1
|
Nel A, Heber D. Precision Nutrition in Allergy and Immune Function. PRECISION NUTRITION 2024:299-316. [DOI: 10.1016/b978-0-443-15315-0.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Zia A, Pourbagher-Shahri AM, Farkhondeh T, Samarghandian S. Molecular and cellular pathways contributing to brain aging. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2021; 17:6. [PMID: 34118939 PMCID: PMC8199306 DOI: 10.1186/s12993-021-00179-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Aging is the leading risk factor for several age-associated diseases such as neurodegenerative diseases. Understanding the biology of aging mechanisms is essential to the pursuit of brain health. In this regard, brain aging is defined by a gradual decrease in neurophysiological functions, impaired adaptive neuroplasticity, dysregulation of neuronal Ca2+ homeostasis, neuroinflammation, and oxidatively modified molecules and organelles. Numerous pathways lead to brain aging, including increased oxidative stress, inflammation, disturbances in energy metabolism such as deregulated autophagy, mitochondrial dysfunction, and IGF-1, mTOR, ROS, AMPK, SIRTs, and p53 as central modulators of the metabolic control, connecting aging to the pathways, which lead to neurodegenerative disorders. Also, calorie restriction (CR), physical exercise, and mental activities can extend lifespan and increase nervous system resistance to age-associated neurodegenerative diseases. The neuroprotective effect of CR involves increased protection against ROS generation, maintenance of cellular Ca2+ homeostasis, and inhibition of apoptosis. The recent evidence about the modem molecular and cellular methods in neurobiology to brain aging is exhibiting a significant potential in brain cells for adaptation to aging and resistance to neurodegenerative disorders.
Collapse
Affiliation(s)
- Aliabbas Zia
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), 9717853577 Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
3
|
Wahl D, Solon-Biet SM, Cogger VC, Fontana L, Simpson SJ, Le Couteur DG, Ribeiro RV. Aging, lifestyle and dementia. Neurobiol Dis 2019; 130:104481. [PMID: 31136814 DOI: 10.1016/j.nbd.2019.104481] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Aging is the greatest risk factor for most diseases including cancer, cardiovascular disorders, and neurodegenerative disease. There is emerging evidence that interventions that improve metabolic health with aging may also be effective for brain health. The most robust interventions are non-pharmacological and include limiting calorie or protein intake, increasing aerobic exercise, or environmental enrichment. In humans, dietary patterns including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) and Okinawan diets are associated with improved age-related health and may reduce neurodegenerative disease including dementia. Rapamycin, metformin and resveratrol act on nutrient sensing pathways that improve cardiometabolic health and decrease the risk for age-associated disease. There is some evidence that they may reduce the risk for dementia in rodents. There is a growing recognition that improving metabolic function may be an effective way to optimize brain health during aging.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia.
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Luigi Fontana
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Rosilene V Ribeiro
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
4
|
Fulop T, Franceschi C, Hirokawa K, Pawelec G. Nonhuman Primate Models of Immunosenescence. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121907 DOI: 10.1007/978-3-319-99375-1_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Due to a dramatic increase in life expectancy, the number of individuals aged 65 and older is rapidly rising. This presents considerable challenges to our health care system since advanced age is associated with a higher susceptibility to infectious diseases due to immune senescence. However, the mechanisms underlying age-associated dysregulated immunity are still incompletely understood. Advancement in our comprehension of mechanisms of immune senescence and development of interventions to improve health span requires animal models that closely recapitulate the physiological changes that occur with aging in humans. Nonhuman primates (NHPs) are invaluable preclinical models to study the underlying causal mechanism of pathogenesis due to their outbred nature, high degree of genetic and physiological similarity to humans, and their susceptibility to human pathogens. In this chapter, we review NHP models available for biogerontology research, advantages and challenges they present, and advances they facilitated. Furthermore, we emphasize the utility of NHPs in characterizing immune senescence, evaluating interventions to reverse aging of the immune system, and development of vaccine strategies that are better suited for this vulnerable population.
Collapse
Affiliation(s)
- Tamas Fulop
- Division of Geriatrics Research Center on Aging, University of Sherbrooke Department of Medicine, Sherbrooke, QC Canada
| | - Claudio Franceschi
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | - Graham Pawelec
- Center for Medical Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Vasconcelos AR, Cabral-Costa JV, Mazucanti CH, Scavone C, Kawamoto EM. The Role of Steroid Hormones in the Modulation of Neuroinflammation by Dietary Interventions. Front Endocrinol (Lausanne) 2016; 7:9. [PMID: 26869995 PMCID: PMC4740355 DOI: 10.3389/fendo.2016.00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022] Open
Abstract
Steroid hormones, such as sex hormones and glucocorticoids, have been demonstrated to play a role in different cellular processes in the central nervous system, ranging from neurodevelopment to neurodegeneration. Environmental factors, such as calorie intake or fasting frequency, may also impact on such processes, indicating the importance of external factors in the development and preservation of a healthy brain. The hypothalamic-pituitary-adrenal axis and glucocorticoid activity play a role in neurodegenerative processes, including in disorders such as in Alzheimer's and Parkinson's diseases. Sex hormones have also been shown to modulate cognitive functioning. Inflammation is a common feature in neurodegenerative disorders, and sex hormones/glucocorticoids can act to regulate inflammatory processes. Intermittent fasting can protect the brain against cognitive decline that is induced by an inflammatory stimulus. On the other hand, obesity increases susceptibility to inflammation, while metabolic syndromes, such as diabetes, are associated with neurodegeneration. Consequently, given that gonadal and/or adrenal steroids may significantly impact the pathophysiology of neurodegeneration, via their effect on inflammatory processes, this review focuses on how environmental factors, such as calorie intake and intermittent fasting, acting through their modulation of steroid hormones, impact on inflammation that contributes to cognitive and neurodegenerative processes.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - João Victor Cabral-Costa
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Elisa Mitiko Kawamoto,
| |
Collapse
|
6
|
MacDonald L, Hazi A, Paolini AG, Kent S. Calorie restriction dose-dependently abates lipopolysaccharide-induced fever, sickness behavior, and circulating interleukin-6 while increasing corticosterone. Brain Behav Immun 2014; 40:18-26. [PMID: 24440143 DOI: 10.1016/j.bbi.2014.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/15/2013] [Accepted: 01/08/2014] [Indexed: 01/08/2023] Open
Abstract
In mice a 50% calorie restriction (CR) for 28days attenuates sickness behavior after lipopolysaccharide (LPS) and these mice demonstrate a central anti-inflammatory bias. This study examined the dose-dependent effect of CR on sickness behavior (fever, anorexia, cachexia) and peripheral immune markers post-LPS. Male Sprague-Dawley rats fed ad libitum or CR by 50% for 14, 21, or 28days were injected on day 15, 22, or 29 with 50μg/kg of LPS or saline (1mL/500g). Changes in body temperature (Tb), locomotor activity, body weight, and food intake were determined. A separate cohort of rats was fed ad libitum or CR by 50% for 28days and serum levels of corticosterone (CORT), interleukin 6 (IL-6), and IL-10 were determined at 0, 2, and 4h post-LPS. The rats CR for 28days demonstrated the largest attenuation of sickness behavior: no fever, limited reduction in locomotor activity, no anorexia, and reduced cachexia following LPS. Rats CR for 14 and 21days demonstrated a partial attenuation of sickness behavior. Rats CR for 14days demonstrated a larger increase in Tb, larger reduction in locomotor activity, and larger weight loss compared to rats CR for 21days. Serum CORT was increased at 2h post-LPS in ad libitum and CR groups; however it was two times larger in the CR animals. Levels of IL-6 were significantly attenuated at 2h post-LPS in the CR animals. IL-10 levels were similar post-LPS. CR results in an enhanced anti-inflammatory response in the form of increased CORT and diminished pro-inflammatory signals.
Collapse
Affiliation(s)
- Leah MacDonald
- School of Psychological Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Agnes Hazi
- School of Psychological Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Antonio G Paolini
- School of Psychological Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Stephen Kent
- School of Psychological Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
7
|
Meyer C, Kerns A, Haberthur K, Messaoudi I. Improving immunity in the elderly: current and future lessons from nonhuman primate models. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1157-1168. [PMID: 22180097 PMCID: PMC3448983 DOI: 10.1007/s11357-011-9353-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 12/01/2011] [Indexed: 05/31/2023]
Abstract
The immune system must overcome daily challenges from pathogens to protect the body from infection. The success of the immune response to infection relies on the ability to sense and evaluate microbial threats and organize their elimination, while limiting damage to host tissues. This delicate balance is achieved through coordinated action of the innate and adaptive arms of the immune system. Aging results in several structural and functional changes in the immune system, often described under the umbrella term "immune senescence". Age-related changes affect both the innate and adaptive arms of the immune system and are believed to result in increased susceptibility and severity of infectious diseases, which is further exacerbated by reduced vaccine efficacy in the elderly. Therefore, multiple strategies to improve immune function in the aged are being investigated. Traditionally, studies on immune senescence are conducted using inbred specific pathogen free (SPF) rodents. This animal model has provided invaluable insight into the mechanisms of aging. However, the limited genetic heterogeneity and the SPF status of this model restrict the successful transfer of immunological discoveries between murine models and the clinical setting. More recently, nonhuman primates (NHPs) have emerged as a leading translational model to investigate immune senescence and to test interventions aimed at delaying/reversing age-related changes in immune function. In this article, we review and summarize advances in immuno-restorative approaches investigated in the NHP model system and discuss where the NHP model can support the development of novel therapeutics.
Collapse
Affiliation(s)
- Christine Meyer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR USA
| | - Amelia Kerns
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR USA
| | - Kristen Haberthur
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR USA
- Graduate Program in Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
| | - Ilhem Messaoudi
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR USA
- Graduate Program in Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR USA
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006 USA
| |
Collapse
|
8
|
Kanapuru B, Simonsick EM, Ershler WB. Is cancer incidence decreased in the frail elderly? Evidence from a prospective cohort study. J Geriatr Oncol 2012; 4:19-25. [PMID: 24071488 DOI: 10.1016/j.jgo.2012.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/18/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Lower rates of cancer in the oldest old and in nursing home populations may reflect the increasing prevalence of frailty and a diminished capacity to sustain cancer cell growth and proliferation. This study aimed to determine cancer incidence in the frail relative to non-frail community resident older adults. MATERIALS AND METHODS Data from 3969 participants free of diagnosed cancer at the sixth follow-up from three sites of the Established Populations for Epidemiologic Studies of the Elderly (EPESE), a population-based cohort study. Frailty status was determined from physical performance testing and self reported dependency in activities of daily living. Cancer incidence over the four subsequent years was identified through linkage with Medicare claims data. Logistic regression was used to estimate the odds of cancer incidence with respect to frailty status in multiple models with progressive adjustment for covariates. RESULTS Of the 3969 participants, 1340 (33.8%) were identified as frail. Cancer incidence at 4years was lower in frail participants overall (OR 0.64; 95% CI 0.46-0.89) and frail men in particular (OR 0.54; 95% CI 0.33-0.87). Incidence was lower in women (3.7%) than in men (8.8%), but was not lower in frail women compared with non-frail women (OR 0.77; 95% CI 0.48-1.23). CONCLUSION Frailty status was associated with decreased cancer incidence, particularly in men, and suggests that mechanisms related to the pathogenesis of frailty may also play a role in inhibiting tumorigenesis. Why this would be more apparent in men than women remains to be clarified.
Collapse
Affiliation(s)
- Bindu Kanapuru
- Hematology/Immunology Unit, Translational Research Section, Clinical Research Branch, Intramural Research Program, National Institute on Aging, 3001 South Hanover Street, 5th Floor, Baltimore, MD 21225-1290, USA.
| | | | | |
Collapse
|
9
|
Asquith M, Haberthur K, Brown M, Engelmann F, Murphy A, Al-Mahdi Z, Messaoudi I. Age-dependent changes in innate immune phenotype and function in rhesus macaques (Macaca mulatta). PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2012; 2:PBA-2-18052. [PMID: 22953039 PMCID: PMC3417700 DOI: 10.3402/pba.v2i0.18052] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 03/17/2012] [Accepted: 03/17/2012] [Indexed: 12/25/2022]
Abstract
Aged individuals are more susceptible to infections due to a general decline in immune function broadly referred to as immune senescence. While age-related changes in the adaptive immune system are well documented, aging of the innate immune system remains less well understood, particularly in nonhuman primates. A more robust understanding of age-related changes in innate immune function would provide mechanistic insight into the increased susceptibility of the elderly to infection. Rhesus macaques have proved a critical translational model for aging research, and present a unique opportunity to dissect age-dependent modulation of the innate immune system. We examined age-related changes in: (i) innate immune cell frequencies; (ii) expression of pattern recognition receptors (PRRs) and innate signaling molecules; (iii) cytokine responses of monocytes and dendritic cells (DC) following stimulation with PRR agonists; and (iv) plasma cytokine levels in this model. We found marked changes in both the phenotype and function of innate immune cells. This included an age-associated increased frequency of myeloid DC (mDC). Moreover, we found toll-like receptor (TLR) agonists lipopolysaccharide (TLR4), fibroblast stimulating ligand-1 (TLR2/6), and ODN2006 (TLR7/9) induced reduced cytokine responses in aged mDC. Interestingly, with the exception of the monocyte-derived TNFα response to LPS, which increased with age, TNFα, IL-6, and IFNα responses declined with age. We also found that TLR4, TLR5, and innate negative regulator, sterile alpha and TIR motif containing protein (SARM), were all expressed at lower levels in young animals. By contrast, absent in melanoma 2 and retinoic acid-inducible gene I expression was lowest in aged animals. Together, these observations indicate that several parameters of innate immunity are significantly modulated by age and contribute to differential immune function in aged macaques.
Collapse
Affiliation(s)
- Mark Asquith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
McFarlane D, Wolf RF, McDaniel KA, White GL. Age-associated alteration in innate immune response in captive baboons. J Gerontol A Biol Sci Med Sci 2011; 66:1309-17. [PMID: 21860017 DOI: 10.1093/gerona/glr146] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Baboons are an ideal model for studies of human inflammatory response due to their physiological and immunological similarities to people; however; little is known about how age affects immune function in the baboon. We sought to determine if baboons show age-related innate immune changes similar to that described in people. Age was correlated with increased serum C-reactive protein and interleukin-6 or, however, no change in interleukin-10 concentration was observed (n = 120 baboons). Cytokine release from unstimulated peripheral blood mononuclear cells as well as following immune (lipopolysaccharide) stimulation increased with age. When whole blood was assayed, both lipopolysaccharide stimulated and unstimulated samples showed an age-related increase in interleukin-6 response, although the unstimulated cytokine response was reduced compared with that observed in peripheral blood mononuclear cells. Tumor necrosis factor-α response was not related to age. Cytokine response in lipopolysaccharide-stimulated whole blood was negatively correlated with serum DHEA-S concentration and positively correlated with TGF-β concentration.
Collapse
Affiliation(s)
- Dianne McFarlane
- Department of Physiological Sciences, Center of Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
A reduction in calorie intake [caloric restriction (CR)] appears to consistently decrease the biological rate of aging in a variety of organisms as well as protect against age-associated diseases including chronic inflammatory disorders such as cardiovascular disease and diabetes. Although the mechanisms behind this observation are not fully understood, identification of the main metabolic pathways affected by CR has generated interest in finding molecular targets that could be modulated by CR mimetics. This review describes the general concepts of CR and CR mimetics as well as discusses evidence related to their effects on inflammation and chronic inflammatory disorders. Additionally, emerging evidence related to the effects of CR on periodontal disease in non-human primates is presented. While the implementation of this type of dietary intervention appears to be challenging in our modern society where obesity is a major public health problem, CR mimetics could offer a promising alternative to control and perhaps prevent several chronic inflammatory disorders including periodontal disease.
Collapse
Affiliation(s)
- O A González
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington 40536-0305, USA.
| | | | | | | |
Collapse
|
12
|
|
13
|
MacDonald L, Radler M, Paolini AG, Kent S. Calorie restriction attenuates LPS-induced sickness behavior and shifts hypothalamic signaling pathways to an anti-inflammatory bias. Am J Physiol Regul Integr Comp Physiol 2011; 301:R172-84. [PMID: 21525175 DOI: 10.1152/ajpregu.00057.2011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calorie restriction (CR) has been demonstrated to alter cytokine levels; however, its potential to modify sickness behavior (fever, anorexia, cachexia) has not. The effect of CR on sickness behavior was examined in male C57BL/6J mice fed ad libitum or restricted 25% (CR25%) or restricted 50% (CR50%) in food intake for 28 days and injected with 50 μg/kg of LPS on day 29. Changes in body temperature, locomotor activity, body weight, and food intake were determined. A separate cohort of mice were fed ad libitum or CR50% for 28 days, and hypothalamic mRNA expression of inhibitory factor κB-α (IκB-α), cyclooxygenase-2 (COX-2), prostaglandin E(2) (PGE(2)), suppressor of cytokine signaling 3 (SOCS3), IL-10, neuropeptide Y (NPY), leptin, proopiomelanocortin (POMC), and corticotrophin-releasing hormone (CRH) were determined at 0, 2, and 4 h post-LPS. CR50% mice did not develop fevers, whereas the CR25% mice displayed a fever shorter in duration but with the same peak as the controls. Both CR25% and CR50% mice showed no sign of anorexia and reduced cachexia after LPS administration. Hypothalamic mRNA expression of NPY and CRH were both increased by severalfold in CR50% animals preinjection compared with controls. The CR50% mice did not demonstrate the expected rise in hypothalamic mRNA expression of COX-2, microsomal prostaglandin E synthase-1, POMC, or CRH 2 h post-LPS, and leptin expression was decreased at this time point. Increases in SOCS3, IL-10, and IκB-α expression in CR50% animals were enhanced compared with ad libitum-fed controls at 4 h post-LPS. CR results in a suppression of sickness behavior in a dose-dependent manner, which may be due to CR attenuating proinflammatory pathways and enhancing anti-inflammatory pathways.
Collapse
Affiliation(s)
- Leah MacDonald
- School of Psychological Science, La Trobe University, Bundoora, VIC 3086, Australia
| | | | | | | |
Collapse
|
14
|
Haberthur K, Engelman F, Barron A, Messaoudi I. Immune senescence in aged nonhuman primates. Exp Gerontol 2010; 45:655-61. [PMID: 20558288 DOI: 10.1016/j.exger.2010.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/27/2010] [Accepted: 06/03/2010] [Indexed: 12/22/2022]
Abstract
Aging is accompanied by a general dysregulation in immune system function, commonly referred to as 'immune senescence'. This progressive deterioration affects both innate and adaptive immunity, although accumulating evidence indicates that the adaptive arm of the immune system may exhibit more profound changes. Most of our current understanding of immune senescence stems from clinical and rodent studies. More recently, the use of nonhuman primates (NHPs) to investigate immune senescence and test interventions aimed at delaying/reversing age-related changes in immune function has dramatically increased. These studies have been greatly facilitated by several key advances in our understanding of the immune system of old world monkeys, specifically the rhesus macaques. In this review we describe the hallmarks of immune senescence in this species and compare them to those described in humans. We also discuss the impact of immune senescence on the response to vaccination and the efficacy of immuno-restorative interventions investigated in this model system.
Collapse
Affiliation(s)
- Kristen Haberthur
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, United States
| | | | | | | |
Collapse
|
15
|
Effects of caloric restriction on inflammatory periodontal disease. Nutrition 2008; 25:88-97. [PMID: 18929461 DOI: 10.1016/j.nut.2008.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 05/12/2008] [Accepted: 07/07/2008] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Dietary caloric restriction (CR) has been found to reduce systemic markers of inflammation and may attenuate the effects of chronic inflammatory conditions. The purpose of this study was to examine the effects of long-term CR on naturally occurring chronic inflammatory periodontal disease in a nonhuman primate model. METHODS The effects of long-term CR on extent and severity of naturally occurring chronic periodontal disease, local inflammatory and immune responses, and periodontal microbiology, were evaluated in a cohort of 81 (35 female and 46 male; 13-40 y of age) rhesus monkeys (Macaca mulatta) with no previous exposure to routine oral hygiene. CR monkeys had been subjected to 30% CR for 13-17 y relative to control-fed (CON) animals starting at 3-5 y of age. RESULTS Same sex CR and CON monkeys exhibited similar levels of plaque, calculus, and bleeding on probing. Among CON animals, males showed significantly greater periodontal breakdown, as reflected by higher mean clinical attachment level and periodontal probing depth scores, than females. CR males exhibited significantly less periodontal pocketing, lower IgG antibody response, and lower IL-8 and ss-glucuronidase levels compared to CON males, whereas CR females showed a lower IgG antibody response but comparable clinical parameters and inflammatory marker levels relative to CON females. Long-term CR had no demonstrable effect on the periodontal microbiota. CONCLUSION Males demonstrated greater risk for naturally occurring periodontal disease than females. Long-term CR may differentially reduce the production of local inflammatory mediators and risk for inflammatory periodontal disease among males but not females.
Collapse
|
16
|
Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. ACTA ACUST UNITED AC 2008; 59:293-315. [PMID: 18845187 DOI: 10.1016/j.brainresrev.2008.09.002] [Citation(s) in RCA: 392] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/11/2008] [Accepted: 09/12/2008] [Indexed: 12/18/2022]
Abstract
Both calorie restriction and the ketogenic diet possess broad therapeutic potential in various clinical settings and in various animal models of neurological disease. Following calorie restriction or consumption of a ketogenic diet, there is notable improvement in mitochondrial function, a decrease in the expression of apoptotic and inflammatory mediators and an increase in the activity of neurotrophic factors. However, despite these intriguing observations, it is not yet clear which of these mechanisms account for the observed neuroprotective effects. Furthermore, limited compliance and concern for adverse effects hamper efforts at broader clinical application. Recent research aimed at identifying compounds that can reproduce, at least partially, the neuroprotective effects of the diets with less demanding changes to food intake suggests that ketone bodies might represent an appropriate candidate. Ketone bodies protect neurons against multiple types of neuronal injury and are associated with mitochondrial effects similar to those described during calorie restriction or ketogenic diet treatment. The present review summarizes the neuroprotective effects of calorie restriction, of the ketogenic diet and of ketone bodies, and compares their putative mechanisms of action.
Collapse
Affiliation(s)
- Marwan Maalouf
- Department of Neurobiology, David Geffen School of Medicine, University of California, 63-323 CH5, Box 951763, Los Angeles, CA 90095-1763, USA.
| | | | | |
Collapse
|
17
|
Fontana L. Neuroendocrine factors in the regulation of inflammation: excessive adiposity and calorie restriction. Exp Gerontol 2008; 44:41-5. [PMID: 18502597 DOI: 10.1016/j.exger.2008.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 12/15/2022]
Abstract
Acute inflammation is usually a self-limited life preserving response, triggered by pathogens and/or traumatic injuries. This transient response normally leads to removal of harmful agents and to healing of the damaged tissues. In contrast, unchecked or chronic inflammation can lead to persistent tissue and organ damage by activated leukocytes, cytokines, or collagen deposition. Excessive energy intake and adiposity cause systemic inflammation, whereas calorie restriction without malnutrition exerts a potent anti-inflammatory effect. As individuals accumulate fat and their adipocytes enlarge, adipose tissue undergoes molecular and cellular alterations, macrophages accumulate, and inflammation ensues. Overweight/obese subjects have significantly higher plasma concentrations of C-reactive protein and several cytokines, including IL-6, IL-8, IL-18, and TNF-alpha. Experimental animals on a chronic CR regimen, instead, have low levels of circulating inflammatory cytokines, low blood lymphocyte levels, reduced production of inflammatory cytokines by the white blood cells in response to stimulation, and cortisol levels in the high normal range. Recent data demonstrate that CR exerts a powerful anti-inflammatory effect also in non-human primates and humans. Multiple metabolic and neuroendocrine mechanisms are responsible for the CR-mediated anti-inflammatory effects, including reduced adiposity and secretion of pro-inflammatory adipokines, enhanced glucocorticoid production, reduced plasma glucose and advanced glycation end-product concentrations, increased parasympathetic tone, and increased ghrelin production. Measuring tissue specific effects of CR using genomic, proteomic, and metabolomic techniques in humans will foster the understanding of the complex biological processes involved in the anti-inflammatory and anti-aging effects of CR.
Collapse
Affiliation(s)
- Luigi Fontana
- Division of Geriatrics and Nutritional Science, Center for Human Nutrition, Washington University School of Medicine, 4566 Scott Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Messaoudi I, Warner J, Fischer M, Park B, Hill B, Mattison J, Lane MA, Roth GS, Ingram DK, Picker LJ, Douek DC, Mori M, Nikolich-Žugich J. Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc Natl Acad Sci U S A 2006; 103:19448-53. [PMID: 17159149 PMCID: PMC1748246 DOI: 10.1073/pnas.0606661103] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Caloric restriction (CR) has long been known to increase median and maximal lifespans and to decreases mortality and morbidity in short-lived animal models, likely by altering fundamental biological processes that regulate aging and longevity. In rodents, CR was reported to delay the aging of the immune system (immune senescence), which is believed to be largely responsible for a dramatic increase in age-related susceptibility to infectious diseases. However, it is unclear whether CR can exert similar effects in long-lived organisms. Previous studies involving 2- to 4-year CR treatment of long-lived primates failed to find a CR effect or reported effects on the immune system opposite to those seen in CR-treated rodents. Here we show that long-term CR delays the adverse effects of aging on nonhuman primate T cells. CR effected a marked improvement in the maintenance and/or production of naïve T cells and the consequent preservation of T cell receptor repertoire diversity. Furthermore, CR also improved T cell function and reduced production of inflammatory cytokines by memory T cells. Our results provide evidence that CR can delay immune senescence in nonhuman primates, potentially contributing to an extended lifespan by reducing susceptibility to infectious disease.
Collapse
Affiliation(s)
- Ilhem Messaoudi
- *Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Jessica Warner
- *Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Miranda Fischer
- *Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Buyng Park
- Biostatistics Shared Resource, Oregon Cancer Institute, Oregon Health and Science University, Portland, OR 97201
| | - Brenna Hill
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julie Mattison
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Mark A. Lane
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | | | - Donald K. Ingram
- Laboratory of Experimental Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Louis J. Picker
- *Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Motomi Mori
- Biostatistics Shared Resource, Oregon Cancer Institute, Oregon Health and Science University, Portland, OR 97201
| | - Janko Nikolich-Žugich
- *Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006
- **To whom correspondence should be addressed at:
Vaccine and Gene Therapy Institute, Oregon Health and Science University, West Campus, 505 Northwest 185th Avenue, Beaverton, OR 97006. E-mail:
| |
Collapse
|
19
|
Martin B, Mattson MP, Maudsley S. Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev 2006; 5:332-53. [PMID: 16899414 PMCID: PMC2622429 DOI: 10.1016/j.arr.2006.04.002] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 04/21/2006] [Accepted: 04/21/2006] [Indexed: 12/14/2022]
Abstract
The vulnerability of the nervous system to advancing age is all too often manifest in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review article we describe evidence suggesting that two dietary interventions, caloric restriction (CR) and intermittent fasting (IF), can prolong the health-span of the nervous system by impinging upon fundamental metabolic and cellular signaling pathways that regulate life-span. CR and IF affect energy and oxygen radical metabolism, and cellular stress response systems, in ways that protect neurons against genetic and environmental factors to which they would otherwise succumb during aging. There are multiple interactive pathways and molecular mechanisms by which CR and IF benefit neurons including those involving insulin-like signaling, FoxO transcription factors, sirtuins and peroxisome proliferator-activated receptors. These pathways stimulate the production of protein chaperones, neurotrophic factors and antioxidant enzymes, all of which help cells cope with stress and resist disease. A better understanding of the impact of CR and IF on the aging nervous system will likely lead to novel approaches for preventing and treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Bronwen Martin
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
20
|
Greeley EH, Spitznagel E, Lawler DF, Kealy RD, Segre M. Modulation of canine immunosenescence by life-long caloric restriction. Vet Immunol Immunopathol 2006; 111:287-99. [PMID: 16567002 DOI: 10.1016/j.vetimm.2006.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 02/09/2006] [Indexed: 11/21/2022]
Abstract
Caloric restriction (CR) has been shown to retard immunosenescence and to extend median and maximum life span in rodent species. Longitudinal effects of CR on the canine immune system are presented in this report. A group of 48 Labrador Retrievers, divided at weaning into weight- and sex-matched pairs, were maintained on a diet restriction protocol from age 8 weeks until death. Each restricted dog received 75% of the total food consumed by its control-fed pair mate. Immune parameters were monitored from 4 to 13 years. CR retarded age-related declines in both lymphoproliferative responses and absolute numbers of lymphocytes and the T, CD4, and CD8-cell subsets. In females, CR attenuated the age-related increase in T-cell percentages and marginally retarded the age-related increase in memory cell percentages. Age-related changes in B-cell percentages and numbers were augmented by CR. No direct effect of CR on phagocytic activity of PMN, antibody production or NK cell activity, was observed. Lower lymphoproliferative responses, lower numbers of lymphocytes, T, CD4 and CD8 cells, lower CD8 percentages and higher B-cell percentages were all found to be significantly associated with a decreased likelihood of survival in these dogs.
Collapse
|
21
|
Lee J, Kim SJ, Son TG, Chan SL, Mattson MP. Interferon-gamma is up-regulated in the hippocampus in response to intermittent fasting and protects hippocampal neurons against excitotoxicity. J Neurosci Res 2006; 83:1552-7. [PMID: 16521127 DOI: 10.1002/jnr.20831] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary restriction (DR) increases the life span of many different organisms, and recent findings have demonstrated neuroprotective effects of DR in rodent and nonhuman primate models of neurodegenerative disorders. The neuroprotective mechanism of action of DR is unknown, but it may result from a mild cellular stress response involving increased production of neurotrophic factors. Because several different cytokines are known to be up-regulated in brain cells in response to stress, we determined whether DR affected cytokine expression in the rat brain. Levels of expression of interferon-gamma (IFN-gamma) and its receptor were significantly increased in the hippocampus of rats that had been maintained on an intermittent fasting DR regimen compared with rats on the ad libitum control diet. Pretreatment of embryonic rat hippocampal cell cultures with IFN-gamma protected neurons against glutamate-induced death. IFN-gamma-mediated neuroprotection was associated with an enhanced recovery of intracellular Ca(2+) concentrations following exposure to glutamate. Our data show that intermittent fasting DR stimulates IFN-gamma-mediated neuroprotective signaling in the hippocampus, suggesting a role for this cytokine in the previously reported ability of DR to protect neurons in animal models of severe epileptic seizures, stroke, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Longevity Life Science and Technology Institutes, Pusan National University, Gumjeong-gu, Busan, Korea.
| | | | | | | | | |
Collapse
|
22
|
Vega VL, De Cabo R, De Maio A. Age and caloric restriction diets are confounding factors that modify the response to lipopolysaccharide by peritoneal macrophages in C57BL/6 mice. Shock 2005; 22:248-53. [PMID: 15316395 DOI: 10.1097/01.shk.0000133590.09659.a1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Aging is the result of several detrimental changes that lead to a decrease in homeostasis, an increase in the incidence of degenerative diseases, and death. A caloric-restricted diet (CR), which consists of a significant reduction in calorie intake (40%) without malnutrition, has been shown to delay the onset of age-related diseases and pathologies and to extend life span. The aims of this study were to assess the effects of aging and CR on lipopolysaccharide (LPS)-dependant cytokine production by peritoneal macrophages (PMphis). Resident naïve PMphis were isolated from 2- to 24-month-old male C57BL/6 mice and were stimulated with Escherichia coli LPS (100 ng/mL) for 1 to 5 h in culture conditions. A linear decrease in the production of LPS-induced tumor necrosis factor alpha (TNF-alpha) and interleukin (IL) 10 was observed with age. LPS-induced IL-6 and IL-1beta levels were also reduced with age, but in a nonlinear fashion. Expression of CD14, the major receptor for LPS, on the PMphi surface was also observed to decline with age. Moreover, TNF-alpha production by PMphis was reduced in mice undergoing the two different CR diets of limited daily feeding and intermittent fasting, as compared with ad libitum-fed mice. The results of this study add the new variables age and diet to the paradigm proposing that the response to LPS is modulated by multiple components, including genetic background and sex.
Collapse
Affiliation(s)
- Virginia L Vega
- Division of Pediatric Surgery and Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
23
|
Tsuchiya T, Higami Y, Komatsu T, Tanaka K, Honda S, Yamaza H, Chiba T, Ayabe H, Shimokawa I. Acute stress response in calorie-restricted rats to lipopolysaccharide-induced inflammation. Mech Ageing Dev 2005; 126:568-79. [PMID: 15811426 DOI: 10.1016/j.mad.2004.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2004] [Indexed: 01/05/2023]
Abstract
Calorie restriction (CR) reduces morbidity and mortality in a wide range of organisms, possibly through the stress response machinery. We analyzed the acute phase response of CR rats to lipopolysaccharide (LPS)-induced inflammatory challenge. Six-month-old male F344 rats, fed ad libitum (AL) or a 30% calorie-restricted diet from 6 weeks of age, received an intravenous LPS injection and were then sacrificed between 0 and 8 h. CR attenuated liver injury without reduction in the plasma concentrations of proinflammatory cytokines or nitric oxide (NO). Western blotting analysis of liver tissue demonstrated that CR did not affect the degradation of cytoplasmic I-kappaB and subsequent nuclear translocation of NF-kappaB, a key transcription factor after inflammatory challenge. We also analyzed the liver gene expression profiles at 0, 1 and 4 h with DNA arrays and cluster analysis. Compared with the AL group, CR upregulated the expression of several genes for inflammatory mediators or their related molecules at 0 h, but not at 1 or 4 h. CR downregulated genes for energy or xenobiotic metabolism and stress response proteins at 0 h. At 1 h, the relatively downregulated genes by CR were those for proteases and the ubiquitin-proteasome pathway. The present results suggest that CR attenuates liver injury without suppression of the proinflammatory response, and that the protective effect emerges from constitutively, rather than inductively, expressed gene products.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Department of Pathology and Gerontology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki City 852-8523, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mattison JA, Black A, Huck J, Moscrip T, Handy A, Tilmont E, Roth GS, Lane MA, Ingram DK. Age-related decline in caloric intake and motivation for food in rhesus monkeys. Neurobiol Aging 2004; 26:1117-27. [PMID: 15748792 DOI: 10.1016/j.neurobiolaging.2004.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2002] [Revised: 09/07/2004] [Accepted: 09/28/2004] [Indexed: 11/22/2022]
Abstract
Human studies have documented age-related declines in caloric intake that are pronounced at advanced ages. We examined caloric intake from a longitudinal study of aging in 60 male and 60 female rhesus monkeys (Macaca mulatta) collected for up to 10 years. Monkeys were provided a standardized, nutritionally fortified diet during two daily meals, and intake was measured quarterly. About half of the monkeys were on a regimen of caloric restriction (CR) representing about a 30% reduction in caloric intake compared to controls (CON) of comparable age and body weight. CR was applied to determine if this nutritional intervention retards the rate of aging in monkeys similar to observations in other mammalian studies. Following reproductive maturity at 6 years of age, there was a consistent age-related decline in caloric intake in these monkeys. Although males had higher intake than females, and CON had higher intake compared to CR, the sex and diet differences converged at older ages (>20 years); thus, older CR monkeys were no longer consuming 30% less than the CON. When adjusted for body weight, an age-related decline in caloric intake was still evident; however, females had higher intake compared to males while CR monkeys still consumed less food, and again differences converged at older ages. Motivation for food was assessed in 65 of the monkeys following at least 8 years in their respective diet groups. Using an apparatus attached to the home cage, following an overnight fast, monkeys were trained to reach out of their cage to retrieve a biscuit of their diet by pushing open a clear plastic door on the apparatus. The door was then locked, and thus the biscuit was irretrievable. The time spent trying to retrieve the biscuit was recorded as a measure of motivation for food. We observed an age-related decline in this measure, but found no consistent differences in retrieval time between CR and CON groups of comparable age and time on diet. The results demonstrate an age-related decline in food intake and motivation for food in rhesus monkeys paralleling findings in humans; however, we found no evidence that monkeys on a long-term CR regimen were more motivated for food compared to CON. Examining the relationship of selected blood proteins to food intake following 7-11 years on the study, we found a negative correlation between globulin and intake among males and females after accounting for differences in age. In addition, a positive correlation was observed between leptin and intake in males.
Collapse
Affiliation(s)
- Julie A Mattison
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
SHI QIANG, AIDA KEIKO, VANDEBERG JOHNL, WANG XINGLI. Passage-dependent changes in baboon endothelial cells--relevance to in vitro aging. DNA Cell Biol 2004; 23:502-9. [PMID: 15307953 PMCID: PMC1350950 DOI: 10.1089/1044549041562294] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro cell culture system is a useful model for aging-related changes in a wide spectrum of biomedical research. In this study, we explored the passage and donor age-dependent changes in baboon macrovascular endothelial cells that are relevant to both in vitro cell culture aging models and experiments using cell culture techniques. We collected baboon femoral arterial samples from nine baboons ranging in age from 6 months to 30 years (equivalent to humans approximately 18 months to 90 years of age). We then cultured baboon femoral artery endothelial cells (BFAECs) in standard DMEM medium with 20% fetal calf serum with 1:3 split for subculture. Endothelial functions were documented by morphology, Dil-LDL uptake and expression of eNOS, MCP-1, vWF, VCAM-1, ICAM-1, and E-Selectin with or without cytokine stimulation. Most of the cells became nonmitotic after 30 population doublings, or 10 passages, when they became flattened, enlarged, and senescent. While it took approximately 3 days to reach confluence from three-dilution seeding at early passages (<6), confluence was not achieved even after 7 days of culture for cells after the 9th or 10th passage. There was a linear decline in eNOS expression with passage. However, this decline was significantly less in endothelial cells from a young baboon (6 months) than those from an old baboon (30 years). While basal expression of adhesion molecules was not changed with passaging, responses to cytokine stimulation appeared to be increased in later passaged cells. Our study has provided evidence for passage-related changes in key endothelial functions. The donor age-related differences in this in vitro aging process suggests that in vitro endothelial culture can serve as a biomarker for in vivo aging. Nonhuman primates can provide a model for investigating such aging-related biological characteristics.
Collapse
Affiliation(s)
- QIANG SHI
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas
| | - KEIKO AIDA
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas
| | - JOHN L. VANDEBERG
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas
- Southwest National Primate Research Center, San Antonio, Texas
| | - XING LI WANG
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Address reprint requests to: Xing Li Wang, M.D., Ph.D., MS NAB 2010, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, E-mail:
| |
Collapse
|