1
|
Bora JR, Mahalakshmi R. Empowering canonical biochemicals with cross-linked novelty: Recursions in applications of protein cross-links. Proteins 2023:10.1002/prot.26571. [PMID: 37589191 PMCID: PMC7616502 DOI: 10.1002/prot.26571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Diversity in the biochemical workhorses of the cell-that is, proteins-is achieved by the innumerable permutations offered primarily by the 20 canonical L-amino acids prevalent in all biological systems. Yet, proteins are known to additionally undergo unusual modifications for specialized functions. Of the various post-translational modifications known to occur in proteins, the recently identified non-disulfide cross-links are unique, residue-specific covalent modifications that confer additional structural stability and unique functional characteristics to these biomolecules. We review an exclusive class of amino acid cross-links encompassing aromatic and sulfur-containing side chains, which not only confer superior biochemical characteristics to the protein but also possess additional spectroscopic features that can be exploited as novel chromophores. Studies of their in vivo reaction mechanism have facilitated their specialized in vitro applications in hydrogels and protein anchoring in monolayer chips. Furthering the discovery of unique canonical cross-links through new chemical, structural, and bioinformatics tools will catalyze the development of protein-specific hyperstable nanostructures, superfoods, and biotherapeutics.
Collapse
Affiliation(s)
- Jinam Ravindra Bora
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | - Radhakrishnan Mahalakshmi
- Department of Biological Sciences, Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
2
|
Perrelli A, Ferraris C, Berni E, Glading AJ, Retta SF. KRIT1: A Traffic Warden at the Busy Crossroads Between Redox Signaling and the Pathogenesis of Cerebral Cavernous Malformation Disease. Antioxid Redox Signal 2023; 38:496-528. [PMID: 36047808 PMCID: PMC10039281 DOI: 10.1089/ars.2021.0263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022]
Abstract
Significance: KRIT1 (Krev interaction trapped 1) is a scaffolding protein that plays a critical role in vascular morphogenesis and homeostasis. Its loss-of-function has been unequivocally associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease of genetic origin characterized by defective endothelial cell-cell adhesion and ensuing structural alterations and hyperpermeability in brain capillaries. KRIT1 contributes to the maintenance of endothelial barrier function by stabilizing the integrity of adherens junctions and inhibiting the formation of actin stress fibers. Recent Advances: Among the multiple regulatory mechanisms proposed so far, significant evidence accumulated over the past decade has clearly shown that the role of KRIT1 in the stability of endothelial barriers, including the blood-brain barrier, is largely based on its involvement in the complex machinery governing cellular redox homeostasis and responses to oxidative stress and inflammation. KRIT1 loss-of-function has, indeed, been demonstrated to cause an impairment of major redox-sensitive mechanisms involved in spatiotemporal regulation of cell adhesion and signaling, which ultimately leads to decreased cell-cell junction stability and enhanced sensitivity to oxidative stress and inflammation. Critical Issues: This review explores the redox mechanisms that influence endothelial cell adhesion and barrier function, focusing on the role of KRIT1 in such mechanisms. We propose that this supports a novel model wherein redox signaling forms the common link between the various pathogenetic mechanisms and therapeutic approaches hitherto associated with CCM disease. Future Directions: A comprehensive characterization of the role of KRIT1 in redox control of endothelial barrier physiology and defense against oxy-inflammatory insults will provide valuable insights into the development of precision medicine strategies. Antioxid. Redox Signal. 38, 496-528.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Chiara Ferraris
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Elisa Berni
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
3
|
Kim ME, Kim DH, Lee JS. Transcription Factors as Targets of Natural Compounds in Age-Related Diseases and Cancer: Potential Therapeutic Applications. Int J Mol Sci 2022; 23:ijms232213882. [PMID: 36430361 PMCID: PMC9696520 DOI: 10.3390/ijms232213882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammation exacerbates systemic pathophysiological conditions and chronic inflammation is a sustained and systemic phenomenon that aggravates aging that can lead to chronic age-related diseases. These inflammatory phenomena have recently been redefined and delineated at the molecular, cellular, and systemic levels. Many transcription factors that are activated in response to tumor metabolic state have been reported to be regulated by a class of histone deacetylase called sirtuins (SIRTs). Sirtuins play a pivotal role in the regulation of tumor cell metabolism, proliferation, and angiogenesis, including oxidative stress and inflammation. The SIRT1-mediated signaling pathway in diabetes and cancer is the SIRT1/forkhead-box class O (FoxO)/nuclear factor-kappa B (NF-κB) pathway. In this review, we describe the accumulation of SIRT1-, NF-κB-, and FoxO-mediated inflammatory processes and cellular proinflammatory signaling pathways. We also describe the proinflammatory mechanisms underlying metabolic molecular pathways in various diseases such as liver cancer and diabetes. Finally, the regulation of cancer and diabetes through the anti-inflammatory effects of natural compounds is highlighted. Evidence from inflammation studies strongly suggests that cells may be a major source of cytokines secreted during various diseases. A better understanding of the mechanisms that underpin the inflammatory response and palliative role of natural compounds will provide insights into the molecular mechanisms of inflammation and various diseases for potential intervention.
Collapse
Affiliation(s)
- Mi Eun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
| | - Dae Hyun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
- Correspondence: (D.H.K.); (J.S.L.); Tel.: +82-062-230-6651 (J.S.L.)
| | - Jun Sik Lee
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
- LKBio Inc., Chosun University Business Incubator (CUBI) Building, Dong-gu, Gwangju 61452, Korea
- Correspondence: (D.H.K.); (J.S.L.); Tel.: +82-062-230-6651 (J.S.L.)
| |
Collapse
|
4
|
Roles of RIPK3 in necroptosis, cell signaling, and disease. Exp Mol Med 2022; 54:1695-1704. [PMID: 36224345 PMCID: PMC9636380 DOI: 10.1038/s12276-022-00868-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Receptor-interacting protein kinase-3 (RIPK3, or RIP3) is an essential protein in the "programmed" and "regulated" cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, and the findings of many reports have suggested that necroptosis is highly significant in health and human disease. This significance is largely because necroptosis is distinguished from other modes of cell death, especially apoptosis, in that it is highly proinflammatory given that cell membrane integrity is lost, triggering the activation of the immune system and inflammation. Here, we discuss the roles of RIPK3 in cell signaling, along with its role in necroptosis and various pathways that trigger RIPK3 activation and cell death. Lastly, we consider pathological situations in which RIPK3/necroptosis may play a role.
Collapse
|
5
|
Najjar RS, Knapp D, Wanders D, Feresin RG. Raspberry and blackberry act in a synergistic manner to improve cardiac redox proteins and reduce NF-κB and SAPK/JNK in mice fed a high-fat, high-sucrose diet. Nutr Metab Cardiovasc Dis 2022; 32:1784-1796. [PMID: 35487829 DOI: 10.1016/j.numecd.2022.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Increased cardiac inflammation and oxidative stress are common features in obesity, and toll-like receptor (TLR)4 signaling is a key inflammatory pathway in this deleterious process. This study aimed to investigate whether berries could attenuate the detrimental effects of a high-fat, high-sucrose (HFHS) diet on the myocardium at the molecular level. METHODS AND RESULTS Eight-week-old male C57BL/6 mice consumed a low-fat, low-sucrose (LFLS) diet alone or supplemented with 10% blackberry (BL), 10% raspberry (RB) or 10% blackberry + raspberry (BL + RB) for four weeks. Animals were then switched to a HFHS diet for 24 weeks with or without berry supplementation or maintained on a LFLS control diet without berry supplementation. Left ventricles of the heart were isolated for protein and mRNA analysis. Berry consumption, particularly BL + RB reduced NADPH-oxidase (NOX)1 and NOX2 and increased catalase (CAT) and superoxide dismutase (SOD)2, expression while BL and RB supplementation alone was less efficacious. Downstream TLR4 signaling was attenuated mostly by both RB and BL + RB supplementation, while NF-κB pathway was attenuated by BL + RB supplementation. Stress-activated protein kinase (SAPK)/Jun amino-terminal kinase (JNK) was also attenuated by BL + RB supplementation, and reduced TNF-α transcription and protein expression was observed only with BL + RB supplementation. CONCLUSION The synergistic effects of BL + RB may reduce obesity-induced cardiac inflammation and oxidative stress to a greater extent than BL or RB alone.
Collapse
Affiliation(s)
- Rami S Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Denise Knapp
- Department of Nutrition, Georgia State University, Atlanta, GA, USA; Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Redox ticklers and beyond: Naphthoquinone repository in the spotlight against inflammation and associated maladies. Pharmacol Res 2021; 174:105968. [PMID: 34752922 DOI: 10.1016/j.phrs.2021.105968] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/13/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022]
Abstract
Cellular redox status has been considered as a focal point for the pathogenesis of multiple disorders. High and persistent levels of free radicals kick off inflammation and associated disorders. Though oxidative stress at high levels is harmful but at low levels it has been shown to exert cytoprotective effects. Therefore, cytoprotection by perturbation in cellular redox balance is a leading strategy for therapeutic interventions. Prooxidants are potent redox modifiers that generate mild oxidative stress leading to a spectrum of bioactivities. Naphthoquinones are a group of highly reactive organic chemical species that interact with biological systems owing to their prooxidants nature. Owing to the ability of naphthoquinones and its derivatives to perturb redox balance in a cell and modulate redox signaling, they have been in epicenter of drug development for plausible utilization in multiple clinical settings. The present review highlights the potential of 1,4-naphthoquinone and its natural derivatives (plumbagin, juglone, lawsone, menadione, lapachol and β-lapachone) as redox modifiers with anti-inflammatory, anti-cancer, anti-diabetic and anti-microbial activities for implication in therapeutic settings.
Collapse
|
7
|
Vajdi M, Mahmoudi-Nezhad M, Farhangi MA. An updated systematic review and dose-response meta-analysis of the randomized controlled trials on the effects of Alpha-Lipoic acid supplementation on inflammatory biomarkers. INT J VITAM NUTR RES 2021; 93:164-177. [PMID: 33827267 DOI: 10.1024/0300-9831/a000702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Data about the effects of alpha-lipoic acid (ALA) supplementation on inflammatory markers are inconsistent. This systematic review and dose-response meta-analysis of randomized controlled trials was performed to summarize the effects of ALA supplementation on inflammatory markers such as C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in adults. A comprehensive literature search was conducted in the electronic databases of PubMed, Web of Science, ProQuest, Embase, and SCOPUS from inception to February 2020. Among all of the eligible studies, 20 articles were selected. The weighted mean differences (WMD) and 95% confidence intervals (CI) were calculated to evaluate the pooled effect size. Between-study heterogeneity was evaluated using Cochran's Q test and I2. Subgroup analysis was done to evaluate the potential sources of heterogeneity. The dose-response relationship was evaluated using fractional polynomial modeling. Twenty eligible studies with a total sample size of 947 participants were included in the current meta-analysis. The findings of the meta-analysis showed that ALA supplementation significantly reduced CRP (WMD: -0.69 mg/L, 95% CI: -1.13, -0.26, P=0.002), IL-6 (WMD: -1.83 pg/ml, 95% CI: -2.90, -0.76, P=0.001), and TNF-α concentrations (WMD: -0.45 pg/ml, 95% CI: -0.85, -0.04, P=0.032). No evidence of departure from linearity was observed between dose and duration of the ALA supplementation on serum CRP, IL-6 and TNF-α concentration. In subgroup analysis, ALA dosage, baseline concentrations of the parameter, sample size, and gender were considered as possible sources of heterogeneity. In summary, ALA supplementation improves inflammatory markers without any evidence of non-linear association to dose or duration of the trial.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
8
|
Xu H, Ohgami N, Sakashita M, Ogi K, Hashimoto K, Tazaki A, Tong K, Aoki M, Fujieda S, Kato M. Intranasal levels of lead as an exacerbation factor for allergic rhinitis in humans and mice. J Allergy Clin Immunol 2021; 148:139-147.e10. [PMID: 33766551 DOI: 10.1016/j.jaci.2021.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Air pollutants are suspected to affect pathological conditions of allergic rhinitis (AR). OBJECTIVES After detecting Pb (375 μg/kg) in Japanese cedar pollen, the effects of intranasal exposure to Pb on symptoms of AR were investigated. METHODS Pollen counts, subjective symptoms, and Pb levels in nasal epithelial lining fluid (ELF) were investigated in 44 patients with Japanese cedar pollinosis and 57 controls from preseason to season. Effects of intranasal exposure to Pb on symptoms were confirmed by using a mouse model of AR. RESULTS Pb levels in ELF from patients were >40% higher than those in ELF from control subjects during the pollen season but not before the pollen season. Pb level in ELF was positively associated with pollen counts for the latest 4 days before visiting a hospital as well as scores of subjective symptoms. Intranasal exposure to Pb exacerbated symptoms in allergic mice, suggesting Pb as an exacerbation factor. Pb levels in ELF and nasal mucosa in Pb-exposed allergic mice were higher than those in Pb-exposed nonallergic mice, despite intranasally challenging the same amount of Pb. Because the increased Pb level in the nasal mucosa of Pb-exposed allergic mice was decreased after washing the nasal cavity, Pb on the surface of but not inside the nasal mucosa may have been a source of increased Pb level in ELF of allergic mice. CONCLUSIONS Increased nasal Pb level partially derived from pollen could exacerbate subjective symptoms of AR, indicating Pb as a novel hazardous air pollutant for AR.
Collapse
Affiliation(s)
- Huadong Xu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology-Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Kazuhiro Ogi
- Division of Otorhinolaryngology-Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Kazunori Hashimoto
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan
| | - Keming Tong
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan
| | - Masayo Aoki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology-Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; Voluntary Body for International Healthcare in Universities, Nagoya, Japan.
| |
Collapse
|
9
|
Hoang BX, Shaw G, Fang W, Han B. Possible application of high-dose vitamin C in the prevention and therapy of coronavirus infection. J Glob Antimicrob Resist 2020; 23:256-262. [PMID: 33065330 PMCID: PMC7553131 DOI: 10.1016/j.jgar.2020.09.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses increase oxidative stress in the body leading to cellular and tissue damage. To combat this, administration of high-dose vitamin C (ascorbic acid or ascorbate), in addition to standard conventional supportive treatments, has been shown to be a safe and effective therapy for severe cases of respiratory viral infection. Morbidity, mortality, infectiveness and spread of infectious diseases are dependent on the host-pathogen relationship. Given the lack of effective and safe antiviral drugs for coronaviruses, there should be more attention in supporting host immune defence, cytoprotection and immunoregulation. Implementation of high-dose vitamin C therapy could dramatically reduce the need for high doses of corticosteroids, antibacterials and antiviral drugs that may be immunosuppressive, adrenal depressive and toxic, complicating the disease course. In order to effectively fight the novel SARS-CoV-2 virus, medical professionals should explore readily available pharmaceutical and nutritional therapeutic agents with proven antioxidant, anti-inflammatory and immunosupportive properties. Supplemental vitamin C may also provide additional benefits for the prevention of viral infections, shorten the disease course and lessen complications of the disease.
Collapse
Affiliation(s)
- Ba X Hoang
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Department of Surgery, University of Southern California, Los Angeles, California, USA
| | - Graeme Shaw
- Integrative Medical Associates, Foster City, California, USA
| | - Willian Fang
- Western University of Health Sciences, Pomona, California, USA
| | - Bo Han
- Nimni-Cordoba Tissue Engineering and Drug Discovery Laboratory, Department of Surgery, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
10
|
Effect of blood pressure on early neurological deterioration of acute ischemic stroke patients with intravenous rt-PA thrombolysis may be mediated through oxidative stress induced blood-brain barrier disruption and AQP4 upregulation. J Stroke Cerebrovasc Dis 2020; 29:104997. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.104997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/18/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023] Open
|
11
|
Pradhan G, Raj Abraham P, Shrivastava R, Mukhopadhyay S. Calcium Signaling Commands Phagosome Maturation Process. Int Rev Immunol 2020; 38:57-69. [PMID: 31117900 DOI: 10.1080/08830185.2019.1592169] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phagosome-lysosome (P-L) fusion is one of the central immune-effector responses of host. It is known that phagosome maturation process is associated with numerous signaling cascades and among these, important role of calcium (Ca2+) signaling has been realized recently. Ca2+ plays key roles in actin rearrangement, activation of NADPH oxidase and protein kinase C (PKC). Involvement of Ca2+ in these cellular processes directs phagosomal maturation process. Some of the intracellular pathogens have acquired the strategies to modulate Ca2+ associated pathways to block P-L fusion process. In this review we have described the mechanism of Ca2+ signals that influence P-L fusion by controlling ROS, actin and PKC signaling cascades. We have also discussed the strategies implemented by the intracellular pathogens to manipulate Ca2+ signaling to consequently subvert P-L fusion. A detail study of factors associated in manipulating Ca2+ signaling may provide new insights for the development of therapeutic tools for more effective treatment options against infectious diseases.
Collapse
Affiliation(s)
- Gourango Pradhan
- a Laboratory of Molecular Cell Biology , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Hyderabad , India.,b Graduate Studies , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Philip Raj Abraham
- a Laboratory of Molecular Cell Biology , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Hyderabad , India
| | - Rohini Shrivastava
- a Laboratory of Molecular Cell Biology , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Hyderabad , India.,b Graduate Studies , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Sangita Mukhopadhyay
- a Laboratory of Molecular Cell Biology , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Hyderabad , India
| |
Collapse
|
12
|
Rahimlou M, Asadi M, Banaei Jahromi N, Mansoori A. Alpha-lipoic acid (ALA) supplementation effect on glycemic and inflammatory biomarkers: A Systematic Review and meta- analysis. Clin Nutr ESPEN 2019; 32:16-28. [PMID: 31221283 DOI: 10.1016/j.clnesp.2019.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/08/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Several randomized clinical trials (RCTs) have investigated the effect of Alpha - Lipoic Acid (ALA) supplementation on metabolic parameters, with conflicting results. Therefore, the present study assessed the effect of ALA on some glycemic and inflammatory parameters. METHODS A comprehensive literature search was conducted up from inception to July 2018 on PubMed, Scopus, Cochrane databases, Google Scholar, ProQuest, Web of Science, and Embase. From among eligible trials, 41 articles were selected for the meta-analysis. Two reviewers independently assessed the risk of bias and extracted data from the included studies. Meta-analyses using the random-effects model were performed to analyze the data. RESULTS Based on the Cochrane risk of bias tool, 19 articles had a good quality, 16 trials had a poor quality and 6 trials had a fair quality. The results demonstrated the significant effect of ALA on Fasting Blood Sugar (FBS) (weighted mean difference (WMD)) = -6.57, 95% confidence interval (CI: -11.91 to -1.23, P = 0.016), Hemoglobin A1c (HbA1c) (WMD = -0.35, 95% CI: -0.55 to -0.15, P = 0.004), Tumor Necrosis Factor Alpha (TNF-α) (WMD = -1.57, 95% CI: -2.29 to -0.85, P < 0.05), Interleukin 6 levels (IL-6) (WMD = -1.15, 95% CI: -1.58 to -0.72, P < 0.001), and C-reactive protein (CRP) (WMD = -0.31, 95% CI: -0.47 to -0.16, P > 0.001). No effect was detected for ALA on insulin and the homeostatic model assessment of insulin resistance (HOMA-IR). CONCLUSIONS These findings suggest that ALA is a viable supplement to improve some of the glycemic and inflammatory biomarkers.
Collapse
Affiliation(s)
- Mehran Rahimlou
- Department of Nutrition, School of Para-Medical Sciences, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran.
| | - Maryam Asadi
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Nasrin Banaei Jahromi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Anahita Mansoori
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
13
|
Randriamboavonjy V, Kyselova A, Fleming I. Redox Regulation of Calpains: Consequences on Vascular Function. Antioxid Redox Signal 2019; 30:1011-1026. [PMID: 30266074 DOI: 10.1089/ars.2018.7607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calpains (CAPNs) are a family of calcium-activated cysteine proteases. The ubiquitous isoforms CAPN1 and CAPN2 have been involved in the maintenance of vascular integrity, but uncontrolled CAPN activation plays a role in the pathogenesis of vascular diseases. Recent Advances: It is well accepted that chronic and acute overproduction of reactive oxygen species (ROS) is associated with the development of vascular diseases. There is increasing evidence that ROS can also affect the CAPN activity, suggesting CAPN as a potential link between oxidative stress and vascular disease. CRITICAL ISSUES The physiopathological relevance of ROS in regulating the CAPN activity is not fully understood but seems to involve direct effects on CAPNs, redox modifications of CAPN substrates, as well as indirect effect on CAPNs via changes in Ca2+ levels. Finally, CAPNs can also stimulate ROS production; however, data showing in which context ROS are the causes or the consequences of CAPN activation are missing. FUTURE DIRECTIONS Detailed characterization of the molecular mechanisms underlying the regulation of the different members of the CAPN system by specific ROS would help understanding the pathophysiological role of CAPN in the modulation of the vascular function. Moreover, given that CAPNs have been found in different cellular compartments such as mitochondria and nucleus as well as in the extracellular space, identification of new CAPN targets as well as their functional consequences would add new insights in the function of these enigmatic proteases.
Collapse
Affiliation(s)
- Voahanginirina Randriamboavonjy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Srivastav AK, Dhiman N, Khan H, Srivastav AK, Yadav SK, Prakash J, Arjaria N, Singh D, Yadav S, Patnaik S, Kumar M. Impact of Surface-Engineered ZnO Nanoparticles on Protein Corona Configuration and Their Interactions With Biological System. J Pharm Sci 2019; 108:1872-1889. [PMID: 30615879 DOI: 10.1016/j.xphs.2018.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023]
Abstract
In biological system, the interaction between nanoparticles (NPs) and serum biomolecules results in the formation of a dynamic corona of different affinities. The formed corona enriched with opsonin protein is recognized by macrophages and immune effector cells, resulting in rapid clearance with induced toxicity. Hence, to reduce corona genesis, surface-engineered ZnO (c-ZnO) NPs were in situ synthesized using a polyacrylamide-grafted guar gum (PAm-g-GG) polymer that provided surface neutrality to the NPs. Furthermore, we studied the characteristics of the corona formed onto uncapped anionic ZnO (bared ZnO [b-ZnO]) NPs and c-ZnO NPs by serum incubation. The result shows that b-ZnO NPs were wrapped with a high amount of serum proteins, particularly opsonin (IgG and complement), compared with c-ZnO NPs. These corona findings helped us substantially in interpretation of in vivo biokinetics studies. The in vivo study was accomplished by oral administration of NPs to Swiss mice at doses of 300 and 2000 mg/kg body weight. The studies performed on the cellular uptake, intracellular particle distribution, cytotoxicity, and pharmacokinetics of NPs indicated that b-ZnO NPs experienced higher immune cell recognition, hepatic inflammation, and resultant rapid clearance from the system, unlike c-ZnO NPs. Thus, capping of NPs by a neutral polymer has provided limited binding sites for undesired proteins around NPs, which limits immune system activation.
Collapse
Affiliation(s)
- Anurag Kumar Srivastav
- Biochemistry Laboratory, Animal Facility, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Nitesh Dhiman
- Water Analysis Laboratory, Nanotherapeutics and Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Hafizurrahman Khan
- Developmental Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ankur Kumar Srivastav
- High Resolution Mass Spectrometry Facility (HRMS), CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanjeev Kumar Yadav
- High Resolution Mass Spectrometry Facility (HRMS), CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Jyoti Prakash
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Nidhi Arjaria
- Advance Imaging Facility, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), VishvigyanBhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanjay Yadav
- High Resolution Mass Spectrometry Facility (HRMS), CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, Nanotherapeutics and Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Mahadeo Kumar
- Biochemistry Laboratory, Animal Facility, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
15
|
Hoffmann MH, Griffiths HR. The dual role of Reactive Oxygen Species in autoimmune and inflammatory diseases: evidence from preclinical models. Free Radic Biol Med 2018; 125:62-71. [PMID: 29550327 DOI: 10.1016/j.freeradbiomed.2018.03.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are created in cells during oxidative phosphorylation by the respiratory chain in the mitochondria or by the family of NADPH oxidase (NOX) complexes. The first discovered and most studied of these complexes, NOX2, mediates the oxidative burst in phagocytes. ROS generated by NOX2 are dreadful weapons: while being essential to kill ingested pathogens they can also cause degenerative changes on tissue if production and release are not balanced by sufficient detoxification. In the last fifteen years evidence has been accumulating that ROS are also integral signaling molecules and are important for regulating autoimmunity and immune-mediated inflammatory diseases. It seems that an accurate redox balance is necessary to sustain an immune state that both prevents the development of overt autoimmunity (the bright side of ROS) and minimizes collateral tissue damage (the dark side of ROS). Herein, we review studies from rodent models of arthritis, lupus, and neurodegenerative diseases that show that low NOX2-derived ROS production is linked to disease and elaborate on the underlying cellular and molecular mechanisms and the translation of these results to disease in humans.
Collapse
Affiliation(s)
- Markus H Hoffmann
- Department of Medicine 3, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsklinikum Erlangen, Germany.
| | | |
Collapse
|
16
|
Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 2018; 217:1915-1928. [PMID: 29669742 PMCID: PMC5987716 DOI: 10.1083/jcb.201708007] [Citation(s) in RCA: 1006] [Impact Index Per Article: 167.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Wang et al. review the dual role of superoxide dismutases in controlling reactive oxygen species (ROS) damage and regulating ROS signaling across model systems as well as their involvement in human diseases. Superoxide dismutases (SODs) are universal enzymes of organisms that live in the presence of oxygen. They catalyze the conversion of superoxide into oxygen and hydrogen peroxide. Superoxide anions are the intended product of dedicated signaling enzymes as well as the byproduct of several metabolic processes including mitochondrial respiration. Through their activity, SOD enzymes control the levels of a variety of reactive oxygen species (ROS) and reactive nitrogen species, thus both limiting the potential toxicity of these molecules and controlling broad aspects of cellular life that are regulated by their signaling functions. All aerobic organisms have multiple SOD proteins targeted to different cellular and subcellular locations, reflecting the slow diffusion and multiple sources of their substrate superoxide. This compartmentalization also points to the need for fine local control of ROS signaling and to the possibility for ROS to signal between compartments. In this review, we discuss studies in model organisms and humans, which reveal the dual roles of SOD enzymes in controlling damage and regulating signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | - Robyn Branicky
- Department of Biology, McGill University, Montreal, Canada
| | - Alycia Noë
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
17
|
Abstract
Hydrogen peroxide (H2O2) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H2O2-eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H2O2. Peroxiredoxins possess a high-affinity binding site for H2O2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H2O2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H2O2 effectors are therefore at a competitive disadvantage for reaction with H2O2. Recent Advances: Here we review intracellular sources of H2O2 as well as H2O2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H2O2-mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H2O2 effector proteins localized in specific subcellular compartments participates in H2O2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H2O2 signaling. Antioxid. Redox Signal. 28, 537-557.
Collapse
Affiliation(s)
- Sue Goo Rhee
- 1 Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul, Korea
| | - Hyun Ae Woo
- 2 College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Korea
| | - Dongmin Kang
- 3 Department of Life Science, Ewha Womans University , Seoul, Korea
| |
Collapse
|
18
|
Mondal A, Mukhopadhyay C. Activated Neutral Alumina as a Simple and Reusable Catalyst for the Synthesis of N
,N
-Bis[(alkyl/arylthio)methyl]amines: A Solid-Supported Protocol Under Solvent-Free Conditions. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Animesh Mondal
- Department of Chemistry; University of Calcutta; 92 APC Road Kolkata- 700009 India
| | - Chhanda Mukhopadhyay
- Department of Chemistry; University of Calcutta; 92 APC Road Kolkata- 700009 India
| |
Collapse
|
19
|
Nogueira LS, Bianchini A, Smith S, Jorge MB, Diamond RL, Wood CM. Physiological effects of five different marine natural organic matters (NOMs) and three different metals (Cu, Pb, Zn) on early life stages of the blue mussel ( Mytilus galloprovincialis). PeerJ 2017; 5:e3141. [PMID: 28413723 PMCID: PMC5391792 DOI: 10.7717/peerj.3141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/02/2017] [Indexed: 11/29/2022] Open
Abstract
Metals are present in aquatic environments as a result of natural and anthropogenic inputs, and may induce toxicity to organisms. One of the main factors that influence this toxicity in fresh water is natural organic matter (NOM) but all NOMs are not the same in this regard. In sea water, possible protection by marine NOMs is not well understood. Thus, our study isolated marine NOMs by solid-phase extraction from five different sites and characterized them by excitation-emission fluorescence analysis—one inshore (terrigenous origin), two offshore (autochthonous origin), and two intermediate in composition (indicative of a mixed origin). The physiological effects of these five NOMS alone (at 8 mg/L), of three metals alone (copper, lead and zinc at 6 µg Cu/L, 20 µg Pb/L, and 25 µg Zn/L respectively), and of each metal in combination with each NOM, were evaluated in 48-h exposures of mussel larvae. Endpoints were whole body Ca2++Mg2+-ATPase activity, carbonic anhydrase activity and lipid peroxidation. By themselves, NOMs increased lipid peroxidation, Ca2++Mg2+-ATPase, and/or carbonic anhydrase activities (significant in seven of 15 NOM-endpoint combinations), whereas metals by themselves did not affect the first two endpoints, but Cu and Pb increased carbonic anhydrase activities. In combination, the effects of NOMs predominated, with the metal exerting no additional effect in 33 out of 45 combinations. While NOM effects varied amongst different isolates, there was no clear pattern with respect to optical or chemical properties. When NOMs were treated as a single source by data averaging, NOM had no effect on Ca2++Mg2+-ATPase activity but markedly stimulated carbonic anhydrase activity and lipid peroxidation, and there were no additional effects of any metal. Our results indicate that marine NOMs may have direct effects on this model marine organism, as well as protective effects against metal toxicity, and the quality of marine NOMs may be an important factor in these actions.
Collapse
Affiliation(s)
- Lygia Sega Nogueira
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Adalto Bianchini
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Marianna Basso Jorge
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Rachael L Diamond
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| |
Collapse
|
20
|
Kato M, Ninomiya H, Maeda M, Ilmiawati C, Al Hossain MMA, Yoshinaga M, Ohgami N. Reply to the commentary "To Gorelenkova Miller and Mieyal (2015): Sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases" by Mieyal JJ. Arch Toxicol 2016; 90:1523-4. [PMID: 27083177 DOI: 10.1007/s00204-016-1705-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/04/2016] [Indexed: 11/24/2022]
Affiliation(s)
- Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan. .,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Hiromasa Ninomiya
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masao Maeda
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Cimi Ilmiawati
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - M M A Al Hossain
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masafumi Yoshinaga
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
21
|
Panieri E, Santoro MM. ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci 2015; 72:3281-303. [PMID: 25972278 PMCID: PMC11113497 DOI: 10.1007/s00018-015-1928-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/29/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to provide an overview of redox mechanisms, sources and antioxidants that control signaling events in ECs. In particular, we describe which molecules are involved in redox signaling and how they influence the relationship between ECs and other vascular component with regard to angiogenesis. Recent and new tools to investigate physiological ROS signaling will be also discussed. Such findings are providing an overview of the ROS biology relevant for endothelial cells in the context of normal and pathological angiogenic conditions.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Massimo M. Santoro
- Laboratory of Endothelial Molecular Biology, Vesalius Research Center, VIB, 3000 Leuven, Belgium
- Laboratory of Endothelial Molecular Biology, Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Nox-4 is a member of the NADPH oxidase (Nox) family of enzymes implicated in reactive oxygen species generation. Nox-4 is distributed in many tissues; however, its physiological functions remain poorly understood. In contrast to other Nox isoforms, it is unique in that it produces large amounts of hydrogen peroxide constitutively and does not require other cytosolic oxidase components for its activation. This review highlights the recent developments in Nox-4 research and progressive kidney disease as well as the potential of new Nox-4 inhibitors to reduce renal damage. RECENT FINDINGS Recently, Nox-4 was shown to be implicated in kidney diseases such as diabetic nephropathy. Nox-4 has been identified as playing a role in damage to the kidney induced by hyperglycaemia and other major pathways of renal damage, including advanced glycation end-products, the renin-angiotensin system, TGF-β and protein kinase C. SUMMARY The role of Nox-4 as a target for renoprotection remains controversial, although recent positive preclinical data have stimulated increased interest in inhibiting the enzyme in clinical trials of renal disease.
Collapse
|
23
|
Abstract
SIGNIFICANCE The pulmonary circulation is a low-pressure, low-resistance, highly compliant vasculature. In contrast to the systemic circulation, it is not primarily regulated by a central nervous control mechanism. The regulation of resting membrane potential due to ion channels is of integral importance in the physiology and pathophysiology of the pulmonary vasculature. RECENT ADVANCES Redox-driven ion conductance changes initiated by direct oxidation, nitration, and S-nitrosylation of the cysteine thiols and indirect phosphorylation of the threonine and serine residues directly affect pulmonary vascular tone. CRITICAL ISSUES Molecular mechanisms of changes in ion channel conductance, especially the identification of the sites of action, are still not fully elucidated. FUTURE DIRECTIONS Further investigation of the interaction between redox status and ion channel gating, especially the physiological significance of S-glutathionylation and S-nitrosylation, could result in a better understanding of the physiological and pathophysiological importance of these mediators in general and the implications of such modifications in cellular functions and related diseases and their importance for targeted treatment strategies.
Collapse
Affiliation(s)
- Andrea Olschewski
- 1 Ludwig Boltzmann Institute for Lung Vascular Research , Graz, Austria
| | | |
Collapse
|
24
|
Piette J. Signalling pathway activation by photodynamic therapy: NF-κB at the crossroad between oncology and immunology. Photochem Photobiol Sci 2015; 14:1510-7. [DOI: 10.1039/c4pp00465e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The response of tumors to photodynamic therapy (PDT) largely depend on signaling pathways among which the pathway leading to NF-κB activation is of high importance.
Collapse
Affiliation(s)
- Jacques Piette
- Laboratory of Virology & Immunology
- GIGA-Signal Transduction
- GIGA B34
- University of Liège
- B-4000 Liège
| |
Collapse
|
25
|
Uyar IS, Onal S, Akpinar MB, Gonen I, Sahin V, Uguz AC, Burma O. Alpha lipoic acid attenuates inflammatory response during extracorporeal circulation. Cardiovasc J Afr 2014; 24:322-6. [PMID: 24240384 PMCID: PMC3821094 DOI: 10.5830/cvja-2013-067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/04/2013] [Indexed: 11/17/2022] Open
Abstract
Aim Extracorporeal circulation (ECC) of blood during cardiopulmonary surgery has been shown to stimulate various pro-inflammatory molecules such as cytokines and chemokines. The biochemical oxidation/reduction pathways of a-lipoic acid suggest that it may have antioxidant properties. Methods In this study we aimed to evaluate only patients with coronary heart disease and those planned for coronary artery bypass graft operation. Blood samples were obtained from the patients before the operation (P1) and one (P2), four (P3), 24 (P4) and 48 hours (P5) after administration of a-lipoic acid (LA). The patients were divided into two groups, control and LA treatment group. Levels of interleukin-6 (IL-6) and -8 (IL-8), complement 3 (C3) and 4 (C4), anti-streptolysin (ASO), C-reactive protein (CRP) and haptoglobin were assessed in the blood samples. Results Cytokine IL-6 and IL-8 levels were significantly higher after surgery. Compared with the control groups, LA significantly decreased IL-6 and IL-8 levels in a time-dependent manner. CRP levels did not show significant variation in the first three time periods. CRP levels were higher after surgery, especially in the later periods. These results demonstrate that CRP formation depends on cytokine release. C3 and C4 levels were significantly higher after surgery than in the pre-operative period. LA treatment decreased C3 and C4 levels. Therefore, LA administration may be useful for the treatment of diseases and processes where excessive cytokine release could cause oxidative damage. Conclusions Our findings suggest a possible benefit of using LA during cardiac surgery to reduce cytokine levels.
Collapse
Affiliation(s)
- Ihsan Sami Uyar
- Department of Cardiothoracic Surgery, Faculty of Medicine, Şifa University, Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
26
|
Kang HS, Kim J, Lee HJ, Kwon BM, Lee DK, Hong SH. LRP1-dependent pepsin clearance induced by 2'-hydroxycinnamaldehyde attenuates breast cancer cell invasion. Int J Biochem Cell Biol 2014; 53:15-23. [PMID: 24796846 DOI: 10.1016/j.biocel.2014.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/08/2014] [Accepted: 04/26/2014] [Indexed: 12/20/2022]
Abstract
2'-Hydroxycinnamaldehyde inhibits breast cancer cell invasion. This study examined whether 2'-hydroxycinnamaldehyde, acting as a Michael acceptor, interferes with the ligand binding of low-density lipoprotein receptor-related protein 1 to mediate breast cancer cell invasion. Low-density lipoprotein receptor-related protein 1, one of the direct molecular targets of 2'-hydroxycinnamaldehyde, is a multifunctional endocytic receptor. Changes in the thiol oxidation status of cell surface receptor proteins may function as a molecular switch, influencing ligand(s) binding. The oxidation status of extracellular cysteine thiol groups in MCF-7 and MDA-MB-231 cells was examined using a fluorescence-activated cell sorter with thiol-specific fluorescent probes; Matrigel invasion and wound-healing assays were performed to determine the effects of 2'-hydroxycinnamaldehyde on in vitro cell migration. The molecular mechanisms by which 2'-hydroxycinnamaldehyde acts were evaluated by transient knockdown using siRNA or inhibition of low-density lipoprotein receptor-related protein 1 by receptor-associated protein treatment. 2'-Hydroxycinnamaldehyde increased α-2-macroglobulin binding to low-density lipoprotein receptor-related protein 1, which was alleviated by pretreatment of cells with N-acetylcystein. 2'-Hydroxycinnamaldehyde decreased the extracellular pepsin concentration significantly in a low-density lipoprotein receptor-related protein 1- and α-2-macroglobulin-dependent manner. The anti-invasive effect of 2'-hydroxycinnamaldehyde was mitigated with receptor-associated protein pretreatment, suggesting that low-density lipoprotein receptor-related protein 1 is essential for the effects of 2'-hydroxycinnamaldehyde. From these data, we suggest that 2'-hydroxycinnamaldehyde increases the cysteine thiol oxidation status of low-density lipoprotein receptor-related protein 1 extracellular domains, which results in α-2-macroglobulin ligand binding stimulation. Therefore, pepsin clearance in a low-density lipoprotein receptor-related protein 1-α-2-macroglobulin-dependent manner might be an important molecular mechanism in 2'-hydroxycinnamaldehyde exerting its anti-invasive action on breast cancer cells. Furthermore, our data may provide an opportunity to promote the importance of the thiol oxidation status of cell surface receptor proteins for regulating cellular signaling pathways that are important in cancer progression.
Collapse
Affiliation(s)
- Hye Suk Kang
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea; Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - JinKyoung Kim
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - Heon-Jin Lee
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - Byoung-Mog Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology in Korea, Daejon 305-806, South Korea
| | - Dong-Ki Lee
- Global Research Laboratory for RNAi Medicine, Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Su-Hyung Hong
- Department of Oral Microbiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea.
| |
Collapse
|
27
|
Suh SH, Lee KE, Kim IJ, Kim O, Kim CS, Choi JS, Choi HI, Bae EH, Ma SK, Lee JU, Kim SW. Alpha-lipoic acid attenuates lipopolysaccharide-induced kidney injury. Clin Exp Nephrol 2014; 19:82-91. [PMID: 24643788 DOI: 10.1007/s10157-014-0960-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 03/04/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Kidney is one of the major target organs in sepsis, while effective prevention of septic acute kidney injury has not yet been established. α-Lipoic acid (LA) has been known to exert beneficial effects against lipopolysaccharide (LPS)-induced damages in various organs such as heart, lung, and liver. We investigated the protective effect of LA on LPS-induced kidney injury. METHODS Two groups of rats were treated with LPS (20 mg/kg, i.p.), one of which being co-treated with LA (50 mg/kg), while the control group was treated with vehicle alone. Human renal proximal tubular epithelial cells (HK-2 cells) were cultured with or without LPS (10 μg/ml) in the presence or absence of LA (100 μg/ml) for 3 h prior to LPS treatment. RESULTS Serum creatinine level was increased in LPS-treated rats, which was attenuated by LA co-treatment. LPS treatment induced cleaved caspase-3 expression in the kidney, which was counteracted by LA. Terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells increased in the kidneys of LPS-treated rats compared with controls, which was counteracted by LA treatment. Protein expression of inducible nitric oxide synthase and cyclooxygenase-2 detected by immunoblotting and/or immunohistochemical staining, along with mRNA levels of pro-inflammatory cytokines detected by real-time polymerase chain reaction, was increased in the kidney with LPS administration, which was ameliorated with LA treatment. LA also protected LPS-induced tubular dysfunction, preserving type 3 Na(+)/H(+) exchanger and aquaporin 2 expressions in the kidney. Suppression of LPS-induced expression of cleaved caspase-3 by LA was also observed in HK-2 cells. Increased protein expression of phospho-extracellular signal-regulated kinases 1/2 and c-Jun N-terminal kinases by LPS treatment was attenuated by LA pretreatment, while p38 was not affected by either LPS or LA treatment. MitoTracker Red demonstrated LA prevented LPS-induced increment of mitochondrial oxidative stress, where concurrent 4',6-diamidino-2-phenylindole staining also revealed marked fragmentation and condensation of nuclei in HK-2 cells treated with LPS, which was prevented by LA. CONCLUSION LA treatment attenuates LPS-induced kidney injury, such as renal tubular dysfunction, by suppression of apoptosis, and inflammation.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Qiao S, Fan K, Iwashita T, Ichihara M, Yoshino M, Takahashi M. The involvement of reactive oxygen species derived from NADPH oxidase-1 activation on the constitutive tyrosine auto-phosphorylation of RET proteins. Free Radic Res 2014; 48:427-34. [DOI: 10.3109/10715762.2014.884278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Abstract
Evolution has favored the utilization of dioxygen (O2) in the development of complex multicellular organisms. O2 is actually a toxic mutagenic gas that is highly oxidizing and combustible. It is thought that plants are largely to blame for polluting the earth's atmosphere with O2 owing to the development of photosynthesis by blue-green algae over 2 billion years ago. The rise of the plants and atmospheric O2 levels placed evolutionary stress on organisms to adapt or become extinct. This implies that all the surviving creatures on our planet are mutants that have adapted to the "abnormal biology" of O2. Much of the adaptation to the presence of O2 in biological systems comes from well-coordinated antioxidant and repair systems that focus on converting O2 to its most reduced form, water (H2O), and the repair and replacement of damaged cellular macromolecules. Biological systems have also harnessed O2's reactive properties for energy production, xenobiotic metabolism, and host defense and as a signaling messenger and redox modulator of a number of cell signaling pathways. Many of these systems involve electron transport systems and offer many different mechanisms by which antioxidant therapeutics can alternatively produce an antioxidant effect without directly scavenging oxygen-derived reactive species. It is likely that each agent will have a different set of mechanisms that may change depending on the model of oxidative stress, organ system, or disease state. An important point is that all biological processes of aerobes have coevolved with O2 and this creates a Pandora's box for trying to understand the mechanism(s) of action of antioxidants being developed as therapeutic agents.
Collapse
Affiliation(s)
- Brian J Day
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
30
|
A Glucose-6-Phosphate Isomerase Peptide Induces T and B Cell–Dependent Chronic Arthritis in C57BL/10 Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1144-1155. [DOI: 10.1016/j.ajpath.2013.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 01/24/2023]
|
31
|
Abstract
Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous hydrogen peroxide (H₂O₂) by membrane-bound NADPH oxidases. In turn, H₂O₂ can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H₂O₂ regarding kinase activity, as well as the components involved in H₂O₂ production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H₂O₂ through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiological and pathological H₂O₂ responses.
Collapse
Affiliation(s)
- Thu H Truong
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
32
|
Corcoran A, Cotter TG. Redox regulation of protein kinases. FEBS J 2013; 280:1944-65. [PMID: 23461806 DOI: 10.1111/febs.12224] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/24/2013] [Accepted: 02/27/2013] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS) have been long regarded as by-products of a cascade of reactions stemming from cellular oxygen metabolism, which, if they accumulate to toxic levels, can have detrimental effects on cellular biomolecules. However, more recently, the recognition of ROS as mediators of cellular communications has led to their classification as signalling mediators in their own right. The prototypic redox-regulated targets downstream of ROS are the protein tyrosine phosphatases, and the wealth of research that has focused on this area has come to shape our understanding of how redox-signalling contributes to and facilitates protein tyrosine phosphorylation signalling cascades. However, it is becoming increasingly apparent that there is more to this system than simply the negative regulation of protein tyrosine phosphatases. Identification of redox-sensitive kinases such as Src led to the slow emergence of a role for redox regulation of tyrosine kinases. A flow of evidence, which has increased exponentially in recent times as a result of the development of new methods for the detection of oxidative modifications, demonstrates that, by concurrent oxidative activation of tyrosine kinases, ROS fine tune the duration and amplification of the phosphorylation signal. A more thorough understanding of the complex regulatory mechanism of redox-modification will allow targeting of both the production of ROS and their downstream effectors for therapeutic purposes. The present review assesses the most relevant recent literature that demonstrates a role for kinase regulation by oxidation, highlights the most significant findings and proposes future directions for this crucial area of redox biology.
Collapse
Affiliation(s)
- Aoife Corcoran
- Tumour Biology Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Ireland
| | | |
Collapse
|
33
|
Tekpli X, Holme JA, Sergent O, Lagadic-Gossmann D. Role for membrane remodeling in cell death: Implication for health and disease. Toxicology 2013; 304:141-57. [DOI: 10.1016/j.tox.2012.12.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/29/2012] [Accepted: 12/20/2012] [Indexed: 12/31/2022]
|
34
|
Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137:133-52. [DOI: 10.1016/j.pharmthera.2012.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
35
|
Hong JY, Boo HJ, Kang JI, Kim MK, Yoo ES, Hyun JW, Koh YS, Kim GY, Maeng YH, Hyun CL, Chang WY, Kim YH, Kim YR, Kang HK. (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-olide, a cembrenolide diterpene from soft coral Lobophytum sp., inhibits growth and induces apoptosis in human colon cancer cells through reactive oxygen species generation. Biol Pharm Bull 2012; 35:1054-63. [PMID: 22791152 DOI: 10.1248/bpb.b11-00024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We observed that (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-olide (LS-1), marine cembrenolide diterpene, inhibited growth and induced apoptosis in colon cancer cells via a reactive oxygen species (ROS) dependent mechanism. Treatment of HT-29 cells with LS-1 resulted in ROS generation, which was accompanied by disruption of mitochondrial membrane potential, cytosolic release of cytochrome c, sub-G1 peak accumulation, activation of Bid, caspase-3, -8, and -9, and cleavage of poly(ADP-ribose) polymerase (PARP) along with the suppressive expression of B cell lymphoma-2 (Bcl-2). All these effects were significantly blocked on pretreatment with the ROS inhibitor N-acetylcysteine (NAC), indicating the involvement of increased ROS in the proapoptotic activity of LS-1. Moreover, we showed that LS-1 induced the phosphorylation of c-Jun N-terminal kinase (JNK) and dephosphorylation of p38, extracellular signal-regulated kinase (ERK), Akt, Src and signal transducer and activator of transcription (STAT)3, which were effectively attenuated by NAC. In addition, the expressions of antioxidant catalase and glutathione peroxidase were abrogated by treatment using LS-1 with or without NAC. These findings reveal the novel anticancer efficacy of LS-1 mediated by the induction of apoptosis via ROS generation in human colon cancer cells.
Collapse
Affiliation(s)
- Ji-Young Hong
- Institute of Medical Sciences, School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li J, Sipple J, Maynard S, Mehta PA, Rose SR, Davies SM, Pang Q. Fanconi anemia links reactive oxygen species to insulin resistance and obesity. Antioxid Redox Signal 2012; 17:1083-98. [PMID: 22482891 PMCID: PMC3423795 DOI: 10.1089/ars.2011.4417] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AIMS Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model. RESULTS Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance. INNOVATION These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting. CONCLUSION ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR.
Collapse
Affiliation(s)
- Jie Li
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Bókkon I, Till A, Grass F, Erdöfi Szabó A. Phantom pain reduction by low-frequency and low-intensity electromagnetic fields. Electromagn Biol Med 2012; 30:115-27. [PMID: 21861690 DOI: 10.3109/15368378.2011.596246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although various treatments have been presented for phantom pain, there is little proof supporting the benefits of pharmacological treatments, surgery or interventional techniques, electroconvulsive therapy, electrical nerve stimulation, far infrared ray therapy, psychological therapies, etc. Here, we report the preliminary results for phantom pain reduction by low-frequency and intensity electromagnetic fields under clinical circumstances. Our method is called as Electromagnetic-Own-Signal-Treatment (EMOST). Fifteen people with phantom limb pain participated. The patients were treated using a pre-programmed, six sessions. Pain intensity was quantified upon admission using a 0-10 verbal numerical rating scale. Most of the patients (n = 10) reported a marked reduction in the intensity of phantom limb pain. Several patients also reported about improvement in their sleep and mood quality, or a reduction in the frequency of phantom pain after the treatments. No improvements in the reduction of phantom limb pain or sleep and mood improvement were reported in the control group (n = 5). Our nonlinear electromagnetic EMOST method may be a possible therapeutic application in the reduction of phantom limb pain. Here, we also suggest that some of the possible effects of the EMOST may be achieved via the redox balance of the body and redox-related neural plasticity.
Collapse
Affiliation(s)
- István Bókkon
- Doctoral School of Pharmaceutical and Pharmacological Sciences, Semmelweis University , Budapest , Hungary.
| | | | | | | |
Collapse
|
38
|
Díaz B, Courtneidge SA. Redox signaling at invasive microdomains in cancer cells. Free Radic Biol Med 2012; 52:247-56. [PMID: 22033009 PMCID: PMC3272498 DOI: 10.1016/j.freeradbiomed.2011.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 02/07/2023]
Abstract
Redox signaling contributes to the regulation of cancer cell proliferation, survival, and invasion and participates in the adaptation of cancer cells to their microenvironment. NADPH oxidases are important mediators of redox signaling in normal and cancer cells. Redox signal specificity in normal cells is in part achieved by targeting enzymes that generate reactive oxygen species to specific subcellular microdomains such as focal adhesions, dorsal ruffles, lipid rafts, or caveolae. In a similar fashion, redox signal specificity during cancer cell invasion can be regulated by targeting reactive oxygen generation to invasive microdomains such as invadopodia. Here we summarize recent advances in the understanding of the redox signaling processes that control the cancer cell proinvasive program by modulating cell adhesion, migration, and proteolysis as well as the interaction of cancer cells with the tumor microenvironment. We focus on redox signaling events mediated by invadopodia NADPH oxidase complexes and their contribution to cancer cell invasion.
Collapse
Affiliation(s)
- Begoña Díaz
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sara A. Courtneidge
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
39
|
Lavi R, Ankri R, Sinyakov M, Eichler M, Friedmann H, Shainberg A, Breitbart H, Lubart R. The Plasma Membrane is Involved in the Visible Light–Tissue Interaction. Photomed Laser Surg 2012; 30:14-9. [DOI: 10.1089/pho.2011.3083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Ronit Lavi
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Rinat Ankri
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
| | - Michael Sinyakov
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maor Eichler
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Harry Friedmann
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Asher Shainberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Haim Breitbart
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Rachel Lubart
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
40
|
Rodrigues MCO, Hernandez-Ontiveros DG, Louis MK, Willing AE, Borlongan CV, Sanberg PR, Voltarelli JC, Garbuzova-Davis S. Neurovascular aspects of amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 102:91-106. [PMID: 22748827 DOI: 10.1016/b978-0-12-386986-9.00004-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with a complicated and poorly understood pathogenesis. Strong evidence indicates impairment of all neurovascular unit components including the blood-brain and blood-spinal cord barriers (BBB/BSCB) in both patients and animal models. The present review provides an updated analysis of the microvascular pathology and impaired BBB/BSCB in ALS. Based on experimental and clinical ALS studies, the roles of cellular components, cell interactions, tight junctions, transport systems, cytokines, matrix metalloproteinases, and free radicals in the BBB/BSCB disruption are discussed. The impact of BBB/BSCB damage in ALS pathogenesis is a novel research topic, and this review will reveal some aspects of microvascular pathology involved in the disease and hopefully engender new therapeutic approaches.
Collapse
Affiliation(s)
- Maria Carolina O Rodrigues
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Barium promotes anchorage-independent growth and invasion of human HaCaT keratinocytes via activation of c-SRC kinase. PLoS One 2011; 6:e25636. [PMID: 22022425 PMCID: PMC3192110 DOI: 10.1371/journal.pone.0025636] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 09/08/2011] [Indexed: 01/13/2023] Open
Abstract
Explosive increases in skin cancers have been reported in more than 36 million patients with arsenicosis caused by drinking arsenic-polluted well water. This study and previous studies showed high levels of barium as well as arsenic in the well water. However, there have been no reports showing a correlation between barium and cancer. In this study, we examined whether barium (BaCl2) may independently have cancer-related effects on human precancerous keratinocytes (HaCaT). Barium (5–50 µM) biologically promoted anchorage-independent growth and invasion of HaCaT cells in vitro. Barium (5 µM) biochemically enhanced activities of c-SRC, FAK, ERK and MT1-MMP molecules, which regulate anchorage-independent growth and/or invasion. A SRC kinase specific inhibitor, protein phosphatase 2 (PP2), blocked barium-mediated promotion of anchorage-independent growth and invasion with decreased c-SRC kinase activity. Barium (2.5–5 µM) also promoted anchorage-independent growth and invasion of fibroblasts (NIH3T3) and immortalized nontumorigenic melanocytes (melan-a), but not transformed cutaneous squamous cell carcinoma (HSC5 and A431) and malignant melanoma (Mel-ret) cells, with activation of c-SRC kinase. Taken together, our biological and biochemical findings newly suggest that the levels of barium shown in drinking well water independently has the cancer-promoting effects on precancerous keratinocytes, fibroblast and melanocytes in vitro.
Collapse
|
42
|
Cattaneo F, Iaccio A, Guerra G, Montagnani S, Ammendola R. NADPH-oxidase-dependent reactive oxygen species mediate EGFR transactivation by FPRL1 in WKYMVm-stimulated human lung cancer cells. Free Radic Biol Med 2011; 51:1126-36. [PMID: 21708247 DOI: 10.1016/j.freeradbiomed.2011.05.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/25/2011] [Accepted: 05/31/2011] [Indexed: 01/23/2023]
Abstract
Cross talk between unrelated cell surface receptors, such as G-protein-coupled receptors (GPCR) and receptor tyrosine kinases (RTK), is a crucial signaling mechanism to expand the cellular communication network. We investigated the ability of the GPCR formyl peptide receptor-like 1 (FPRL1) to transactivate the RTK epidermal growth factor receptor (EGFR) in CaLu-6 cells. We observed that stimulation with WKYMVm, an FPRL1 agonist isolated by screening synthetic peptide libraries, induces EGFR tyrosine phosphorylation, p47(phox) phosphorylation, NADPH-oxidase-dependent superoxide generation, and c-Src kinase activity. As a result of EGFR transactivation, phosphotyrosine residues provide docking sites for recruitment and triggering of the STAT3 pathway. WKYMVm-induced EGFR transactivation is prevented by the FPRL1-selective antagonist WRWWWW, by pertussis toxin (PTX), and by the c-Src inhibitor PP2. The critical role of NADPH-oxidase-dependent superoxide generation in this cross-talk mechanism is corroborated by the finding that apocynin or a siRNA against p22(phox) prevents EGFR transactivation and c-Src kinase activity. In addition, WKYMVm promotes CaLu-6 cell growth, which is prevented by PTX and by WRWWWW. These results highlight the role of FPRL1 as a potential target of new drugs and suggest that targeting both FPRL1 and EGFR may yield superior therapeutic effects compared with targeting either receptor separately.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | | | | | | | | |
Collapse
|
43
|
Nakashima I, Kawamoto Y, Takeda K, Kato M. Control of genetically prescribed protein tyrosine kinase activities by environment-linked redox reactions. Enzyme Res 2011; 2011:896567. [PMID: 21755044 PMCID: PMC3132499 DOI: 10.4061/2011/896567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/18/2011] [Accepted: 04/28/2011] [Indexed: 11/21/2022] Open
Abstract
Recent observations on environment-linked control of genetically prescribed signaling systems for either cell activation or cell death have been reviewed with a focus on the regulation of activities of protein tyrosine kinases (PTKs). The environment-linked redox reactions seem to primarily affect cell surface receptors and cell membrane lipid rafts, and they induce generation of reactive oxygen species (ROS) in cells. ROS thus generated might upregulate the catalytic activities of PTKs through inactivating protein tyrosine phosphatases that dephosphorylate and inactivate autophosphorylated PTKs. Recent evidence has, however, demonstrated that ROS could also directly oxidize SH groups of genetically conserved specific cysteines on PTKs, sometimes producing disulfide-bonded dimers of PTK proteins, either for upregulation or downregulation of their catalytic activities. The basic role of the redox reaction/covalent bond-mediated modification of protein tertiary structure-linked noncovalent bond-oriented signaling systems in living organisms is discussed.
Collapse
Affiliation(s)
- Izumi Nakashima
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi 487-8501, Japan
| | | | | | | |
Collapse
|
44
|
Garbuzova-Davis S, Rodrigues MC, Hernandez-Ontiveros DG, Louis MK, Willing AE, Borlongan CV, Sanberg PR. Amyotrophic lateral sclerosis: A neurovascular disease. Brain Res 2011; 1398:113-25. [DOI: 10.1016/j.brainres.2011.04.049] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 12/11/2022]
|
45
|
Wang L, Weng CY, Wang YJ, Wu MJ. Lipoic acid ameliorates arsenic trioxide-induced HO-1 expression and oxidative stress in THP-1 monocytes and macrophages. Chem Biol Interact 2011; 190:129-38. [PMID: 21315065 DOI: 10.1016/j.cbi.2011.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/28/2011] [Accepted: 02/02/2011] [Indexed: 11/30/2022]
Abstract
Inorganic arsenic is a common environmental contaminant; chronic exposure to arsenic can alter the physiology of various key immune cells, particularly macrophages. The aim of this research is to elucidate the key parameters associated with arsenic-induced toxicity and investigate the potential and mechanism of α-lipoic acid (LA), a potent thioreducant, for reducing the toxicity in human promonocytic THP-1 cells. We found that a non-lethal concentration of arsenic trioxide (1 μM) significantly induced the expression of heme oxygenase-1 (HO-1), a response biomarker to arsenic, without stimulating measurable superoxide production. Co-treatment of cells with the HO-1 competitive inhibitor zinc protoporphyrin (Znpp) potentiated arsenic-induced cytotoxicity, indicating that HO-1 confers a cytoprotective effect against arsenic toxicity. In addition, low concentrations of arsenic trioxide (1 and 2.5 μM) markedly inhibited monocyte-to-macrophage differentiation and expression of macrophage markers. Treatment of cells with LA attenuated arsenic trioxide-induced cytotoxicity and HO-1 over-expression and restored the redox state. In addition, LA neutralized arsenic trioxide-inhibition of monocyte maturation into macrophages and reversed the expression and activity of scavenger receptors. In conclusion, the cytotoxicity of arsenic trioxide is associated with an imbalance of the cellular redox state, and LA can protect cells from arsenic-induced malfunctions either through its reducing activity, direct interacting with arsenic or stimulating other unidentified signaling pathways.
Collapse
Affiliation(s)
- Lisu Wang
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
46
|
Abstract
Reactive oxygen species (ROS) and cellular oxidative stress are involved in many physiological and pathophysiological processes, including cellular and organismal aging, migration, proliferation, senescence or death of normal and cancer cells, and stress resistance of stem cells. The forkhead homeobox type O (FOXO) transcription factors FOXO1, FOXO3a, and FOXO4 are critical mediators of the cellular responses to oxidative stress and have been implicated in many of the above ROS-regulated processes. In cancer cells they converge oxidative stress signaling to cell cycle arrest and cell death or promote a motile phenotype. Dependent on their posttranslational modifications FOXOs can also actively regulate the detoxification of cells from ROS and promote stress resistance. Thus, FOXO transcription factors are of vital importance in processes regulating tumor survival or progression, stem cell maintenance, age-related pathological processes, and lifespan extension.
Collapse
Affiliation(s)
- Peter Storz
- Department for Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, USA.
| |
Collapse
|
47
|
Abstract
NF-κB proteins are a family of transcription factors that are of central importance in inflammation and immunity. NF-κB also plays important roles in other processes, including development, cell growth and survival, and proliferation, and is involved in many pathological conditions. Reactive Oxygen Species (ROS) are created by a variety of cellular processes as part of cellular signaling events. While certain NF-κB-regulated genes play a major role in regulating the amount of ROS in the cell, ROS have various inhibitory or stimulatory roles in NF-κB signaling. Here we review the regulation of ROS levels by NF-κB targets and various ways in which ROS have been proposed to impact NF-κB signaling pathways.
Collapse
Affiliation(s)
- Michael J Morgan
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, RM1130, Bethesda, MD 20892, USA
| | | |
Collapse
|
48
|
Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacol Ther 2010; 128:336-74. [DOI: 10.1016/j.pharmthera.2010.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
|
49
|
Gianni D, Taulet N, DerMardirossian C, Bokoch GM. c-Src-mediated phosphorylation of NoxA1 and Tks4 induces the reactive oxygen species (ROS)-dependent formation of functional invadopodia in human colon cancer cells. Mol Biol Cell 2010; 21:4287-98. [PMID: 20943948 PMCID: PMC2993755 DOI: 10.1091/mbc.e10-08-0685] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) generated by the NADPH oxidase system have been shown to be necessary for the invadopodia formation and function. We show here that the abolishment of Src-mediated phosphorylation of NoxA1 and Tks4 blocks their binding, decreases Nox1-dependent ROS generation, and inhibits the invadopodia formation and ECM degradation. The NADPH oxidase family, consisting of Nox1-5 and Duox1-2, catalyzes the regulated formation of reactive oxygen species (ROS). Highly expressed in the colon, Nox1 needs the organizer subunit NoxO1 and the activator subunit NoxA1 for its activity. The tyrosine kinase c-Src is necessary for the formation of invadopodia, phosphotyrosine-rich structures which degrade the extracellular matrix (ECM). Many Src substrates are invadopodia components, including the novel Nox1 organizer Tks4 and Tks5 proteins. Nox1-dependent ROS generation is necessary for the maintenance of functional invadopodia in human colon cancer cells. However, the signals and the molecular machinery involved in the redox-dependent regulation of invadopodia formation remain unclear. Here, we show that the interaction of NoxA1 and Tks proteins is dependent on Src activity. Interestingly, the abolishment of Src-mediated phosphorylation of Tyr110 on NoxA1 and of Tyr508 on Tks4 blocks their binding and decreases Nox1-dependent ROS generation. The contemporary presence of Tks4 and NoxA1 unphosphorylable mutants blocks SrcYF-induced invadopodia formation and ECM degradation, while the overexpression of Tks4 and NoxA1 phosphomimetic mutants rescues this phenotype. Taken together, these results elucidate the role of c-Src activity on the formation of invadopodia and may provide insight into the mechanisms of tumor formation in colon cancers.
Collapse
Affiliation(s)
- Davide Gianni
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
50
|
Morgan MJ, Liu ZG. Reactive oxygen species in TNFalpha-induced signaling and cell death. Mol Cells 2010; 30:1-12. [PMID: 20652490 PMCID: PMC6608586 DOI: 10.1007/s10059-010-0105-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 06/17/2010] [Indexed: 12/29/2022] Open
Abstract
TNFalpha is a pleotropic cytokine that initiates many downstream signaling pathways, including NF-kappaB activation, MAP kinase activation and the induction of both apoptosis and necrosis. TNFalpha has shown to lead to reactive oxygen species generation through activation of NADPH oxidase, through mitochondrial pathways, or other enzymes. As discussed, ROS play a role in potentiation or inhibition of many of these signaling pathways. We particularly discuss the role of sustained JNK activation potentiated by ROS, which generally is supportive of apoptosis and "necrotic cell death" through various mechanisms, while ROS could have inhibitory or stimulatory roles in NF-kappaB signaling.
Collapse
Affiliation(s)
- Michael J. Morgan
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Zheng-gang Liu
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|