bacteria colonizing a cornea after a penetrating keratoplasty. Subsequent cases have elaborated on the organisms responsible and the management outcomes. Patients present with a white or gray branching opacity originating from an epithelial defect, commonly after a penetrating keratoplasty. Local immunosuppression contributes to the quiescent nature and the limited inflammatory response associated with infectious crystalline keratopathy. Diagnosis of the infective pathogens may be difficult, with a corneal scraping often being too superficial to obtain an adequate specimen. A biofilm is present that advantages microorganism survival, reduces antibiotic bioavailability, and inhibits diagnostic microbial detection. Treatment begins with topical antimicrobials, initially broad spectrum and then targeted to microorganism sensitivity. Adjunctive therapies to enhance the efficacy of treatment include disruption of the microorganism biofilm by laser, intrastromal antibiotics, and keratectomy. In recalcitrant cases, or where corneal scarring ensues, corneal transplantation is required.
Collapse
|
35
|
Ananeva AV, Novikov IA, Egorova GB, Mitichkina TS, Andronov EE, Shagimardanova EI. Metagenomic Analysis of Human Lens Microbiota Associated with Ophthalmic Diseases. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Ranjith K, Arunasri K, Reddy GS, Adicherla H, Sharma S, Shivaji S. Global gene expression in Escherichia coli, isolated from the diseased ocular surface of the human eye with a potential to form biofilm. Gut Pathog 2017; 9:15. [PMID: 28392838 PMCID: PMC5379667 DOI: 10.1186/s13099-017-0164-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/25/2017] [Indexed: 01/10/2023] Open
Abstract
Background Escherichia coli, the gastrointestinal commensal, is also known to cause ocular infections such as conjunctivitis, keratitis and endophthalmitis. These infections are normally resolved by topical application of an appropriate antibiotic. But, at times these E. coli are resistant to the antibiotic and this could be due to formation of a biofilm. In this study ocular E. coli from patients with conjunctivitis, keratitis or endophthalmitis were screened for their antibiotic susceptibility and biofilm formation potential. In addition DNA-microarray analysis was done to identify genes that are involved in biofilm formation and antibiotic resistance. Results Out of 12 ocular E. coli isolated from patients ten isolates were resistant to one or more of the nine antibiotics tested and majority of the isolates were positive for biofilm formation. In E. coli L-1216/2010, the best biofilm forming isolate, biofilm formation was confirmed by scanning electron microscopy. Confocal laser scanning microscopic studies indicated that the thickness of the biofilm increased up to 72 h of growth. Further, in the biofilm phase, E. coli L-1216/2010 was 100 times more resistant to the eight antibiotics tested compared to planktonic phase. DNA microarray analysis indicated that in biofilm forming E. coli L-1216/2010 genes encoding biofilm formation such as cell adhesion genes, LPS production genes, genes required for biofilm architecture and extracellular matrix remodeling and genes encoding for proteins that are integral to the cell membrane and those that influence antigen presentation are up regulated during biofilm formation. In addition genes that confer antimicrobial resistance such as genes encoding antimicrobial efflux (mdtM and cycA), virulence (insQ, yjgK), toxin production (sat, yjgK, chpS, chpB and ygjN), transport of amino-acids and other metabolites (cbrB, cbrC, hisI and mglB) are also up regulated. These genes could serve as potential targets for developing strategies for hacking biofilms and overcoming antibiotic resistance. Conclusions This is the first study on global gene expression in antibiotic resistant ocular E. coli with a potential to form biofilm. Using native ocular isolates for antibiotic susceptibility testing, for biofilm formation and global gene expression is relevant and more acceptable than using type strains or non clinical strains which do not necessarily mimic the native isolate. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0164-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konduri Ranjith
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, 500007 India.,Research Scholar, Manipal University, Manipal, Karnataka 576104 India
| | - Kotakonda Arunasri
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, 500007 India
| | | | | | - Savitri Sharma
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, 500007 India
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, 500007 India
| |
Collapse
|
37
|
The bacterial quorum-sensing molecule, N-3-oxo-dodecanoyl-L-homoserine lactone, inhibits mediator release and chemotaxis of murine mast cells. Inflamm Res 2016; 66:259-268. [PMID: 27896412 DOI: 10.1007/s00011-016-1013-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Bacterial colonization relies on communication between bacteria via so-called "quorum-sensing molecules", which include the acyl-homoserine lactone group. Certain acyl-homoserine lactones can modulate mammalian cell function and are thought to contribute to bacterial pathogenicity. Given the role of mast cells in host defense, we investigated the ability of acyl-homoserine lactones to modulate mast cell function. METHODS We utilized murine primary mast cell cultures to assess the effect of acyl-homoserine lactones on degranulation and cytokine release in response to different stimuli. We also assessed cell migration in response to chemoattractants. The effect of acyl-homoserine lactones in vivo was tested using a passive cutaneous anaphylaxis model. RESULTS Two of the tested quorum-sensing molecules, N-3-oxo-dodecanoyl-L-homoserine lactone and N-Dodecanoyl-L-homoserine lactone, inhibited IgE dependent and independent degranulation and mediator release from primary mast cells. Further testing of N-3-oxo-dodecanoyl-L-homoserine lactone, the most potent inhibitor and a product of Pseudomonas aeruginosa, revealed that it also attenuated chemotaxis and LPS induced cytokine production. In vivo, N-3-oxo-dodecanoyl-L-homoserine lactone inhibited the passive cutaneous anaphylaxis response in mice. CONCLUSION The ability of N-3-oxo-dodecanoyl-L-homoserine lactone to stabilize mast cells may contribute to the pathogenicity of P. aeruginosa but could potentially be exploited therapeutically in allergic disease.
Collapse
|
38
|
Wu YT, Tam C, Zhu LS, Evans DJ, Fleiszig SMJ. Human Tear Fluid Reduces Culturability of Contact Lens-Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence-Associated Type III Secretion System. Ocul Surf 2016; 15:88-96. [PMID: 27670247 DOI: 10.1016/j.jtos.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/11/2016] [Accepted: 09/11/2016] [Indexed: 01/27/2023]
Abstract
PURPOSE The type III secretion system (T3SS) is a significant virulence determinant for Pseudomonas aeruginosa. Using a rodent model, we found that contact lens (CL)-related corneal infections were associated with lens surface biofilms. Here, we studied the impact of human tear fluid on CL-associated biofilm growth and T3SS expression. METHODS P. aeruginosa biofilms were formed on contact lenses for up to 7 days with or without human tear fluid, then exposed to tear fluid for 5 or 24 h. Biofilms were imaged using confocal microscopy. Bacterial culturability was quantified by viable counts, and T3SS gene expression measured by RT-qPCR. Controls included trypticase soy broth, PBS and planktonic bacteria. RESULTS With or without tear fluid, biofilms grew to ∼108 CFU viable bacteria by 24 h. Exposing biofilms to tear fluid after they had formed without it on lenses reduced bacterial culturability ∼180-fold (P<.001). CL growth increased T3SS gene expression versus planktonic bacteria [5.46 ± 0.24-fold for T3SS transcriptional activitor exsA (P=.02), and 3.76 ± 0.36-fold for T3SS effector toxin exoS (P=.01)]. Tear fluid further enhanced exsA and exoS expression in CL-grown biofilms, but not planktonic bacteria, by 2.09 ± 0.38-fold (P=.04) and 1.89 ± 0.26-fold (P<.001), respectively. CONCLUSIONS Considering the pivitol role of the T3SS in P. aeruginosa infections, its induction in CL-grown P. aeruginosa biofilms by tear fluid might contribute to the pathogenesis of CL-related P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Yvonne T Wu
- School of Optometry, University of California, Berkeley, CA, USA
| | - Connie Tam
- School of Optometry, University of California, Berkeley, CA, USA
| | - Lucia S Zhu
- School of Optometry, University of California, Berkeley, CA, USA
| | - David J Evans
- School of Optometry, University of California, Berkeley, CA, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA
| | - Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, USA; Graduate Groups in Vision Science, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, CA, USA.
| |
Collapse
|
39
|
Fariña N, Samudio M, Carpinelli L, Nentwich MM, de Kaspar HM. Methicillin resistance and biofilm production of Staphylococcus epidermidis isolates from infectious and normal flora conjunctiva. Int Ophthalmol 2016; 37:819-825. [PMID: 27614460 DOI: 10.1007/s10792-016-0339-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/03/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE Coagulase-negative staphylococci have been reported to be the most frequent cause of bacterial postoperative endophthalmitis. Biofilm formation is the major virulence factor of Staphylococcus epidermidis and is often associated with methicillin resistance. This study aims at evaluating the presence of biofilm-producing and methicillin resistance genes (mecA) in S. epidermidis. METHODS S. epidermidis isolated from clinically infected sites (group 1) and from normal human conjunctiva (group 2) were studied. All the isolates were tested for their ability to produce biofilm by the conventional Christensen´s method and the presence of mecA by PCR using the 22-mer oligonucleotides as primers. RESULTS In total 20 isolates from group 1 and 22 from group 2 were studied. Biofilm and mecA were detected in 15 (75 %) and in 14 (70 %) in group 1 as compared to 8 (36.3 %) and 4 (18.2 %) in group 2 (p = 0.016). Simultaneously, biofilm production and presence of mecA genes were observed in 13/20 (65.0 %) in group 1, and 4/22 (18.2 %) in group 2 (p = 0.002). Multi-resistance was observed in 55 % in group 1 and 9 % in group 2 (p = 0.002); 57 % of the biofilm-producing strains was multi-resistant in contrast to none of the non-producing strains. In all multi-resistant strains, biofilm production was seen. CONCLUSIONS Biofilm formation capacity was widely distributed, particularly among mecA (+) S. epidermidis strains, which also displayed a high diversity of antibiotic resistance profiles.
Collapse
Affiliation(s)
- Norma Fariña
- Instituto de Investigaciones en Ciencias de la Salud (IICS), Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Margarita Samudio
- Instituto de Investigaciones en Ciencias de la Salud (IICS), Universidad Nacional de Asunción, San Lorenzo, Paraguay.
| | - Letizia Carpinelli
- Instituto de Investigaciones en Ciencias de la Salud (IICS), Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Martin M Nentwich
- Department of Ophthalmology, Julius-Maximilians University, Würzburg, Germany
| | | |
Collapse
|
40
|
Shayani Rad M, Khameneh B, Sabeti Z, Mohajeri SA, Fazly Bazzaz BS. Antibacterial Activity of Silver Nanoparticle-Loaded Soft Contact Lens Materials: The Effect of Monomer Composition. Curr Eye Res 2016; 41:1286-1293. [DOI: 10.3109/02713683.2015.1123726] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Maryam Shayani Rad
- Student Research Committee (SRC), Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sabeti
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
|
42
|
Kıvanç SA, Kıvanç M, Bayramlar H. Microbiology of corneal wounds after cataract surgery: biofilm formation and antibiotic resistance patterns. J Wound Care 2016; 25:12, 14-9. [DOI: 10.12968/jowc.2016.25.1.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S. A. Kıvanç
- Uludag University, Medical Faculty, Clinic of Eye Diseases, Bursa, Turkey
| | - M. Kıvanç
- Anadolu University, Faculty of Science, Department of Biology, Eskisehir, Turkey
| | - H. Bayramlar
- Medeniyet University, Faculty of Medicine, Clinic of Eye Diseases, Istanbul, Turkey
| |
Collapse
|
43
|
Saraswathi P, Beuerman RW. Corneal Biofilms: From Planktonic to Microcolony Formation in an Experimental Keratitis Infection with Pseudomonas Aeruginosa. Ocul Surf 2015. [DOI: 10.1016/j.jtos.2015.07.001 [pii]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Lasjerdi Z, Niyyati M, Lorenzo-Morales J, Haghighi A, Taghipour N. Ophthalmology hospital wards contamination to pathogenic free living Amoebae in Iran. Acta Parasitol 2015. [PMID: 26204177 DOI: 10.1515/ap-2015-0057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study was conducted to determine the occurrence of potentially pathogenic free-living amoeba in ophthalmology wards in reference hospitals in Iran. Since an increasing number of Acanthamoeba Keratitis cases after eye surgery and eye trauma have been recently observed in this country, it could be possible that the disinfection procedures undertaken in the clinical setting may not have a good hygiene and disinfection procedures, hence the aim of this study. Therefore, 42 dust and biofilm samples were collected from different areas of ophthalmology wards and checked for the presence of FLA using morphological criteria, PCR based analysis and DNA sequencing. Of the 42 samples from dust and biofilm sources, 18(42.86%) isolates were found to contain FLA and 12(92.3%) isolates belonged to Acanthamoeba T4 genotype. Isolation of the pathogenic genotype T4 from medical instruments, including slit lamp in corneal wards, may be a threat for patients undergoing eye surgery in these wards. Other FLA isolated in this study included Acanthamoeba genotype T5, Vahlkampfia sp, Naegleria australiensis, Vermamoeba vermiformis and Echinamoeba exudans. To our knowledge, this is the first report of the presence of potentially pathogenic FLA in ophthalmology wards in Iran. Improved disinfection methods and monitoring of hospitals ward are thus necessary in this area in order to minimize the risk of infection in patients.
Collapse
|
45
|
Saraswathi P, Beuerman RW. Corneal Biofilms: From Planktonic to Microcolony Formation in an Experimental Keratitis Infection with Pseudomonas Aeruginosa. Ocul Surf 2015. [PMID: 26220579 DOI: 10.1016/j.jtos.2015.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE Microbial biofilms commonly comprise part of the infectious scenario, complicating the therapeutic approach. The purpose of this study was to determine in a mouse model of corneal infection if mature biofilms formed and to visualize the stages of biofilm formation. METHODS A bacterial keratitis model was established using Pseudomonas aeruginosa ATCC 9027 (1 × 10(8) CFU/ml) to infect the cornea of C57BL/6 black mouse. Eyes were examined post-infection (PI) on days 1, 2, 3, 5, and 7, and imaged by slit lamp microscopy, and light, confocal, and electron microscopy to identify the stages of biofilm formation and the time of appearance. RESULTS On PI day 1, Gram staining showed rod-shaped bacteria adherent on the corneal surface. On PI days 2 and 3, bacteria were seen within webs of extracellular polymeric substance (EPS) and glycocalyx secretion, imaged by confocal microscopy. Scanning electron microscopy demonstrated microcolonies of active infectious cells bound with thick fibrous material. Transmission electron microscopy substantiated the formation of classical biofilm architecture with P. aeruginosa densely packed within the extracellular polymeric substances on PI days 5 and 7. CONCLUSION Direct visual evidence showed that biofilms routinely developed on the biotic surface of the mouse cornea. The mouse model can be used to develop new approaches to deal therapeutically with biofilms in corneal infections.
Collapse
Affiliation(s)
| | - Roger W Beuerman
- Singapore Eye Research Institute (SERI), Singapore; Duke-NUS SRP Neuroscience and Behavioural Disorders and Emerging Infectious Diseases, Singapore; Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
46
|
Khemiri A, Jouenne T, Cosette P. Proteomics dedicated to biofilmology: What have we learned from a decade of research? Med Microbiol Immunol 2015; 205:1-19. [PMID: 26068406 DOI: 10.1007/s00430-015-0423-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 06/03/2015] [Indexed: 12/31/2022]
Abstract
Advances in proteomics techniques over the past decade, closely integrated with genomic and physicochemical approach, have played a great role in developing knowledge of the biofilm lifestyle of bacteria. Despite bacterial proteome versatility, many studies have demonstrated the ability of proteomics approaches to elucidating the biofilm phenotype. Though these investigations have been largely used for biofilm studies in the last decades, they represent, however, a very low percentage of proteomics works performed up to now. Such approaches have offered new targets for combating microbial biofilms by providing a comprehensive quantitative and qualitative overview of their protein cell content. Herein, we summarized the state of the art in knowledge about biofilm physiology after one decade of proteomic analysis. In a second part, we highlighted missing research tracks for the next decade, emphasizing the emergence of posttranslational modifications in proteomic studies stemming from recent advances in mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Arbia Khemiri
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France.
- University of Normandy, UR, Mont-Saint-Aignan, France.
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France.
| | - Thierry Jouenne
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France
- University of Normandy, UR, Mont-Saint-Aignan, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Pascal Cosette
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France
- University of Normandy, UR, Mont-Saint-Aignan, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| |
Collapse
|
47
|
|
48
|
Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. ACTA ACUST UNITED AC 2015; 22:10. [PMID: 25687209 PMCID: PMC4330640 DOI: 10.1051/parasite/2015010] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/06/2015] [Indexed: 12/21/2022]
Abstract
Free-living amoebae of the genus Acanthamoeba are causal agents of a severe sight-threatening infection of the cornea known as Acanthamoeba keratitis. Moreover, the number of reported cases worldwide is increasing year after year, mostly in contact lens wearers, although cases have also been reported in non-contact lens wearers. Interestingly, Acanthamoeba keratitis has remained significant, despite our advances in antimicrobial chemotherapy and supportive care. In part, this is due to an incomplete understanding of the pathogenesis and pathophysiology of the disease, diagnostic delays and problems associated with chemotherapeutic interventions. In view of the devastating nature of this disease, here we present our current understanding of Acanthamoeba keratitis and molecular mechanisms associated with the disease, as well as virulence traits of Acanthamoeba that may be potential targets for improved diagnosis, therapeutic interventions and/or for the development of preventative measures. Novel molecular approaches such as proteomics, RNAi and a consensus in the diagnostic approaches for a suspected case of Acanthamoeba keratitis are proposed and reviewed based on data which have been compiled after years of working on this amoebic organism using many different techniques and listening to many experts in this field at conferences, workshops and international meetings. Altogether, this review may serve as the milestone for developing an effective solution for the prevention, control and treatment of Acanthamoeba infections.
Collapse
Affiliation(s)
- Jacob Lorenzo-Morales
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain
| | - Naveed A Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Lakshmi Priya J, Prajna L, Mohankumar V. Genotypic and phenotypic characterization of Pseudomonas aeruginosa isolates from post-cataract endophthalmitis patients. Microb Pathog 2015; 78:67-73. [DOI: 10.1016/j.micpath.2014.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/08/2014] [Accepted: 11/26/2014] [Indexed: 11/24/2022]
|
50
|
Mazoteras P, Bispo PJM, Höfling-Lima AL, Casaroli-Marano RP. DNA extraction methods for panbacterial and panfungal PCR detection in intraocular fluids. Curr Eye Res 2014; 40:697-706. [PMID: 25285466 DOI: 10.3109/02713683.2014.957327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Three different methods of DNA extraction from intraocular fluids were compared with subsequent detection for bacterial and fungal DNA by universal PCR amplification. MATERIAL AND METHODS Three DNA extraction methods, from aqueous and vitreous humors, were evaluated to compare their relative efficiency. Bacterial (Gram positive and negative) and fungal strains were used in this study: Escherichia coli, Staphylococcus epidermidis and Candida albicans. The quality, quantification, and detection limit for DNA extraction and PCR amplification were analyzed. Validation procedures for 13 aqueous humor and 14 vitreous samples, from 20 patients with clinically suspected endophthalmitis were carried out. RESULTS The column-based extraction method was the most time-effective, achieving DNA detection limits ≥10(2) and 10(3 )CFU/100 µL for bacteria and fungi, respectively. PCR amplification detected 100 fg, 1 pg and 10 pg of genomic DNA of E. coli, S. epidermidis and C. albicans respectively. PCR detected 90.0% of the causative agents from 27 intraocular samples collected from 20 patients with clinically suspected endophthalmitis, while standard microbiological techniques could detect only 60.0%. The most frequently found organisms were Streptococcus spp. in 38.9% (n = 7) of patients and Staphylococcus spp. found in 22.2% (n = 4). CONCLUSIONS The column-based extraction method for very small inocula in small volume samples (50-100 µL) of aqueous and/or vitreous humors allowed PCR amplification in all samples with sufficient quality for subsequent sequencing and identification of the microorganism in the majority of them.
Collapse
Affiliation(s)
- Paloma Mazoteras
- Department of Surgery, School of Medicine, University of Barcelona (UB) , Barcelona , Spain
| | | | | | | |
Collapse
|