1
|
Ma Z, Liu H, Yu H. Triclosan Affects Ca 2+ Regulatory Module and Musculature Development in Skeletal Myocyte during Early Life Stages of Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11988-11998. [PMID: 31532625 DOI: 10.1021/acs.est.9b03231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advanced technologies for toxicity tests are designed to identify biomarkers with superior predictive power or end points of the complex web of biological pathways. However, the data obtained need to be fully characterized for dose-response, physiological systems, and relevance to a system or (sub) population before biological interpretation and decision making. In this study, the toxicity of triclosan (TCS) on zebrafish was selected as a case study to correlate the observed morphological effects with existing data and identify the critical events by receptor activity sensitivity analysis. Triclosan exhibited weak acute toxicity against zebrafish and significantly affected the development of trunk muscles at 0.52, 1.04, and 1.73 μM. Through receptor-mediated screening, we found that the adverse effects of TCS induce Ryanodine receptor 1 (RyR1) activity and distort Ca2+ signaling. The trunk skeletal muscle abnormalities occurred only when the dihydropyridine receptor (DHPR) was blocked, demonstrating that TCS mainly influenced the Ca2+ regulatory module associated with signaling between DHPRs and RyR1; DHPRs mainly regulated the orthograde and retrograde signaling in skeletal muscles. This unexpected result could integrate the mode of action of TCS and provide insight for high-throughput screening and toxicity prediction using zebrafish.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
2
|
Hayes MN, McCarthy K, Jin A, Oliveira ML, Iyer S, Garcia SP, Sindiri S, Gryder B, Motala Z, Nielsen GP, Borg JP, van de Rijn M, Malkin D, Khan J, Ignatius MS, Langenau DM. Vangl2/RhoA Signaling Pathway Regulates Stem Cell Self-Renewal Programs and Growth in Rhabdomyosarcoma. Cell Stem Cell 2019; 22:414-427.e6. [PMID: 29499154 DOI: 10.1016/j.stem.2018.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 12/14/2017] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Tumor growth and relapse are driven by tumor propagating cells (TPCs). However, mechanisms regulating TPC fate choices, maintenance, and self-renewal are not fully understood. Here, we show that Van Gogh-like 2 (Vangl2), a core regulator of the non-canonical Wnt/planar cell polarity (Wnt/PCP) pathway, affects TPC self-renewal in rhabdomyosarcoma (RMS)-a pediatric cancer of muscle. VANGL2 is expressed in a majority of human RMS and within early mononuclear progenitor cells. VANGL2 depletion inhibited cell proliferation, reduced TPC numbers, and induced differentiation of human RMS in vitro and in mouse xenografts. Using a zebrafish model of embryonal rhabdomyosarcoma (ERMS), we determined that Vangl2 expression enriches for TPCs and promotes their self-renewal. Expression of constitutively active and dominant-negative isoforms of RHOA revealed that it acts downstream of VANGL2 to regulate proliferation and maintenance of TPCs in human RMS. Our studies offer insights into pathways that control TPCs and identify new potential therapeutic targets.
Collapse
Affiliation(s)
- Madeline N Hayes
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Karin McCarthy
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Alexander Jin
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Mariana L Oliveira
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sowmya Iyer
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Sara P Garcia
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Sivasish Sindiri
- Oncogenomics Section, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Berkley Gryder
- Oncogenomics Section, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Zainab Motala
- Division of Hematology/Oncology, Hospital for Sick Children and Department of Pediatrics, University of Toronto, Toronto, ON M5G1X8, Canada
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Inst Paoli Calmettes, UMR7258 CNRS, U1068 INSERM, "Cell Polarity, Cell signalling and Cancer - Equipe labellisée Ligue Contre le Cancer," Marseille, France
| | - Matt van de Rijn
- Department of Pathology, Stanford University Medical Center, Stanford, CA 94305, USA
| | - David Malkin
- Division of Hematology/Oncology, Hospital for Sick Children and Department of Pediatrics, University of Toronto, Toronto, ON M5G1X8, Canada
| | - Javed Khan
- Oncogenomics Section, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Myron S Ignatius
- Molecular Medicine and Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX 78229, USA
| | - David M Langenau
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Mukherjee K, Liao EC. Generation and characterization of a zebrafish muscle specific inducible Cre line. Transgenic Res 2018; 27:559-569. [PMID: 30353407 PMCID: PMC6364321 DOI: 10.1007/s11248-018-0098-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/01/2018] [Indexed: 01/18/2023]
Abstract
Zebrafish transgenic lines provide valuable insights into gene functions, cell lineages and cell behaviors during development. Spatiotemporal control over transgene expression is a critical need in many experimental approaches, with applications in loss- and gain-of-function expression, ectopic expression and lineage tracing experiments. The Cre/loxP recombination system is a powerful tool to provide this control and the demand for validated Cre and loxP zebrafish transgenics is high. One of the major challenges to widespread application of Cre/loxP technology in zebrafish is comparatively small numbers of established tissue-specific Cre or CreERT2 lines. We used Tol2-mediated transgenesis to generate Tg(CrymCherry;-1.9mylz2:CreERT2) which provides an inducible CreERT2 source driven by muscle-specific mylz2 promoter. The transgenic specifically labels the trunk and tail skeletal muscles. We assessed the temporal responsiveness of the transgenic by screening with a validated loxP reporter transgenic ubi:Switch. Further, we evaluated the recombination efficiency in the transgenic with varying concentrations of 4-OHT, for different induction time periods and at different stages of embryogenesis and observed that higher recombination efficiency is achieved when embryos are induced with 10 μM 4-OHT from 10-somites or 24 hpf till 48 or 72 hpf. The transgenic is an addition to currently available zebrafish transgenesis toolbox and a significant tool to advance muscle biology studies in zebrafish.
Collapse
Affiliation(s)
- Kusumika Mukherjee
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Harvard University, Boston, MA, 02115, USA
| | - Eric C Liao
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Medical School, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Shi C, Huang J, Chen S, Li G, Wang Y. Generation of two transgenic amphioxus lines using the Tol2 transposon system. J Genet Genomics 2018; 45:513-516. [PMID: 30268359 DOI: 10.1016/j.jgg.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/06/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Chenggang Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jing Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Shixi Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Tenente IM, Hayes MN, Ignatius MS, McCarthy K, Yohe M, Sindiri S, Gryder B, Oliveira ML, Ramakrishnan A, Tang Q, Chen EY, Petur Nielsen G, Khan J, Langenau DM. Myogenic regulatory transcription factors regulate growth in rhabdomyosarcoma. eLife 2017; 6. [PMID: 28080960 PMCID: PMC5231408 DOI: 10.7554/elife.19214] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric malignacy of muscle with myogenic regulatory transcription factors MYOD and MYF5 being expressed in this disease. Consensus in the field has been that expression of these factors likely reflects the target cell of transformation rather than being required for continued tumor growth. Here, we used a transgenic zebrafish model to show that Myf5 is sufficient to confer tumor-propagating potential to RMS cells and caused tumors to initiate earlier and have higher penetrance. Analysis of human RMS revealed that MYF5 and MYOD are mutually-exclusively expressed and each is required for sustained tumor growth. ChIP-seq and mechanistic studies in human RMS uncovered that MYF5 and MYOD bind common DNA regulatory elements to alter transcription of genes that regulate muscle development and cell cycle progression. Our data support unappreciated and dominant oncogenic roles for MYF5 and MYOD convergence on common transcriptional targets to regulate human RMS growth. DOI:http://dx.doi.org/10.7554/eLife.19214.001
Collapse
Affiliation(s)
- Inês M Tenente
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,GABBA Program, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Madeline N Hayes
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Myron S Ignatius
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,Molecular Medicine, Greehey Children's Cancer Research Institute, San Antonio, United States
| | - Karin McCarthy
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Marielle Yohe
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - Sivasish Sindiri
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - Berkley Gryder
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - Mariana L Oliveira
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ashwin Ramakrishnan
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Qin Tang
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Eleanor Y Chen
- Department of Pathology, University of Washington, Seattle, United States
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, United States
| | - Javed Khan
- Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, National Cancer Institute, Gaithersburg, United States
| | - David M Langenau
- Molecular Pathology, Cancer Center, and Regenerative Medicine, Massachusetts General Hospital, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| |
Collapse
|
6
|
Maternal methylmercury from a wild-caught walleye diet induces developmental abnormalities in zebrafish. Reprod Toxicol 2016; 65:272-282. [DOI: 10.1016/j.reprotox.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/03/2016] [Accepted: 08/16/2016] [Indexed: 01/20/2023]
|
7
|
Lin YH, Peng KC, Pan CY, Wen ZH, Chen JY. Expression characterization and promoter activity analysis of the tilapia (Oreochromis niloticus) myosin light chain 3 promoter in skeletal muscle of fish. Transgenic Res 2014; 23:125-34. [PMID: 24146265 DOI: 10.1007/s11248-013-9758-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 10/02/2013] [Indexed: 12/01/2022]
Abstract
A tilapia (Oreochromis niloticus) myosin light chain 3 (Mlc3) promoter region (~4.3 kb) was isolated and characterized. Sequence analysis of the clone revealed high similarity with a tilapia gene encoding the Mlc3 promoter region, exon 1, and intron 1. The clone contained several putative binding sequences for transcription factors, including MEF-2, MYOG, MyoD, PKNOX1, and AREB6. Deletion of a region of the tilapia Mlc3 promoter (801 to -3,881 bp) enhanced promoter activity, as determined by direct injection of a luciferase reporter construct into skeletal muscle of Archocentrus nigrofasciatus. These findings suggest that the region between -801 and -3,881 bp may contain negative regulatory elements. Stable germline transgenic strains of the ornamental fish species A. nigrofasciatus var. carrying the Taiwan coral red fluorescent protein (TcRFP) driven by the Mlc3 promoter were established. F1 adult transgenic A. nigrofasciatus var. exhibited brilliant pink fluorescence in skeletal muscles in the daylight. Therefore, our current study demonstrates the feasibility of using the tilapia Mlc3 promoter to drive fluorescence in new fish species, such as Perciformes.
Collapse
Affiliation(s)
- Yu-Ho Lin
- Marine Biomedical Laboratory and Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 70 Lien-Hai Rd, Kaohsiung, 804, Taiwan
| | | | | | | | | |
Collapse
|
8
|
Molecular and functional analyses of the fast skeletal myosin light chain2 gene of the Korean oily bitterling, Acheilognathus koreensis. Int J Mol Sci 2013; 14:16672-84. [PMID: 23945561 PMCID: PMC3759931 DOI: 10.3390/ijms140816672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 11/17/2022] Open
Abstract
We identified and characterized the primary structure of the Korean oily bitterling Acheilognathus koreensis fast skeletal myosin light chain 2 (Akmlc2f), gene. Encoded by seven exons spanning 3955 bp, the deduced 168-amino acid AkMLC2f polypeptide contained an EF-hand calcium-binding motif and showed strong homology (80%-98%) with the MLC2 proteins of Ictalurus punctatus and other species, including mammals. Akmlc2f mRNA was highly enriched in skeletal muscles, and was detectable in other tissues. The upstream regions of Akmlc2f included a TATA box, one copy of a putative MEF-2 binding site and several putative C/EBPβ binding sites. The functional activity of the promoter region of Akmlc2f was examined using luciferase and red fluorescent protein reporters. The Akmlc2f promoter-driven reporter expressions were detected and increased by the C/EBPβ transcription factor in HEK293T cells. The activity of the promoter of Akmlc2f was also confirmed in the developing zebrafish embryo. Although the detailed mechanism underlying the expression of Akmlc2f remains unknown, these results suggest the muscle-specific expression of Akmlc2f transcript and the functional activation of Akmlc2f promoter by C/EBPβ.
Collapse
|
9
|
Cho YS, Lee SY, Kim DS, Nam YK. Characterization of stable fluorescent transgenic marine medaka (Oryzias dancena) lines carrying red fluorescent protein gene driven by myosin light chain 2 promoter. Transgenic Res 2013; 22:849-59. [PMID: 23188170 DOI: 10.1007/s11248-012-9675-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/14/2012] [Indexed: 01/09/2023]
Abstract
Stable transgenic germlines carrying the red fluorescence protein (RFP) gene (rfp) driven by fast skeletal myosin light chain-2 gene (mlc2f) promoter were established in a truly euryhaline fish species, the marine medaka (Oryzias dancena; Beloniformes). Transgenic lines contained transgene copy numbers varying from a single copy to more than 230 copies per genome. Although the transgenic founders displayed mosaic and/or ectopic expression of the RFP signal, the resultant F1 transgenics and their progeny showed consistently stable transmission of the transgenic locus and uniform RFP signal through several subsequent generations. In adult transgenics, an authentic brilliant red fluorescence was achieved over the skeletal muscles of the transgenic individuals, which might be sufficient for ornamental display. Expression analysis of the transgenic mRNAs indicated that rfp transcripts were predominantly expressed in the skeletal muscles. Different transgenic lines displayed different levels of transgene expression at the mRNA, protein, and phenotypic levels. However, the efficiency of transgene expression was independent of the transgene copy number. The RFP protein levels were consistently stable in the transgenic fish muscles through several generations, up to F5. The results of this study suggest that transgenic marine medaka that acquire strong fluorescent signals in their skeletal muscles can be developed as a promising, novel ornamental fish for display in both freshwater and seawater aquaria.
Collapse
Affiliation(s)
- Young Sun Cho
- Institute of Marine Living Modified Organisms, Pukyong National University, Busan 608-737, Korea
| | | | | | | |
Collapse
|
10
|
Molecular cloning, sequence identification and expression analysis of novel caprine MYLPF gene. Mol Biol Rep 2013; 40:2565-72. [DOI: 10.1007/s11033-012-2342-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 12/09/2012] [Indexed: 10/27/2022]
|
11
|
Figueiredo MA, Mareco EA, Silva MDP, Marins LF. Muscle-specific growth hormone receptor (GHR) overexpression induces hyperplasia but not hypertrophy in transgenic zebrafish. Transgenic Res 2012; 21:457-69. [PMID: 21863247 DOI: 10.1007/s11248-011-9546-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 08/16/2011] [Indexed: 11/26/2022]
Abstract
Even though growth hormone (GH) transgenesis has demonstrated potential for improved growth of commercially important species, the hormone excess may result in undesired collateral effects. In this context, the aim of this work was to develop a new model of transgenic zebrafish (Danio rerio) characterized by a muscle-specific overexpression of the GH receptor (GHR) gene, evaluating the effect of transgenesis on growth, muscle structure and expression of growth-related genes. In on line of transgenic zebrafish overexpressing GHR in skeletal muscle, no significant difference in total weight in comparison to non-transgenics was observed. This can be explained by a significant reduction in expression of somatotrophic axis-related genes, in special insulin-like growth factor I (IGF-I). In the same sense, a significant increase in expression of the suppressors of cytokine signaling 1 and 3 (SOCS) was encountered in transgenics. Surprisingly, expression of genes coding for the main myogenic regulatory factors (MRFs) was higher in transgenic than non-transgenic zebrafish. Genes coding for muscle proteins did not follow the MRFs profile, showing a significant decrease in their expression. These results were corroborated by the histological analysis, where a hyperplasic muscle growth was observed in transgenics. In conclusion, our results demonstrated that GHR overexpression does not induce hypertrophic muscle growth in transgenic zebrafish probably because of SOCS impairment of the GHR/IGF-I pathway, culminating in IGF-I and muscle proteins decrease. Therefore, it seems that hypertrophy and hyperplasia follow two different routes for entire muscle growth, both of them triggered by GHR activation, but regulated by different mechanisms.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified/genetics
- Animals, Genetically Modified/metabolism
- Body Weight
- Gene Expression Regulation, Developmental
- Gene Transfer Techniques
- Hyperplasia/genetics
- Hyperplasia/metabolism
- Hypertrophy/genetics
- Hypertrophy/metabolism
- Luminescent Proteins/metabolism
- Models, Animal
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myogenic Regulatory Factors/genetics
- Myogenic Regulatory Factors/metabolism
- Promoter Regions, Genetic
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptors, Somatotropin/genetics
- Receptors, Somatotropin/metabolism
- Signal Transduction
- Suppressor of Cytokine Signaling 1 Protein
- Suppressor of Cytokine Signaling Proteins/genetics
- Suppressor of Cytokine Signaling Proteins/metabolism
- Zebrafish/genetics
- Zebrafish/growth & development
- Zebrafish/metabolism
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Marcio Azevedo Figueiredo
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografia, Universidade Federal do Rio Grande-FURG, Rio Grande, RS, Brazil
| | | | | | | |
Collapse
|
12
|
Batut J, Duboé C, Vandel L. The methyltransferases PRMT4/CARM1 and PRMT5 control differentially myogenesis in zebrafish. PLoS One 2011; 6:e25427. [PMID: 22016767 PMCID: PMC3189919 DOI: 10.1371/journal.pone.0025427] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/05/2011] [Indexed: 12/31/2022] Open
Abstract
In vertebrates, skeletal myogenesis involves the sequential activation of myogenic factors to lead ultimately to the differentiation into slow and fast muscle fibers. How transcriptional co-regulators such as arginine methyltransferases PRMT4/CARM1 and PRMT5 control myogenesis in vivo remains poorly understood. Loss-of-function experiments using morpholinos against PRMT4/CARM1 and PRMT5 combined with in situ hybridization, quantitative polymerase chain reaction, as well as immunohistochemistry indicate a positive, but differential, role of these enzymes during myogenesis in vivo. While PRMT5 regulates myod, myf5 and myogenin expression and thereby slow and fast fiber formation, PRMT4/CARM1 regulates myogenin expression, fast fiber formation and does not affect slow fiber formation. However, our results show that PRMT4/CARM1 is required for proper slow myosin heavy chain localization. Altogether, our results reveal a combinatorial role of PRMT4/CARM1 and PRMT5 for proper myogenesis in zebrafish.
Collapse
Affiliation(s)
- Julie Batut
- Université de Toulouse-Paul Sabatier, Centre de Biologie du Développement, Toulouse, France
| | | | | |
Collapse
|
13
|
Chu WY, Chen J, Zhou RX, Zhao FL, Meng T, Chen DX, Nong XX, Liu Z, Lu SQ, Zhang JS. Characterization and ontogenetic expression analysis of the myosin light chains from the fast white muscle of mandarin fish Siniperca chuatsi. JOURNAL OF FISH BIOLOGY 2011; 78:1225-1238. [PMID: 21463317 DOI: 10.1111/j.1095-8649.2011.02929.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Three full-length complementary DNA (cDNA) clones were isolated encoding the skeletal myosin light chain 1 (MLC1; 1237 bp), myosin light chain 2 (MLC2; 1206 bp) and myosin light chain 3 (MLC3; 1079 bp) from the fast white muscle cDNA library of mandarin fish Siniperca chuatsi. The sequence analysis indicated that MLC1 and MLC3 were not produced from differentially spliced messenger RNAs (mRNA) as reported in birds and rodents but were encoded by different genes. The MLC2 encodes 170 amino acids, which include four EF-hand (helix-loop-helix) structures. The primary structures of the Ca(2+)-binding domain were well conserved among the MLC2s of seven other fish species. The ontogenetic expression analysis by real-time PCR showed that the three light-chain mRNAs were first detected in the gastrula stage, and their expression increased from the tail bud stage to the larval stage. All three MLC mRNAs showed longitudinal expression variation in the fast white muscle of S. chuatsi, especially MLC1 which was highly expressed at the posterior area. Taken together, the study provides a better understanding about the MLC gene structure and their expression pattern in muscle development of S. chuatsi.
Collapse
Affiliation(s)
- W Y Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
To assay the efficiency of the FLP/FRT site-specific recombination system in Danio rerio, a construct consisting of a muscle-specific promoter driving EGFP flanked by FRT sites was developed. FLPe capped RNA was microinjected into transgenic single cell stage zebrafish embryos obtained by crossing hemizygous transgenic males with wild-type females. By 48 h post fertilization (hpf), the proportion of embryos displaying green fluorescence following FLPe RNA microinjection was significantly lower (7.7%; P < 0.001) than would be expected from a cross in the absence of the recombinase (50%). Embryos that retained fluorescence displayed marked mosaicism. Inheritance of the excised transgene in non-fluorescent, transgenic embryos was verified by PCR analysis and FLPe-mediated recombination was confirmed by DNA sequencing. Sperm derived from confirmed transgenic males in these experiments was used to fertilize wild-type eggs to determine whether germline excision of the transgene had occurred. Clutches sired by FLPe-microinjected males contained 0-4% fluorescent embryos. Transgenic males that were phenotypically wild-type produced no fluorescent progeny, demonstrating complete excision of the transgene from their germline. FLPe microinjected males that retained some fluorescent muscle expression produced a small proportion of fluorescent offspring, suggesting that in mosaic males not all germline cells had undergone FLPe-mediated transgene excision. Our results show that FLPe, which is derived from Saccharomyces cerevisiae, is an efficient recombinase in zebrafish maintained at 28.5°C.
Collapse
|
15
|
Gabillard JC, Rallière C, Sabin N, Rescan PY. The production of fluorescent transgenic trout to study in vitro myogenic cell differentiation. BMC Biotechnol 2010; 10:39. [PMID: 20478014 PMCID: PMC2887378 DOI: 10.1186/1472-6750-10-39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 05/17/2010] [Indexed: 12/03/2022] Open
Abstract
Background Fish skeletal muscle growth involves the activation of a resident myogenic stem cell population, referred to as satellite cells, that can fuse with pre-existing muscle fibers or among themselves to generate a new fiber. In order to monitor the regulation of myogenic cell differentiation and fusion by various extrinsic factors, we generated transgenic trout (Oncorhynchus mykiss) carrying a construct containing the green fluorescent protein reporter gene driven by a fast myosin light chain 2 (MlC2f) promoter, and cultivated genetically modified myogenic cells derived from these fish. Results In transgenic trout, green fluorescence appeared in fast muscle fibers as early as the somitogenesis stage and persisted throughout life. Using an in vitro myogenesis system we observed that satellite cells isolated from the myotomal muscle of transgenic trout expressed GFP about 5 days post-plating as they started to fuse. GFP fluorescence persisted subsequently in myosatellite cell-derived myotubes. Using this in vitro myogenesis system, we showed that the rate of muscle cell differentiation was strongly dependent on temperature, one of the most important environmental factors in the muscle growth of poikilotherms. Conclusions We produced MLC2f-gfp transgenic trout that exhibited fluorescence in their fast muscle fibers. The culture of muscle cells extracted from these trout enabled the real-time monitoring of myogenic differentiation. This in vitro myogenesis system could have numerous applications in fish physiology to evaluate the myogenic activity of circulating growth factors, to test interfering RNA and to assess the myogenic potential of fish mesenchymal stem cells. In ecotoxicology, this system could be useful to assess the impact of environmental factors and marine pollutants on fish muscle growth.
Collapse
Affiliation(s)
- Jean-Charles Gabillard
- National Institute for Agricultural Research, Joint Research Unit for Fish Physiology, Biodiversity and the Environment, INRA Scribe, IFR140, Campus de Beaulieu, 35042 Rennes, France
| | | | | | | |
Collapse
|
16
|
Reddish JM, St-Pierre N, Nichols A, Green-Church K, Wick M. Proteomic analysis of proteins associated with body mass and length in yellow perch, Perca flavescens. Proteomics 2008; 8:2333-43. [PMID: 18452223 DOI: 10.1002/pmic.200700533] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The goal of commercial yellow perch aquaculture is to increase muscle mass which leads to increased profitability. The accumulation and degradation of muscle-specific gene products underlies the variability in body mass (BM) and length observed in pond-cultured yellow perch. Our objective was to apply a combination of statistical and proteomic technologies to identify intact and/or proteolytic fragments of muscle specific gene products involved in muscle growth in yellow perch. Seventy yellow perch randomly selected at 10, 12, 16, 20, and 26 wk of age were euthanized; BM and length were measured and a muscle sample taken. Muscle proteins were resolved using 5-20% gradient SDS-PAGE, stained with SYPRO Ruby and analyzed using TotalLab software. Data were analyzed using stepwise multiple regression with the dependent variables, BM and length and proportional OD of each band in a sample as a potential regressor. Eight bands associated with BM (R(2) = 0.84) and nine bands with length (R(2) = 0.85) were detected. Protein sequencing by nano-LC/MS/MS identified 20 proteins/peptides associated with BM and length. These results contribute the identification of gene products and/or proteolytic fragments associated with muscle growth in yellow perch.
Collapse
Affiliation(s)
- John Mark Reddish
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
17
|
Schiavone R, Zilli L, Storelli C, Vilella S. Identification by proteome analysis of muscle proteins in sea bream (Sparus aurata). Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0859-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Liang CS, Ikeda D, Kinoshita S, Shimizu A, Sasaki T, Asakawa S, Shimizu N, Watabe S. Myocyte enhancer factor 2 regulates expression of medaka Oryzias latipes fast skeletal myosin heavy chain genes in a temperature-dependent manner. Gene 2008; 407:42-53. [DOI: 10.1016/j.gene.2007.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/19/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
|
19
|
Abstract
During skeletal muscle differentiation, the actomyosin motor is assembled into myofibrils, multiprotein machines that generate and transmit force to cell ends. How expression of muscle proteins is coordinated to build the myofibril is unknown. Here we show that zebrafish Mef2d and Mef2c proteins are required redundantly for assembly of myosin-containing thick filaments in nascent muscle fibres, but not for the earlier steps of skeletal muscle fibre differentiation, elongation, fusion or thin filament gene expression. mef2d mRNA and protein is present in myoblasts, whereas mef2c expression commences in muscle fibres. Knockdown of both Mef2s with antisense morpholino oligonucleotides or in mutant fish blocks muscle function and prevents sarcomere assembly. Cell transplantation and heat-shock-driven rescue reveal a cell-autonomous requirement for Mef2 within fibres. In nascent fibres, Mef2 drives expression of genes encoding thick, but not thin, filament proteins. Among genes analysed, myosin heavy and light chains and myosin-binding protein C require Mef2 for normal expression, whereas actin, tropomyosin and troponin do not. Our findings show that Mef2 controls skeletal muscle formation after terminal differentiation and define a new maturation step in vertebrate skeletal muscle development at which thick filament gene expression is controlled.
Collapse
Affiliation(s)
| | - Simon M. Hughes
- Corresponding author: Simon M. Hughes, MRC Centre for Developmental Neurobiology, 4th floor south, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK. Tel.: +44 20 7848 6445; fax: +44 20 7848 6550;
| |
Collapse
|
20
|
Characterization and functional analysis of the 5' flanking region of myosin light chain-2 gene expressed in white muscle of the gilthead sea bream (Sparus aurata). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:187-99. [PMID: 20483292 DOI: 10.1016/j.cbd.2007.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/01/2007] [Accepted: 04/02/2007] [Indexed: 11/22/2022]
Abstract
The promoter region ( approximately 1400 bp) of myosin light chain 2 gene of fast skeletal muscle from the marine fish Sparus aurata was cloned, sequenced and characterized. It contains a consensus sequence for TATA box, six perfect E-boxes known as binding sites to myogenic basic helix-loop-helix transcription factors and four putative MEF2-binding sites. Three genomic fragments (truncated at their upstream region) of 244, 650 and 1400 bp showed promoter activity evidenced by muscle-specific reporter gene activity using transient expression of green fluorescent protein in microinjected zebrafish embryos and in skeletal muscle of S. aurata fry following intramuscularly injection of plasmid DNA. The three genomic fragments also directed luciferase activity in skeletal muscle of S. aurata fry following intramuscularly injection of plasmid DNA showing a 60 to 150-fold higher luciferase activity compared to that obtained with pGL3-Basic. These experiments show that the three genomic fragments are functional muscle-specific promoters which will be useful for directing myostatin and follistatin expression in fish muscle in order to study their effect on fish muscle growth.
Collapse
|
21
|
Esengil H, Chang V, Mich JK, Chen JK. Small-molecule regulation of zebrafish gene expression. Nat Chem Biol 2007; 3:154-5. [PMID: 17237798 DOI: 10.1038/nchembio858] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 01/02/2007] [Indexed: 11/09/2022]
Abstract
The zebrafish has emerged as a versatile model organism for biomedical research, yet its potential has been limited by a lack of conditional reverse-genetic tools. Here we report a chemically inducible gene expression technology that has orthogonality to vertebrate signaling processes, high induction levels, and rapid kinetics. Coupled with tissue-specific promoters, this system provides multidimensional control of gene expression and will enable new models of human disorders and diseases.
Collapse
Affiliation(s)
- Hanife Esengil
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, Center for Clinical Sciences Research, Room 3155, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
22
|
Hammond CL, Hinits Y, Osborn DP, Minchin JE, Tettamanti G, Hughes SM. Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish. Dev Biol 2006; 302:504-21. [PMID: 17094960 PMCID: PMC3960072 DOI: 10.1016/j.ydbio.2006.10.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/26/2006] [Accepted: 10/05/2006] [Indexed: 11/22/2022]
Abstract
Pax3/7 paired homeodomain transcription factors are important markers of muscle stem cells. Pax3 is required upstream of myod for lateral dermomyotomal cells in the amniote somite to form particular muscle cells. Later Pax3/7-dependent cells generate satellite cells and most body muscle. Here we analyse early myogenesis from, and regulation of, a population of Pax3-expressing dermomyotome-like cells in the zebrafish. Zebrafish pax3 is widely expressed in the lateral somite and, along with pax7, becomes restricted anteriorly and then to the external cells on the lateral somite surface. Midline-derived Hedgehog signals appear to act directly on lateral somite cells to repress Pax3/7. Both Hedgehog and Fgf8, signals that induce muscle formation within the somite, suppress Pax3/7 and promote expression of myogenic regulatory factors (MRFs) myf5 and myod in specific muscle precursor cell populations. Loss of MRF function leads to loss of myogenesis by specific populations of muscle fibres, with parallel up-regulation of Pax3/7. Myod is required for lateral fast muscle differentiation from pax3-expressing cells. In contrast, either Myf5 or Myod is sufficient to promote slow muscle formation from adaxial cells. Thus, myogenic signals act to drive somite cells to a myogenic fate through up-regulation of distinct combinations of MRFs. Our data show that the relationship between Pax3/7 genes and myogenesis is evolutionarily ancient, but that changes in the MRF targets for particular signals contribute to myogenic differences between species.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon M. Hughes
- Corresponding author: Simon M. Hughes, 4 floor South, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK tel: +44 (0)20 7848 6445, fax+44 (0)20 7848 6798,
| |
Collapse
|
23
|
Wang HL, Wang H, Zhu ZM, Wang CF, Zhu MJ, Mo DL, Yang SL, Li K. Subcellular localization, expression patterns, SNPs and association analyses of the porcine HUMMLC2B gene. Mol Genet Genomics 2006; 276:264-72. [PMID: 16802157 DOI: 10.1007/s00438-006-0142-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 06/03/2006] [Indexed: 10/24/2022]
Abstract
Myosin regulatory light chain (MLC) regulates myofilament activation via phosphorylation by Ca(2+) dependant myosin light chain kinase. In order to further understand the functions of the porcine fast myosin regulatory light chain gene (HUMMLC2B) in muscle, the subcellular localization, the temporal and spatial distributions of its gene product were analyzed, and the association between the presence of specific polymorphisms and commercial meat traits in pig was also examined. HUMMLC2B was demonstrated to localize both in the cytoplasm and the nucleus by confocal fluorescence microscopy. Real-time PCR further revealed HUMMLC2B expression variation in a waveform manner in the skeletal muscle of both Chinese Tongcheng and Western Landrace pig breeds at days 33, 65 and 90 post coitum (pc). After birth, the expression levels of HUMMLC2B were also found to decrease gradually with age. Our spatial expression analysis showed that HUMMLC2B was highly expressed in the semitendinosus, gastrocnemius, biceps femoris and longissimus dorsi muscles. In contrast, only low levels of expression of this gene were evident in fat, and no expression was detectable in brain, heart, kidney, lung, liver, lymph node, spleen, stomach, or in either large or small intestine. A total of 23 potential polymorphisms, comprising 3 exonic and 20 intronic, were detectable in the porcine HUMMLC2B gene and the G1094A, T1513C, G1876A and T2005G polymorphisms were further analyzed. The significant associations between the T1513C, G1876A and T2005G polymorphisms with marbling score, dressing percent and meat color, respectively, were identified (P < 0.05). Associations with the percentage of leaf fat could also be demonstrated by analysis of haplotypes harboring these three polymorphisms. Our current results thus shed further light on the roles and functions of the HUMMLC2B gene in muscle.
Collapse
Affiliation(s)
- Huan L Wang
- Department of Gene and Cell Engineering, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100094 People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mugue NS, Ozernyuk ND. Comparative structural analysis of myosin light chains and gene duplication in fish. BIOL BULL+ 2006. [DOI: 10.1134/s1062359006010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Rambabu KM, Rao SHN, Rao NM. Efficient expression of transgenes in adult zebrafish by electroporation. BMC Biotechnol 2005; 5:29. [PMID: 16221312 PMCID: PMC1266056 DOI: 10.1186/1472-6750-5-29] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Accepted: 10/13/2005] [Indexed: 01/24/2023] Open
Abstract
Background Expression of transgenes in muscle by injection of naked DNA is widely practiced. Application of electrical pulses at the site of injection was demonstrated to improve transgene expression in muscle tissue. Zebrafish is a precious model to investigate developmental biology in vertebrates. In this study we investigated the effect of electroporation on expression of transgenes in 3–6 month old adult zebrafish. Results Electroporation parameters such as number of pulses, voltage and amount of plasmid DNA were optimized and it was found that 6 pulses of 40 V·cm-1 at 15 μg of plasmid DNA per fish increased the luciferase expression 10-fold compared to controls. Similar enhancement in transgene expression was also observed in Indian carp (Labeo rohita). To establish the utility of adult zebrafish as a system for transient transfections, the strength of the promoters was compared in A2 cells and adult zebrafish after electroporation. The relative strengths of the promoters were found to be similar in cell lines and in adult zebrafish. GFP fluorescence in tissues after electroporation was also studied by fluorescence microscopy. Conclusion Electroporation after DNA injection enhances gene expression 10-fold in adult zebrafish. Electroporation parameters for optimum transfection of adult zebrafish with tweezer type electrode were presented. Enhanced reporter gene expression upon electroporation allowed comparison of strengths of the promoters in vivo in zebrafish.
Collapse
Affiliation(s)
- K Murali Rambabu
- Center for Cellular and Molecular Biology, Hyderabad-500 007, India
| | - S Hari Narayana Rao
- Reliance Life Sciences Pvt. Ltd. Fosbery Road, Sewree, Mumbai 400 033, India
| | | |
Collapse
|
26
|
Groves JA, Hammond CL, Hughes SM. Fgf8 drives myogenic progression of a novel lateral fast muscle fibre population in zebrafish. Development 2005; 132:4211-22. [PMID: 16120642 DOI: 10.1242/dev.01958] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factors (Fgfs) have long been implicated in regulating vertebrate skeletal muscle differentiation, but their precise role(s) in vivo remain unclear. Here, we show that Fgf8 signalling in the somite is required for myod expression and terminal differentiation of a subset of fast muscle cells in the zebrafish lateral somite. In the absence of Fgf8, lateral somite cells transiently express myf5 but fail to make muscle and remain in a dermomyotome-like state characterised by pax3 and meox expression. Slow muscle fibres form and commence normal migration in the absence of Fgf8, but fail to traverse the expanded undifferentiated lateral somite. The Fgf8-independent residual population of medial fast muscle fibres is not Hedgehog dependent. However, Fgf8-independent medial fast muscle precursors are lacking in floatinghead mutants,suggesting that they require another ventral midline-derived signal. We conclude that Fgf8 drives terminal differentiation of a specific population of lateral muscle precursor cells within the early somite.
Collapse
Affiliation(s)
- Julie A Groves
- MRC Centre for Developmental Neurobiology and Randall Division for Cell and Molecular Biophysics, New Hunt's House, King's College London, London SE1 1UL, UK
| | | | | |
Collapse
|
27
|
Ontogenetic and Phylogenetic Analysis of Myosin Light Chain Proteins from Skeletal Muscles of Loach Misgurnus fossilis. BIOL BULL+ 2005. [DOI: 10.1007/s10525-005-0127-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Pan X, Wan H, Chia W, Tong Y, Gong Z. Demonstration of site-directed recombination in transgenic zebrafish using the Cre/loxP system. Transgenic Res 2005; 14:217-23. [PMID: 16022392 DOI: 10.1007/s11248-004-5790-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To test the Cre/loxP recombination system in zebrafish, a stable transgenic zebrafish line was developed by using a floxed (loxP flanked) gfp (green fluorescent protein) gene construct under the muscle-specific mylz2 promoter. Like our previous non-floxed gfp transgenic line under the same promoter, the new transgenic line expresses GFP reporter faithfully in fast skeletal muscles to the same intensity. To demonstrate the excision of floxed gfp transgene, in vitro synthesized Cre RNA was injected into embryos of floxed gfp transgenic zebrafish and we found a dramatic reduction of GFP expression. To confirm the excision, PCR was performed and a DNA fragment of correct size was amplified as predicted from the Cre/loxP mediated excision. Finally, we cloned the fragment and sequence information confirmed that the excision occurred at the precise site as predicted. Our experiments demonstrated that the Cre/loxP system can function efficiently and accurately in the zebrafish system.
Collapse
Affiliation(s)
- Xiufang Pan
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
29
|
Cortés F, Daggett D, Bryson-Richardson RJ, Neyt C, Maule J, Gautier P, Hollway GE, Keenan D, Currie PD. Cadherin-mediated differential cell adhesion controls slow muscle cell migration in the developing zebrafish myotome. Dev Cell 2004; 5:865-76. [PMID: 14667409 DOI: 10.1016/s1534-5807(03)00362-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Slow-twitch muscle fibers of the zebrafish myotome undergo a unique set of morphogenetic cell movements. During embryogenesis, slow-twitch muscle derives from the adaxial cells, a layer of paraxial mesoderm that differentiates medially within the myotome, immediately adjacent to the notochord. Subsequently, slow-twitch muscle cells migrate through the entire myotome, coming to lie at its most lateral surface. Here we examine the cellular and molecular basis for slow-twitch muscle cell migration. We show that slow-twitch muscle cell morphogenesis is marked by behaviors typical of cells influenced by differential cell adhesion. Dynamic and reciprocal waves of N-cadherin and M-cadherin expression within the myotome, which correlate precisely with cell migration, generate differential adhesive environments that drive slow-twitch muscle cell migration through the myotome. Removing or altering the expression of either protein within the myotome perturbs migration. These results provide a definitive example of homophilic cell adhesion shaping cellular behavior during vertebrate development.
Collapse
Affiliation(s)
- Fernando Cortés
- Comparative and Developmental Genetics Section, MRC Human Genetics Unit, Edinburgh EH4 2XU, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bertrand A, Ngô-Muller V, Hentzen D, Concordet JP, Daegelen D, Tuil D. Muscle electrotransfer as a tool for studying muscle fiber-specific and nerve-dependent activity of promoters. Am J Physiol Cell Physiol 2003; 285:C1071-81. [PMID: 12839830 DOI: 10.1152/ajpcell.00104.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle electrotransfer has recently become a promising tool for efficient delivery of plasmids and transgene expression in skeletal muscle. This technology has been mainly applied to use of muscle as a bioreactor for production of therapeutic proteins. However, it remains to be determined whether muscle electrotransfer may also be accurately used as an alternative tool to transgenesis for studying aspects of muscle-specific gene control that must be explored in fully mature muscle fibers in vivo, such as fiber specificity and nerve dependence. It was also not known to what extent the initial electrical stimulations alter muscle physiology and gene expression. Therefore, optimized conditions of skeletal muscle electroporation were first tested for their effects on muscles of transgenic mice harboring a pM310-CAT transgene in which the CAT reporter gene was under control of the fast IIB fiber-specific and nerve-dependent aldolase A pM promoter. Surprisingly, electrostimulation led to a drastic but transient shutdown of pM310-CAT transgene expression concomitant with very transient activation of MyoD and, mostly, with activation of myogenin, suggesting profound alterations in transcriptional status of the electroporated muscle. Return to a normal transcriptional state was observed 7-10 days after electroporation. Therefore, we investigated whether a reporter construct placed under control of pM could exhibit fiber-specific expression 10 days after electrotransfer in either fast tibialis anterior or slow soleus muscle. We show that not only fiber specificity, but also nerve dependence, of a pM-driven construct can be reproduced. However, after electrotransfer, pM displayed a less tight control than previously observed for the same promoter when integrated in a chromatin context.
Collapse
Affiliation(s)
- Anne Bertrand
- INSERM U567, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut Cochin, Université René Descartes Paris V, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
31
|
Gong Z, Wan H, Tay TL, Wang H, Chen M, Yan T. Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle. Biochem Biophys Res Commun 2003; 308:58-63. [PMID: 12890479 DOI: 10.1016/s0006-291x(03)01282-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study, new applications of the transgenic technology in developing novel varieties of ornamental fish and bioreactor fish were explored in a model fish, the zebrafish (Danio rerio). Three "living color" fluorescent proteins, green fluorescent protein (GFP), yellow fluorescent protein (YFP), and red fluorescent protein (RFP or dsRed), were expressed under a strong muscle-specific mylz2 promoter in stable lines of transgenic zebrafish. These transgenic zebrafish display vivid fluorescent colors (green, red, yellow, or orange) visible to unaided eyes under both daylight and ultraviolet light in the dark. The level of foreign protein expression is estimated between 3% and 17% of total muscle proteins, equivalent to 4.8-27.2mg/g wet muscle tissue. Thus, the fish muscle may be explored as another useful bioreactor system for production of recombinant proteins. In spite of the high level of foreign protein expression, the expression of endogenous mylz2 mRNAs was not negatively affected. Furthermore, compared to the wild-type fish, these fluorescent transgenic fish have no advantage in survival and reproduction.
Collapse
Affiliation(s)
- Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| | | | | | | | | | | |
Collapse
|
32
|
Hsiao CD, Tsai WY, Horng LS, Tsai HJ. Molecular structure and developmental expression of three muscle-type troponin T genes in zebrafish. Dev Dyn 2003; 227:266-79. [PMID: 12761854 DOI: 10.1002/dvdy.10305] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Troponin T (Tnnt), a troponin component, interacts with tropomyosin and is crucial to the regulation of striated muscle contraction. To gain insight into the molecular evolution and developmental regulation of Tnnt gene (Tnnt) in lower vertebrates, zebrafish Tnnt1 (slow Tnnt), Tnnt2 (cardiac Tnnt), and Tnnt3b (fast Tnnt isoform b) were characterized. The polypeptides of zebrafish Tnnt1, Tnnt2, and Tnnt3b were conserved in the central tropomyosin- and C-terminal troponin I-binding domains. However, the N-terminal hypervariable regions were highly extended and rich in glutamic acid in polypeptides of Tnnt1 and Tnnt2, but not Tnnt3b. The Tnnt2 and Tnnt3b contain introns, whereas Tnnt1 is intron-free. During development, large to small, alternatively spliced variants were detected in Tnnt2, but not in Tnnt1 or Tnnt3. Whole-mount in situ hybridization showed zebrafish Tnnt1 and Tnnt2 are activated during early somitogenesis (10 hr postfertilization, hpf) and cardiogenesis (14 hpf), respectively, but Tnnt3b is not activated until middle somitogenesis (18 hpf). Tnnt2 and Tnnt3b expression was cardiac- and fast-muscle specific, but Tnnt1 was expressed in both slow and fast muscles. We propose that three, distinct, muscle-type Tnnt evolved after the divergence of fish and deuterostome invertebrates. In zebrafish, the developmental regulation of Tnnt during somitogenesis and cardiogenesis is more restricted and simpler than in tetrapods. These new findings may provide insight into the developmental regulation and molecular evolution of vertebrate Tnnt.
Collapse
Affiliation(s)
- Chung-Der Hsiao
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
33
|
Ju B, Chong SW, He J, Wang X, Xu Y, Wan H, Tong Y, Yan T, Korzh V, Gong Z. Recapitulation of fast skeletal muscle development in zebrafish by transgenic expression of GFP under the mylz2 promoter. Dev Dyn 2003; 227:14-26. [PMID: 12701095 DOI: 10.1002/dvdy.10273] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A 1,934-bp muscle-specific promoter from the zebrafish mylz2 gene was isolated and characterized by transgenic analysis. By using a series of 5' promoter deletions linked to the green fluorescent protein (gfp) reporter gene, transient transgenic analysis indicated that the strength of promoter activity appeared to correlate to the number of muscle cis-elements in the promoter and that a minimal -77-bp region was sufficient for a relatively strong promoter activity in muscle cells. Stable transgenic lines were obtained from several mylz2-gfp constructs. GFP expression in the 1,934-bp promoter transgenic lines mimicked well the expression pattern of endogenous mylz2 mRNA in both somitic muscle and nonsomitic muscles, including fin, eye, jaw, and gill muscles. An identical pattern of GFP expression, although at a much lower level, was observed from a transgenic line with a shorter 871-bp promoter. Our observation indicates that there is no distinct cis-element for activation of mylz2 in different skeletal muscles. Furthermore, RNA encoding a dominant negative form of cAMP-dependent protein kinase A was injected into mylz2-gfp transgenic embryos and GFP expression was significantly reduced due to an expanded slow muscle development at the expense of GFP-expressing fast muscle. The mylz2-gfp transgene was also transferred into two zebrafish mutants, spadetail and chordino, and several novel phenotypes in muscle development in these mutants were discovered.
Collapse
Affiliation(s)
- Bensheng Ju
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Krasnov A, Teerijoki H, Gorodilov Y, Mölsä H. Cloning of rainbow trout (Oncorhynchus mykiss) alpha-actin, myosin regulatory light chain genes and the 5'-flanking region of alpha-tropomyosin. Functional assessment of promoters. J Exp Biol 2003; 206:601-8. [PMID: 12502780 DOI: 10.1242/jeb.00116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report PCR cloning of rainbow trout alpha-actin (alpha-OnmyAct), myosin regulatory light chain (OnmyMLC2) genes and the 5'-flanking region of alpha-tropomyosin (alpha-OnmyTM). Being expressed in skeletal and cardiac muscle, alpha-OnmyAct was a predominant isoform in trunk muscle of adult rainbow trout. Exon structure of this gene was identical to all known vertebrate skeletal and to some of the cardiac alpha-Act genes. Two distinct OnmyMLC2 promoters were cloned and both included transposon-like sequences. The coding part of OnmyMLC2 consisted of seven exons whose length was typical for vertebrate MLC2 genes. The upstream regions of alpha-OnmyAct and OnmyMLC2 included a TATA box and a number of putative regulatory motifs (E-boxes in all three sequences and CArG-boxes in alpha-OnmyAct), whereas there were no canonical motifs in the alpha-OnmyTM promoter. LacZ reporter gene was fused with the 5'-flanking regions of alpha-OnmyAct, two OnmyMLC2 genes and alpha-OnmyTM promoters. These constructs were transferred into rainbow trout eggs. At the stage of 39 somite pairs, LacZ reporter was detected in the myotomes, neural plate and neural crest, brain and yolk syncytial layer of all analysed embryos. alpha-OnmyTMLacZ was also expressed in the heart. Functionality of promoters and the alpha-OnmyAct terminator was confirmed in rainbow trout primary embryonic cell cultures. We cloned rainbow trout glucose transporter type I (OnmyGLUT1) into vectors including the alpha-OnmyAct and OnmyMLC2 promoters and the alpha-SkAct terminator. Recombinant OnmyGLUT1 transcripts were detected in rainbow trout embryos during somitogenesis.
Collapse
Affiliation(s)
- Aleksei Krasnov
- Institute of Applied Biotechnology, University of Kuopio, POB 1627, FIN-Kuopio 70211, Finland.
| | | | | | | |
Collapse
|
35
|
Abstract
The coupling of the GFP reporter system with the optical clarity of embryogenesis in model fish such as zebrafish and medaka is beginning to change the picture of transgenic fish study. Since the advent of first GFP transgenic fish in 1995, GFP transgenic fish technology have been quickly employed in many areas such as analyses of gene expression patterns and tissue/organ development, dissection of promoters/enhancers, cell lineage and axonal pathfinding, cellular localization of protein products, chimeric embryo and nuclear transplantation, cell sorting, etc. The GFP transgenic fish also have the potentials in analysis of upstream regulatory factors, mutagenesis screening and characterization, and promoter/enhancer trap. Our own studies indicate that GFP transgenic fish may become a new source of novel variety of ornamental fish. Efforts are also being made in our laboratory to turn GFP transgenic fish into biomonitoring organisms for surveillance of environmental pollution.
Collapse
Affiliation(s)
- Z Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| | | | | |
Collapse
|
36
|
Smith GD. Muscle Development and Growth. COPEIA 2001. [DOI: 10.1643/0045-8511(2001)001[1163:]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Moutou KA, Canario AV, Mamuris Z, Power DM. Molecular cloning and sequence of Sparus aurata skeletal myosin light chains expressed in white muscle: developmental expression and thyroid regulation. J Exp Biol 2001; 204:3009-18. [PMID: 11551989 DOI: 10.1242/jeb.204.17.3009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Two full-length cDNA clones encoding the skeletal myosin light chain 2 (MLC2; 1452bp) and myosin light chain 3 (MLC3; 972bp) were isolated from a cDNA library prepared from gilthead sea bream Sparus aurata larvae. The MLC2 cDNA encoded a predicted protein of 170 residues that was 79% identical to rabbit MLC2 over the entire length and 87% identical within the Ca2+-binding region. The deduced amino acid sequence of MLC3 was 153 residues in length and was 91% and 69% identical to the zebrafish and rabbit MLC3, respectively. Northern blot analysis revealed that in adults both transcripts were expressed in fast white muscle only. MLC2 appeared earlier in development: MLC2 transcripts were detectable from the beginning of segmentation, whereas MLC3 transcripts did not appear until 27h post-fertilisation. At this developmental stage, a second MLC2 transcript of 0.89 kilobase-pairs was present. MLCs exhibited a different age-related pattern of response to varied thyroidal states, which were experimentally induced by the administration of 1μgg−1bodymass of thyroxine (T4) or triiodothyronine (T3), or 5ngg−1bodymass of the hypothyroidal compound thiourea; MLC3 expression was not significantly affected, whereas levels of MLC2 transcripts were significantly elevated in the white muscle only of juvenile sea bream after administration of T4. Although the mechanism of thyroidal regulation of MLC expression remains unknown, the present results suggest that different regulatory mechanisms exist for different MLCs.
Collapse
Affiliation(s)
- K A Moutou
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Street, 41221 Larissa, Greece.
| | | | | | | |
Collapse
|
38
|
Xie SQ, Mason PS, Wilkes D, Goldspink G, Fauconneau B, Stickland NC. Lower environmental temperature delays and prolongs myogenic regulatory factor expression and muscle differentiation in rainbow trout (Onchrhynchus mykiss) embryos. Differentiation 2001; 68:106-14. [PMID: 11686232 DOI: 10.1046/j.1432-0436.2001.680204.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of different temperatures (4 degrees C and 12 degrees C) on myogenic regulatory factors (MyoD and myogenin) and myosin heavy chain (MyHC) expression was investigated in rainbow trout (Onchrhynchus mykiss) during early development. MyoD is first switched on at stage 14 [about 5 somites are formed (1/2 epiboly)] while myogenin mRNA is expressed at stage 15 [around 15 somites are visible (2/3 epiboly)] at both temperatures. Subsequently (up to at least stage 20), the most caudal somites exhibit less myogenin mRNA at 4 degrees C compared to 12 degrees C. At the eyed stage (stage 23-24), both myogenin mRNA and protein are present in greater amounts throughout all myotomes at the lower temperature, with mRNA levels in warmer (12 degrees C) embryos at 83% for MyoD and 72% for myogenin of the levels seen in 4 degrees C embryos. Conversely, however, at this same stage, fast-MyHC mRNA and protein are more abundant in 12 degrees C than in 4 degrees C embryos. This indicates relatively advanced muscle differentiation at the warmer temperature. At hatching, myogenin-positive cells are concentrated within the myosepta at both temperatures and they are also sparsely distributed in the myotome at 4 degrees C, but not at 12 degrees C. MyoD, myogenin, and MyHC levels provide an indication of differentiation of muscle cells. These findings suggest that myogenic regulatory factor expression is delayed but prolonged by the lowering of temperature.
Collapse
Affiliation(s)
- S Q Xie
- Department of Veterinary Basic Sciences, The Royal Veterinary College, University of London, UK
| | | | | | | | | | | |
Collapse
|
39
|
Rescan PY. Regulation and functions of myogenic regulatory factors in lower vertebrates. Comp Biochem Physiol B Biochem Mol Biol 2001; 130:1-12. [PMID: 11470439 DOI: 10.1016/s1096-4959(01)00412-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The transcription factors of the MyoD family have essential functions in myogenic lineage determination and muscle differentiation. These myogenic regulatory factors (MRFs) activate muscle-specific transcription through binding to a DNA consensus sequence known as the E-box present in the promoter of numerous muscle genes. Four members, MyoD, myogenin, myf5 and MRF4/herculin/myf6, have been identified in higher vertebrates and have been shown to exhibit distinct but overlapping functions. Homologues of these four MRFs have also been isolated in a variety of lower vertebrates, including amphibians and fish. Differences have been observed, however, in both the expression patterns of MRFs during muscle development and the function of individual MRFs between lower and higher vertebrates. These differences reflect the variety of body muscle formation patterns among vertebrates. Furthermore, as a result of an additional polyploidy that occurred during the evolution of some amphibians and fish, MyoD, myogenin, myf5 and MRF4 may exist in lower vertebrates in two distinct copies that have evolved separately, acquiring specific roles and resulting in increased complexity of the myogenic regulatory network. Evidence is now accumulating that many of the co-factors (E12, Id, MEF2 and CRP proteins) that regulate MRF activity in mammals are also present in lower vertebrates. The inductive signals controlling the initial expression of MRFs within the developing somite of lower vertebrate proteins are currently being elucidated.
Collapse
Affiliation(s)
- P Y Rescan
- Scribe-INRA, Campus de Beaulieu, 35042, Rennes, France.
| |
Collapse
|
40
|
Wang H, Yan T, Tan JT, Gong Z. A zebrafish vitellogenin gene (vg3) encodes a novel vitellogenin without a phosvitin domain and may represent a primitive vertebrate vitellogenin gene. Gene 2000; 256:303-10. [PMID: 11054560 DOI: 10.1016/s0378-1119(00)00376-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By analysis of zebrafish EST (expressed sequence tag) clones from an adult cDNA library, we have identified 44 clones, about 11% of the adult EST clones, encoding vitellogenins. These vitellogenin EST clones have been derived from at least seven distinct vitellogenin genes. One of the largest vitellogenin cDNA clones, vg3, and its 5' extended clone isolated by 5' RACE (rapid amplification of cDNA ends)-PCR, have been sequenced completely. The deduced complete sequence includes a predicted mature vitellogenin of 1233 amino acids and a truncated signal peptide of 18 amino acids. Interestingly, the predicted vitellogenin has no polyserine phosvitin domain. The lack of the phosvitin domain was confirmed by isolation and sequencing of the vg3 genomic region. Phylogenetic analysis indicates that the phosvitinless vitellogenin is an intermediate between invertebrate vitellogenins and all known vertebrate vitellogenins, and thus may represent a primitive vertebrate vitellogenin. Like other vitellogenins in vertebrates, the phosvitinless vitellogenin is also synthesized mainly in the liver and weakly in the intestine.
Collapse
Affiliation(s)
- H Wang
- Department of Biological Sciences, National University of Singapore, 119260, Singapore, Singapore
| | | | | | | |
Collapse
|
41
|
Abstract
Many zebrafish transcription factors have been isolated, and the challenge at present is to uncover the genes and pathways they regulate. The wealth of developmental mutants available for study and recent advances in zebrafish transgenic technology have allowed identification of putative transcriptional regulatory pathways, as well as characterization of promoter interactions at a molecular level.
Collapse
Affiliation(s)
- S L Amacher
- Department of Molecular and Cell Biology, Division of Genetics and Development, University of California at Berkeley, Berkeley, California, 94720-3200, USA.
| |
Collapse
|