1
|
Voinov MA, Nunn N, Rana R, Davidsson A, Smirnov AI, Smirnova TI. Measuring local pH at interfaces from molecular tumbling: A concept for designing EPR-active pH-sensitive labels and probes. Org Biomol Chem 2024; 22:3652-3667. [PMID: 38647161 DOI: 10.1039/d4ob00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Molecular probes and indicators are broadly employed for pH measurements in bulk media and at interfaces. The underlying physical principle of pH measurements of most of these probes is based on a change in the electronic structure that, for example, results in a shift of the emission peak of the fluorescence probes, changes in NMR chemical shifts due to the affected electronic shielding, or magnetic parameters of pH-sensitive nitroxides as measured by EPR. Here we explore another concept for measuring local protonation state of molecular tags based on changes in rotational dynamics of electron spin-bearing moieties that are readily detected by conventional continuous wave X-band EPR. Such changes are especially pronounced at biological interfaces, such as lipid bilayer membranes, due to the probe interactions with adjacent charges and polarizable dipoles. The concept was demonstrated by synthesizing a series of pH-sensitive nitroxides and spin-labelled phospholipids. EPR spectra of these newly synthesized nitroxides exhibit relatively small - about 0.5 G - changes in isotropic nitrogen hyperfine coupling constant upon reversible protonation. However, spin-labelled phospholipids incorporated into lipid bilayers demonstrated almost 6-fold change in rotational correlation time upon protonation, readily allowing for pKa determination from large changes in EPR spectra. The demonstrated concept of EPR-based pH measurements leads to a broader range of potential nitroxide structures that can serve as molecular pH sensors at the desired pH range and, thus, facilitates further development of spin-labelling EPR methods to study electrostatic phenomena at chemical and biological interfaces.
Collapse
Affiliation(s)
- Maxim A Voinov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| | - Nicholas Nunn
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| | - Roshan Rana
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| | - Atli Davidsson
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| | - Tatyana I Smirnova
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Liu W, Tao O, Chen L, Ling Y, Zeng M, Jin H, Jiang D. Synthesis and characterization of a Cu(ii) coordination-containing TAM radical as a nitroxyl probe. RSC Adv 2022; 12:15980-15985. [PMID: 35733682 PMCID: PMC9138401 DOI: 10.1039/d1ra07511j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Nitroxyl (HNO) has been identified as an important signaling molecule in biological systems, and it plays critical roles in many physiological processes. However, its detection remains challenging because of the limited sensitivity and/or specificity of existing detection methods. Low-frequency electron paramagnetic resonance (EPR) spectroscopy and imaging, coupled with the use of exogenous paramagnetic probes, have been indispensable techniques for the in vivo measurement of various physiological parameters owing to their specificity, noninvasiveness and good depth of magnetic field penetration in animal tissues. However, the in vivo detection of HNO levels by EPR spectroscopy and imaging is limited due to the need for improved probes. We report the first "turn on-response" EPR probe for HNO utilizing a Cu(ii) coordination-containing TAM radical (denoted as CuII[TD1]). Upon reaction with HNO, CuII[TD1] shows a 16.1-fold turn-on in EPR signal with a low detection limit of 1.95 μM. Moreover, low-temperature EPR spectroscopic and ESI-MS studies showed that the sensing mechanism relies on the reduction of Cu(ii) by HNO. Lastly, CuII[TD1] is selective for HNO over other reactive nitrogen and oxygen species except for some reductants (Cys and Asc). This new Cu(ii) coordination-containing TAM radical shows great potential for in vivo EPR HNO applications in the absence of reducing agents and provides insights into developing improved and targeted EPR HNO probes for biomedical applications.
Collapse
Affiliation(s)
- Wenbo Liu
- School of Pharmacy and Life Sciences, Jiujiang University Jiujiang 332000 China
| | - Ouyang Tao
- School of Pharmacy and Life Sciences, Jiujiang University Jiujiang 332000 China
| | - Li Chen
- School of Public Health, TianJin Medical University China
| | - Yun Ling
- School of Pharmacy and Life Sciences, Jiujiang University Jiujiang 332000 China
| | - Ming Zeng
- School of Pharmacy and Life Sciences, Jiujiang University Jiujiang 332000 China
| | - Hongguang Jin
- School of Pharmacy and Life Sciences, Jiujiang University Jiujiang 332000 China
| | - Dengzhao Jiang
- School of Pharmacy and Life Sciences, Jiujiang University Jiujiang 332000 China
| |
Collapse
|
3
|
Koyasu N, Hyodo F, Iwasaki R, Eto H, Elhelaly AE, Tomita H, Shoda S, Takasu M, Mori T, Murata M, Hara A, Noda Y, Kato H, Matsuo M. Spatiotemporal imaging of redox status using in vivo dynamic nuclear polarization magnetic resonance imaging system for early monitoring of response to radiation treatment of tumor. Free Radic Biol Med 2022; 179:170-180. [PMID: 34968704 DOI: 10.1016/j.freeradbiomed.2021.12.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
In general, the effectiveness of radiation treatment is evaluated through the observation of morphological changes with computed tomography (CT) or magnetic resonance imaging (MRI) images after treatment. However, the evaluation of the treatment effects can be very time consuming, and thus can delay the verification of patient cases where treatment has not been fully effective. It is known that the treatment efficacy depends on redox modulation in tumor tissues, which is an indirect effect of oxidizing redox molecules such as hydroxyl radicals and of reactive oxygen species generated by radiation treatment. In vivo dynamic nuclear polarization-MRI (DNP-MRI) using carbamoyl-PROXYL (CmP) as a redox sensitive DNP probe enables the accurate monitoring of the anatomical distribution of free radicals based on interactions of electrons and nuclear spin, known as Overhauser effect. However, spatiotemporal response of the redox status in tumor tissues post-irradiation remains unknown. In this study, we demonstrate the usefulness of spatiotemporal redox status as an early imaging biomarker of tumor response after irradiation using in vivo DNP-MRI. Our results highlight that in vivo DNP-MRI/CmP allowed us to visualize the tumor redox status responses significantly faster and earlier compared to the verification of morphological changes observed with 1.5 T MRI and cancer metabolism (Warburg effect) obtained by hyperpolarized 13C pyruvate MRS. Our findings suggest that the early assessment of redox status alterations with in vivo DNP-MRI/CmP probe may provide very efficient information regarding the effectiveness of the subsequent radiation treatment.
Collapse
Affiliation(s)
| | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan.
| | - Ryota Iwasaki
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hinako Eto
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Abdelazim Elsayed Elhelaly
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, Gifu, Japan; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | | | | | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Takashi Mori
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Masaharu Murata
- Center for Advanced Medical Open Innovation, Kyushu University, Fukuoka, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University, Gifu, Japan
| | | | - Hiroki Kato
- Department of Radiology, Gifu University, Gifu, Japan
| | | |
Collapse
|
4
|
Direct quantification of cysteine and glutathione by 1H NMR based on β-cyclodextrin modified silver nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Huffman JL, Poncelet M, Moore W, Eaton SS, Eaton GR, Driesschaert B. Perchlorinated Triarylmethyl Radical 99% Enriched 13C at the Central Carbon as EPR Spin Probe Highly Sensitive to Molecular Tumbling. J Phys Chem B 2021; 125:7380-7387. [PMID: 34213354 PMCID: PMC8378891 DOI: 10.1021/acs.jpcb.1c03778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Soluble stable radicals are used as spin probes and spin labels for in vitro and in vivo electron paramagnetic resonance (EPR) spectroscopy and imaging applications. We report the synthesis and characterization of a perchlorinated triarylmethyl radical enriched 99% at the central carbon, 13C1-PTMTC. The anisotropy of the hyperfine splitting with the 13C1 (Ax = 26, Ay = 25, Az = 199.5 MHz) and the g (gx = 2.0015, gy = 2.0015, gz = 2.0040) are responsible for a strong effect of the radical tumbling rate on the EPR spectrum. The rotational correlation time can be determined by spectral simulation or via the line width or the apparent Az after calibration, so the spin probe 13C1-PTMTC can be used to measure media microviscosity with high sensitivity.
Collapse
Affiliation(s)
- Justin L Huffman
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, West Virginia 26506, United States.,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, West Virginia 26506, United States.,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Whylder Moore
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, School of Pharmacy, Morgantown, West Virginia 26506, United States.,In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
6
|
Reichenwallner J, Hauenschild T, Schmelzer CEH, Hülsmann M, Godt A, Hinderberger D. Fatty Acid Triangulation in Albumins Using a Landmark Spin Label. Isr J Chem 2019. [DOI: 10.1002/ijch.201900073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jörg Reichenwallner
- Institute of ChemistryMartin Luther University Halle-Wittenberg Von-Danckelmann-Platz 4 D-06120 Halle (Saale) Germany
| | - Till Hauenschild
- Institute of ChemistryMartin Luther University Halle-Wittenberg Von-Danckelmann-Platz 4 D-06120 Halle (Saale) Germany
| | - Christian E. H. Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS Walter-Hülse-Straße 1 D-06120 Halle (Saale) Germany
- Institute of PharmacyMartin Luther University Halle-Wittenberg Wolfgang-Langenbeck-Straße 4 D-06120 Halle (Saale) Germany
| | - Miriam Hülsmann
- Faculty of Chemistry and Center for Molecular Materials (CM2)Bielefeld University Universitätsstraße 25 D-33615 Bielefeld Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)Bielefeld University Universitätsstraße 25 D-33615 Bielefeld Germany
| | - Dariush Hinderberger
- Institute of ChemistryMartin Luther University Halle-Wittenberg Von-Danckelmann-Platz 4 D-06120 Halle (Saale) Germany
| |
Collapse
|
7
|
Komarov DA, Ichikawa Y, Yamamoto K, Stewart NJ, Matsumoto S, Yasui H, Kirilyuk IA, Khramtsov VV, Inanami O, Hirata H. In Vivo Extracellular pH Mapping of Tumors Using Electron Paramagnetic Resonance. Anal Chem 2018; 90:13938-13945. [PMID: 30372035 DOI: 10.1021/acs.analchem.8b03328] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An electron paramagnetic resonance (EPR)-based method for noninvasive three-dimensional extracellular pH mapping was developed using a pH-sensitive nitroxyl radical as an exogenous paramagnetic probe. Fast projection scanning with a constant magnetic field sweep enabled the acquisition of four-dimensional (3D spatial +1D spectral) EPR images within 7.5 min. Three-dimensional maps of pH were reconstructed by processing the pH-dependent spectral information on the images. To demonstrate the proposed method of pH mapping, the progress of extracellular acidosis in tumor-bearing mouse legs was studied. Furthermore, extracellular pH mapping was used to visualize the spatial distribution of acidification in different tumor xenograft mouse models of human-derived pancreatic ductal adenocarcinoma cells. The proposed EPR-based pH mapping method enabled quantitative visualization of regional changes in extracellular pH associated with altered tumor metabolism.
Collapse
Affiliation(s)
- Denis A Komarov
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Yuki Ichikawa
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Kumiko Yamamoto
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine , Hokkaido University , North 18, West 9 , Kita-ku, Sapporo , 060-0818 , Japan
| | - Neil J Stewart
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Shingo Matsumoto
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science , Hokkaido University , North 15, West 7 , Kita-ku,Sapporo , 060-0815 , Japan
| | - Igor A Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry , 9, Ac. Lavrentieva Ave. , Novosibirsk , 630090 , Russia
| | - Valery V Khramtsov
- Department of Biochemistry and In Vivo Multifunctional Magnetic Resonance Center , West Virginia University, Robert C. Byrd Health Sciences Center , 1 Medical Center Drive , Morgantown , West Virginia 26506 , United States
| | - Osamu Inanami
- Laboratory of Radiation Biology, Graduate School of Veterinary Medicine , Hokkaido University , North 18, West 9 , Kita-ku, Sapporo , 060-0818 , Japan
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology , Hokkaido University , North 14, West 9 , Kita-ku, Sapporo , 060-0814 , Japan
| |
Collapse
|
8
|
Stoyanovsky AD, Stoyanovsky DA. 1-Oxo-2,2,6,6-tetramethylpiperidinium bromide converts α-H N,N-dialkylhydroxylamines to nitrones via a two-electron oxidation mechanism. Sci Rep 2018; 8:15323. [PMID: 30333514 PMCID: PMC6193029 DOI: 10.1038/s41598-018-33639-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/02/2018] [Indexed: 01/13/2023] Open
Abstract
Herein we provide experimental proof that 1-oxo-2,2,6,6-tetramethylpiperidinium bromide converts α-H N,N-dialkylhydroxylamines to nitrones via a two-electron oxidation mechanism. The reactions reported are rapid, proceed under mild conditions, and afford nitrones in excellent yields.
Collapse
Affiliation(s)
| | - Detcho A Stoyanovsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
9
|
Zgadzai O, Twig Y, Wolfson H, Ahmad R, Kuppusamy P, Blank A. Electron-Spin-Resonance Dipstick. Anal Chem 2018; 90:7830-7836. [PMID: 29856211 DOI: 10.1021/acs.analchem.8b00917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron spin resonance (ESR) is a powerful analytical technique used for the detection, quantification, and characterization of paramagnetic species ranging from stable organic free radicals and defects in crystals to gaseous oxygen. Traditionally, ESR requires the use of complex instrumentation, including a large magnet and a microwave resonator in which the sample is placed. Here, we present an alternative to the existing approach by inverting the typical measurement topology, namely placing the ESR magnet and resonator inside the sample rather than the other way around. This new development relies on a novel self-contained ESR sensor with a diameter of just 2 mm and length of 3.6 mm, which includes both a small permanent magnet assembly and a tiny (∼1 mm in size) resonator for spin excitation and detection at a frequency of ∼2.6 GHz. The spin sensitivity of the sensor has been measured to be ∼1011 spins/√Hz, and its concentration sensitivity is ∼0.1 mM, using reference samples with a measured volume of just ∼10 nL. Our new approach can be applied for monitoring the partial pressure of oxygen in vitro and in vivo through its paramagnetic interaction with another stable radical, as well as for simple online quantitative inspection of free radicals generated in reaction vessels and electrochemical cells via chemical processes.
Collapse
Affiliation(s)
- Oleg Zgadzai
- Schulich Faculty of Chemistry , Technion - Israel Institute of Technology , Haifa 3200008 , Israel
| | - Ygal Twig
- Schulich Faculty of Chemistry , Technion - Israel Institute of Technology , Haifa 3200008 , Israel
| | - Helen Wolfson
- Schulich Faculty of Chemistry , Technion - Israel Institute of Technology , Haifa 3200008 , Israel
| | - Rizwan Ahmad
- Department of Biomedical Engineering , Ohio State University , Columbus , Ohio 43210 , United States
| | - Periannan Kuppusamy
- Departments of Radiology and Medicine, Geisel School of Medicine , Dartmouth College , Lebanon , New Hampshire 03756 , United States
| | - Aharon Blank
- Schulich Faculty of Chemistry , Technion - Israel Institute of Technology , Haifa 3200008 , Israel
| |
Collapse
|
10
|
Eaton SS, Woodcock LB, Eaton GR. Continuous wave electron paramagnetic resonance of nitroxide biradicals in fluid solution. CONCEPTS IN MAGNETIC RESONANCE. PART A, BRIDGING EDUCATION AND RESEARCH 2018; 47A:e21426. [PMID: 31548835 PMCID: PMC6756774 DOI: 10.1002/cmr.a.21426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nitroxide biradicals have been prepared with electron-electron spin-spin exchange interaction, J, ranging from weak to very strong. EPR spectra of these biradicals in fluid solution depend on the ratio of J to the nitrogen hyperfine coupling, AN, and the rates of interconversion between conformations with different values of J. For relatively rigid biradicals EPR spectra can be simulated as the superposition of AB splitting patterns arising from different combinations of nitrogen nuclear spin states. For more flexible biradicals spectra can be simulated with a Liouville representation of the dynamics that interconvert conformations with different values of J on the EPR timescale. Analysis of spectra, factors that impact J, and examples of applications to chemical and biophysical problems are discussed.
Collapse
Affiliation(s)
- Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| | - Lukas B Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver CO 80210 USA
| |
Collapse
|
11
|
Biller JR, Barnes R, Han S. Perspective of Overhauser dynamic nuclear polarization for the study of soft materials. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Tikhonov AN. Photosynthetic Electron and Proton Transport in Chloroplasts: EPR Study of ΔpH Generation, an Overview. Cell Biochem Biophys 2017; 75:421-432. [PMID: 28488221 DOI: 10.1007/s12013-017-0797-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/12/2017] [Indexed: 11/30/2022]
Abstract
This is a brief overview focused on the electron paramagnetic resonance applications to the study of the proton transport processes in chloroplasts. After brief description of structural and functional organization of the chloroplast electron transport chain, our attention is focused on the measurements of trans-thylakoid pH difference (ΔpH) with pH-sensitive spin-probes. The use of spin-probes is based either (i) on measuring the ΔpH-partitioning of spin-probes between the thylakoid lumen and external volume, or (ii) on monitoring changes in the electron paramagnetic resonance spectra of pH-sensitive nitroxide radicals located in the lumen. Along with the use of spin-probes, the intra-thylakoid pH (pHin) can be determined by the "kinetic" method, which relies on the fact that the rate-limiting step in the chain of photosynthetic electron transfer (plastoquinol oxidation by the cytochrome b 6 f complex) is controlled by pHin. The results of ΔpH determinations in chloroplasts based on the use of pH-sensitive spin-probes and measurements of post-illumination reduction of photoreaction centers of Photosystem I are discussed in the context of the problem of energy coupling in laterally heterogeneous lamellar system of chloroplasts.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M.V. Lomonosov, Moscow State University, Moscow, Russia.
| |
Collapse
|
13
|
Denysenkov V, Terekhov M, Maeder R, Fischer S, Zangos S, Vogl T, Prisner TF. Continuous-flow DNP polarizer for MRI applications at 1.5 T. Sci Rep 2017; 7:44010. [PMID: 28290535 PMCID: PMC5349512 DOI: 10.1038/srep44010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/02/2017] [Indexed: 01/28/2023] Open
Abstract
Here we describe a new hyperpolarization approach for magnetic resonance imaging applications at 1.5 T. Proton signal enhancements of more than 20 were achieved with a newly designed multimode microwave resonator situated inside the bore of the imager and used for Overhauser dynamic nuclear polarization of the water proton signal. Different from other approaches in our setup the hyperpolarization is achieved continuously by liquid water flowing through the polarizer under continuous microwave excitation. With an available flow rate of up to 1.5 ml/min, which should be high enough for DNP MR angiography applications in small animals like mice and rats. The hyperpolarized liquid cooled to physiological temperature can be routed by a mechanical switch to a quartz capillary for injection into the blood vessels of the target object. This new approach allows hyperpolarization of protons without the need of an additional magnet and avoids the losses arising from the transfer of the hyperpolarized solution between magnets. The signal-to-noise improvement of this method is demonstrated on two- and three-dimensional phantoms of blood vessels.
Collapse
Affiliation(s)
- V Denysenkov
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - M Terekhov
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - R Maeder
- Institute of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - S Fischer
- Institute of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - S Zangos
- Institute of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - T Vogl
- Institute of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - T F Prisner
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Ahmad R, Samouilov A, Zweier JL. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 273:105-112. [PMID: 27821290 PMCID: PMC5130408 DOI: 10.1016/j.jmr.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.
Collapse
|
15
|
Marchand V, Levêque P, Driesschaert B, Marchand-Brynaert J, Gallez B. In vivo EPR extracellular pH-metry in tumors using a triphosphonated trityl radical. Magn Reson Med 2016; 77:2438-2443. [PMID: 27364733 DOI: 10.1002/mrm.26316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE The ability to assess the extracellular pH (pHe) is an important issue in oncology, because extracellular acidification is associated with tumor aggressiveness and resistance to cytotoxic therapies. In this study, a stable triphosphonated triarylmethyl (TPTAM) radical was qualified as a pHe electron paramagnetic resonance (EPR) molecular reporter. METHODS Calibration of hyperfine splitting as a function of pH was performed using a 1.2-GHz EPR spectrometer. Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was used as an extracellular paramagnetic broadening agent to assess the localization of TPTAM when incubated with cells. In vivo EPR pH-metry was performed in MDA, SiHa, and TLT tumor models and in muscle. Bicarbonate therapy was used to modulate the tumor pHe. EPR measurements were compared with microelectrode readouts. RESULTS The hyperfine splitting of TPTAM was strongly pH-dependent around the pKa of the probe (pKa = 6.99). Experiments with Gd-DTPA demonstrated that TPTAM remained in the extracellular compartment. pHe was found to be more acidic in the MDA, SiHa, and TLT tumor models compared with muscle. Treatment of animals by bicarbonate induced an increase in pHe in tumors: similar variations in pHe were found when using in vivo EPR or invasive microelectrodes measurements. CONCLUSION This study demonstrates the potential usefulness of TPTAM for monitoring pHe in tumors. Magn Reson Med 77:2438-2443, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Valérie Marchand
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain, Brussels, Belgium
| | - Philippe Levêque
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain, Brussels, Belgium
| | - Benoit Driesschaert
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain, Brussels, Belgium.,Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity, Université Catholique de Louvain, Brussels, Belgium
| | - Jacqueline Marchand-Brynaert
- Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
16
|
A Abdel-Rahman E, Mahmoud AM, Khalifa AM, Ali SS. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing. J Physiol 2016; 594:4591-613. [PMID: 26801204 DOI: 10.1113/jp271471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches.
Collapse
Affiliation(s)
- Engy A Abdel-Rahman
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Ali M Mahmoud
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Abdulrahman M Khalifa
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sameh S Ali
- Center for Aging and Associated Diseases, Helmy Institute of Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
17
|
Danhier P, Gallez B. Electron paramagnetic resonance: a powerful tool to support magnetic resonance imaging research. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:266-81. [PMID: 25362845 DOI: 10.1002/cmmi.1630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022]
Abstract
The purpose of this paper is to describe some of the areas where electron paramagnetic resonance (EPR) has provided unique information to MRI developments. The field of application mainly encompasses the EPR characterization of MRI paramagnetic contrast agents (gadolinium and manganese chelates, nitroxides) and superparamagnetic agents (iron oxide particles). The combined use of MRI and EPR has also been used to qualify or disqualify sources of contrast in MRI. Illustrative examples are presented with attempts to qualify oxygen sensitive contrast (i.e. T1 - and T2 *-based methods), redox status or melanin content in tissues. Other areas are likely to benefit from the combined EPR/MRI approach, namely cell tracking studies. Finally, the combination of EPR and MRI studies on the same models provides invaluable data regarding tissue oxygenation, hemodynamics and energetics. Our description will be illustrative rather than exhaustive to give to the readers a flavour of 'what EPR can do for MRI'.
Collapse
Affiliation(s)
- Pierre Danhier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
18
|
Takahashi W, Bobko AA, Dhimitruka I, Hirata H, Zweier JL, Samouilov A, Khramtsov VV. Proton-Electron Double-Resonance Imaging of pH using phosphonated trityl probe. APPLIED MAGNETIC RESONANCE 2014; 45:817-826. [PMID: 25530673 PMCID: PMC4268155 DOI: 10.1007/s00723-014-0570-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Variable Radio Frequency Proton-Electron Double-Resonance Imaging (VRF PEDRI) enables extracting a functional map from a limited number of images acquired at pre-selected EPR frequencies using specifically designed paramagnetic probes with high quality spatial resolution and short acquisition times. In this work we explored potential of VRF PEDRI for pH mapping of aqueous samples using recently synthesized pH-sensitive phosphonated trityl radical, pTR. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of pTR probe allows for a pH map extraction. Long relaxation times of pTR allow for pH mapping at EPR irradiation power as low as 1.25 W during 130 s acquisition time with spatial resolution of about 1 mm. This is particularly important for in vivo applications enabling one to avoid sample overheating by reducing RF power deposition.
Collapse
Affiliation(s)
- Wataru Takahashi
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine and Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA ; Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Andrey A Bobko
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine and Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ilirian Dhimitruka
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine and Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Jay L Zweier
- Division of Cardiology and Dorothy M. Davis Heart & Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Alexandre Samouilov
- Division of Cardiology and Dorothy M. Davis Heart & Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Valery V Khramtsov
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine and Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Samouilov A, Efimova OV, Bobko AA, Sun Z, Petryakov S, Eubank TD, Trofimov DG, Kirilyuk IA, Grigor'ev IA, Takahashi W, Zweier JL, Khramtsov VV. In vivo proton-electron double-resonance imaging of extracellular tumor pH using an advanced nitroxide probe. Anal Chem 2014; 86:1045-52. [PMID: 24372284 DOI: 10.1021/ac402230h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variable radio frequency proton-electron double-resonance imaging (VRF PEDRI) approach for pH mapping of aqueous samples has been recently developed (Efimova et al. J. Magn. Reson. 2011, 209, 227-232). A pH map is extracted from two PEDRI acquisitions performed at electron paramagnetic resonance (EPR) frequencies of protonated and unprotonated forms of a pH-sensitive probe. To translate VRF PEDRI to an in vivo setting, an advanced pH probe was synthesized. Probe deuteration resulted in a narrow spectral line of 1.2 G compared to a nondeuterated analogue line width of 2.1 G allowing for an increase of Overhauser enhancements and reduction in rf power deposition. Binding of the probe to the cell-impermeable tripeptide, glutathione (GSH), allows for targeting to extracellular tissue space for monitoring extracellular tumor acidosis, a prognostic factor in tumor pathophysiology. The probe demonstrated pH sensitivity in the 5.8-7.8 range, optimum for measurement of acidic extracellular tumor pH (pH(e)). In vivo VRF PEDRI was performed on Met-1 tumor-bearing mice. Compared to normal mammary glands with a neutral mean pH(e) (7.1 ± 0.1), we observed broader pH distribution with acidic mean pH(e) (6.8 ± 0.1) in tumor tissue. In summary, VRF PEDRI in combination with a newly developed pH probe provides an analytical approach for spatially resolved noninvasive pHe monitoring, in vivo.
Collapse
Affiliation(s)
- Alexandre Samouilov
- The Dorothy M. Davis Heart and Lung Research Institute: ‡Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, and §Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University , Columbus, Ohio 43210, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Warshaviak DT, Khramtzov VV, Cascio D, Altenbach C, Hubbell WL. Structure and dynamics of an imidazoline nitroxide side chain with strongly hindered internal motion in proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 232:53-61. [PMID: 23694751 PMCID: PMC3758229 DOI: 10.1016/j.jmr.2013.04.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 05/03/2023]
Abstract
A disulfide-linked imidazoline nitroxide side chain (V1) has a similar and highly constrained internal motion at diverse topological sites in a protein, unlike that for the disulfide-linked pyrroline nitroxide side chain (R1) widely used in site directed spin labeling EPR. Crystal structures of V1 at two positions in a helix of T4 Lysozyme and quantum mechanical calculations suggest the source of the constraints as intra-side chain interactions of the disulfide sulfur atoms with both the protein backbone and the 3-nitrogen in the imidazoline ring. These interactions apparently limit the conformation of the side chain to one of only three possible rotamers, two of which are observed in the crystal structure. An inter-spin distance measurement in frozen solution using double electron-electron resonance (DEER) gives a value essentially identical to that determined from the crystal structure of the protein containing two copies of V1, indicating that lattice forces do not dictate the rotamers observed. Collectively, the results suggest the possibility of predetermining a unique rotamer of V1 in helical structures. In general, the reduced rotameric space of V1 compared to R1 should simplify interpretation of inter-spin distance information in terms of protein structure, while the highly constrained internal motion is expected to extend the dynamic range for characterizing large amplitude nanosecond backbone fluctuations.
Collapse
Affiliation(s)
- Dora Toledo Warshaviak
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Valery V. Khramtzov
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, The Department of Internal Medicine, The Ohio State University, 473 West 12th Ave., room 201, Columbus, Ohio 43210
| | - Duilio Cascio
- UCLA-DOE Institute of Genomics and Proteomics, UCLA, Los Angeles, California 90095
| | - Christian Altenbach
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
- Corresponding author , Jules Stein Eye Institute, UCLA, 100 Stein Plaza, Los Angeles, CA 90095, 310-206-8830
| |
Collapse
|
21
|
Morozov DA, Kirilyuk IA, Komarov DA, Goti A, Bagryanskaya IY, Kuratieva NV, Grigor’ev IA. Synthesis of a Chiral C2-Symmetric Sterically Hindered Pyrrolidine Nitroxide Radical via Combined Iterative Nucleophilic Additions and Intramolecular 1,3-Dipolar Cycloadditions to Cyclic Nitrones. J Org Chem 2012; 77:10688-98. [DOI: 10.1021/jo3019158] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Denis A. Morozov
- Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk
630090, Russia
| | - Igor A. Kirilyuk
- Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russia
| | - Denis A. Komarov
- Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russia
| | - Andrea Goti
- Dipartimento
di Chimica “Ugo Schiff”, Universitá degli Studi di Firenze, Sesto Fiorentino, Firenze I-50019,
Italy
| | | | | | - Igor A. Grigor’ev
- Novosibirsk Institute of Organic Chemistry, Novosibirsk 630090, Russia
| |
Collapse
|
22
|
Kirilyuk IA, Polienko YF, Krumkacheva OA, Strizhakov RK, Gatilov YV, Grigor’ev IA, Bagryanskaya EG. Synthesis of 2,5-Bis(spirocyclohexane)-Substituted Nitroxides of Pyrroline and Pyrrolidine Series, Including Thiol-Specific Spin Label: An Analogue of MTSSL with Long Relaxation Time. J Org Chem 2012; 77:8016-27. [DOI: 10.1021/jo301235j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Igor A. Kirilyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Sb RAS, Academician
Lavrentjev Ave. 9, Novosibirsk, 630090, Russia
| | - Yuliya F. Polienko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Sb RAS, Academician
Lavrentjev Ave. 9, Novosibirsk, 630090, Russia
| | - Olesya A. Krumkacheva
- International Tomography Center SB RAS, Institutskaya str. 3a, 630090, Novosibirsk,
Russia
| | - Rodion K. Strizhakov
- International Tomography Center SB RAS, Institutskaya str. 3a, 630090, Novosibirsk,
Russia
| | - Yurii V. Gatilov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Sb RAS, Academician
Lavrentjev Ave. 9, Novosibirsk, 630090, Russia
| | - Igor A. Grigor’ev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Sb RAS, Academician
Lavrentjev Ave. 9, Novosibirsk, 630090, Russia
| | - Elena G. Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry Sb RAS, Academician
Lavrentjev Ave. 9, Novosibirsk, 630090, Russia
- International Tomography Center SB RAS, Institutskaya str. 3a, 630090, Novosibirsk,
Russia
| |
Collapse
|
23
|
Liu Y, Song Y, Rockenbauer A, Sun J, Hemann C, Villamena FA, Zweier JL. Synthesis of trityl radical-conjugated disulfide biradicals for measurement of thiol concentration. J Org Chem 2011; 76:3853-60. [PMID: 21488696 DOI: 10.1021/jo200265u] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Measurement of thiol concentrations is of great importance for characterizing their critical role in normal metabolism and disease. Low-frequency electron paramagnetic resonance (EPR) spectroscopy and imaging, coupled with the use of exogenous paramagnetic probes, have been indispensable techniques for the in vivo measurement of various physiological parameters owing to the specificity, noninvasiveness and good depth of magnetic field penetration in animal tissues. However, in vivo detection of thiol levels by EPR spectroscopy and imaging is limited due to the need for improved probes. We report the first synthesis of trityl radical-conjugated disulfide biradicals (TSSN and TSST) as paramagnetic thiol probes. The use of trityl radicals in the construction of these biradicals greatly facilitates thiol measurement by EPR spectroscopy since trityls have extraordinary stability in living tissues with a single narrow EPR line that enables high sensitivity and resolution for in vivo EPR spectroscopy and imaging. Both biradicals exhibit broad characteristic EPR spectra at room temperature because of their intramolecular spin-spin interaction. Reaction of these biradicals with thiol compounds such as glutathione (GSH) and cysteine results in the formation of trityl monoradicals which exhibit high spectral sensitivity to oxygen. The moderately slow reaction between the biradicals and GSH (k(2) ∼ 0.3 M(-1) s(-1) for TSSN and 0.2 M(-1) s(-1) for TSST) allows for in vivo measurement of GSH concentration without altering the redox environment in biological systems. The GSH concentration in rat liver was determined to be 3.49 ± 0.14 mM by TSSN and 3.67 ± 0.24 mM by TSST, consistent with the value (3.71 ± 0.09 mM) determined by the Ellman's reagent. Thus, these trityl-based thiol probes exhibit unique properties enabling measurement of thiols in biological systems and should be of great value for monitoring redox metabolism.
Collapse
Affiliation(s)
- Yangping Liu
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Efimova OV, Sun Z, Petryakov S, Kesselring E, Caia GL, Johnson D, Zweier JL, Khramtsov VV, Samouilov A. Variable radio frequency proton-electron double-resonance imaging: application to pH mapping of aqueous samples. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 209:227-232. [PMID: 21320790 PMCID: PMC3065501 DOI: 10.1016/j.jmr.2011.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/08/2010] [Accepted: 01/10/2011] [Indexed: 05/30/2023]
Abstract
Proton-electron double-resonance imaging (PEDRI) offers rapid image data collection and high resolution for spatial distribution of paramagnetic probes. Recently we developed the concept of variable field (VF) PEDRI which enables extracting a functional map from a limited number of images acquired at pre-selected EPR excitation fields using specific paramagnetic probes (Khramtsov et al., J. Magn. Reson. 202 (2010) 267-273). In this work, we propose and evaluate a new modality of PEDRI-based functional imaging with enhanced temporal resolution which we term variable radio frequency (VRF) PEDRI. The approach allows for functional mapping (e.g., pH mapping) using specifically designed paramagnetic probes with high quality spatial resolution and short acquisition times. This approach uses a stationary magnetic field but different EPR RFs. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of a pH-sensitive nitroxide is converted to a pH map using a corresponding calibration curve. Elimination of field cycling decreased the acquisition time by exclusion periods of ramping and stabilization of the magnetic field. Improved magnetic field homogeneity and stability allowed for the fast MRI acquisition modalities such as fast spin echo. In total, about 30-fold decrease in EPR irradiation time was achieved for VRF PEDRI (2.4s) compared with VF PEDRI (70s). This is particularly important for in vivo applications enabling one to overcome the limiting stability of paramagnetic probes and sample overheating by reducing RF power deposition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valery V. Khramtsov
- Corresponding authors: (Alexandre Samouilov); (Valery V. Khramtsov), Primary address for the correspondence during review process: Alexandre Samouilov, PhD, Davis Heart and Lung Research Institute, The Ohio State University, 420 West 12 Ave, Room 611B, Columbus, OH 43210
| | - Alexandre Samouilov
- Corresponding authors: (Alexandre Samouilov); (Valery V. Khramtsov), Primary address for the correspondence during review process: Alexandre Samouilov, PhD, Davis Heart and Lung Research Institute, The Ohio State University, 420 West 12 Ave, Room 611B, Columbus, OH 43210
| |
Collapse
|
25
|
Bobko AA, Kirilyuk IA, Gritsan NP, Polovyanenko DN, Grigor’ev IA, Khramtsov VV, Bagryanskaya EG. EPR and Quantum Chemical Studies of the pH-sensitive Imidazoline and Imidazolidine Nitroxides with Bulky Substituents. APPLIED MAGNETIC RESONANCE 2010; 39:437-451. [PMID: 22162912 PMCID: PMC3234120 DOI: 10.1007/s00723-010-0179-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The X- and W-band electron paramagnetic resonance (EPR) spectroscopies were employed to investigate a series of imidazolidine nitroxide radicals with different number of ethyl and methyl substituents at positions 2 and 5 of a heterocycle in liquid and frozen solutions. The influence of the substituents on the line shape and width was studied experimentally and analyzed using quantum chemical calculations. Each pair of the geminal ethyl groups in the positions 2 or 5 of the imidazolidine ring was found to produce an additional hyperfine splitting (hfs) of about 0.2 mT in the EPR spectra of the nitroxides. The effect was attributed to the hfs constant of only one of four methylene hydrogen atoms of two geminal ethyl substituents not fully averaged by ethyl group rotation and ring puckering. In accordance with this assumption, the substitution of hydrogen atoms of CH(2) groups in 2,2,5,5-tetraethyl-substituted imidazolidine nitroxides by deuterium leads to the substantial narrowing of EPR lines which could be useful for many biochemical and biomedical applications, including pH-monitoring. W-band EPR spectra of 2,2,5,5-tetraethyl-substituted imidazolidine nitroxide and its 2,2,5,5-tetraethyl-d(8) deuterium-substituted analog measured at low temperatures demonstrated high sensitivity of their g-factors to pH, which indicates their applicability as spin labels possessing high stability.
Collapse
Affiliation(s)
- A. A. Bobko
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - I. A. Kirilyuk
- Novosibirsk Institute of Organic Chemistry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - N. P. Gritsan
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - D. N. Polovyanenko
- International Tomography Center, Russian Academy of Sciences, Institutskaya 3A, Novosibirsk 630090, Russia
| | - I. A. Grigor’ev
- Novosibirsk Institute of Organic Chemistry, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - V. V. Khramtsov
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - E. G. Bagryanskaya
- International Tomography Center, Russian Academy of Sciences, Institutskaya 3A, Novosibirsk 630090, Russia
| |
Collapse
|
26
|
Petryakov S, Samouilov A, Kesselring E, Caia GL, Sun Z, Zweier JL. Dual frequency resonator for 1.2 GHz EPR/16.2 MHz NMR co-imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 205:1-8. [PMID: 20434379 PMCID: PMC2919297 DOI: 10.1016/j.jmr.2010.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 12/21/2009] [Accepted: 02/19/2010] [Indexed: 05/29/2023]
Abstract
The development of a dual frequency resonator that enables both EPR and proton NMR imaging within the same resonator, magnet and gradient system is described. A novel design allows the same resonator to perform both EPR and proton NMR operation without moving resonator cables or switches. The resonator is capable of working at frequencies of 16.18 MHz for proton NMR and 1.2 GHz for EPR and is optimized for isolated rat heart experiments, measuring 22 mm in inner diameter and 19 mm in length. In EPR mode, the resonator functions as a one-loop-two gap resonator, electrically coupled through a half wavelength inverter. In NMR mode, it functions a single turn coil. Using the same loop for both modalities maximizes filling factor at both frequencies. Placing the tuning and switching controls away from the resonator prevents any inadvertent movement that would cause errors of EPR and NMR co-imaging registration. The resonator enabled good quality EPR and proton MRI of isolated rat hearts with precise registration.
Collapse
Affiliation(s)
| | | | | | | | | | - Jay L. Zweier
- Address for correspondence and proofs: Jay L. Zweier, Davis Heart and Lung Research Institute, 473 West 12 Avenue, Room 110G, Columbus, OH 43210-1252.
| |
Collapse
|
27
|
Kirilyuk I, Polovyanenko D, Semenov S, Grigor’ev I, Gerasko O, Fedin V, Bagryanskaya E. Inclusion Complexes of Nitroxides of Pyrrolidine and Imidazoline Series with Cucurbit[7]uril. J Phys Chem B 2010; 114:1719-28. [DOI: 10.1021/jp9103678] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- I. Kirilyuk
- Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 9, Russia, International Tomography Center SB RAS, Novosibirsk, 630090, Institutskaya 3A, Russia, and Nikolaev Institute of Inorganic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 3, Russia
| | - D. Polovyanenko
- Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 9, Russia, International Tomography Center SB RAS, Novosibirsk, 630090, Institutskaya 3A, Russia, and Nikolaev Institute of Inorganic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 3, Russia
| | - S. Semenov
- Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 9, Russia, International Tomography Center SB RAS, Novosibirsk, 630090, Institutskaya 3A, Russia, and Nikolaev Institute of Inorganic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 3, Russia
| | - I. Grigor’ev
- Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 9, Russia, International Tomography Center SB RAS, Novosibirsk, 630090, Institutskaya 3A, Russia, and Nikolaev Institute of Inorganic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 3, Russia
| | - O. Gerasko
- Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 9, Russia, International Tomography Center SB RAS, Novosibirsk, 630090, Institutskaya 3A, Russia, and Nikolaev Institute of Inorganic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 3, Russia
| | - V. Fedin
- Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 9, Russia, International Tomography Center SB RAS, Novosibirsk, 630090, Institutskaya 3A, Russia, and Nikolaev Institute of Inorganic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 3, Russia
| | - E. Bagryanskaya
- Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 9, Russia, International Tomography Center SB RAS, Novosibirsk, 630090, Institutskaya 3A, Russia, and Nikolaev Institute of Inorganic Chemistry SB RAS, 630090 Novosibirsk, pr. Lavrentjeva 3, Russia
| |
Collapse
|
28
|
Petryakov S, Samouilov A, Chzhan-Roytenberg M, Kesselring E, Sun Z, Zweier JL. Segmented surface coil resonator for in vivo EPR applications at 1.1GHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 198:8-14. [PMID: 19268615 PMCID: PMC2919311 DOI: 10.1016/j.jmr.2008.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/03/2008] [Accepted: 12/15/2008] [Indexed: 05/21/2023]
Abstract
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20mm.
Collapse
Affiliation(s)
| | | | | | | | | | - Jay L. Zweier
- Corresponding author. Fax: +1 614 247 7845. (J.L. Zweier)
| |
Collapse
|
29
|
Woldman YY, Semenov SV, Bobko AA, Kirilyuk IA, Polienko JF, Voinov MA, Bagryanskaya EG, Khramtsov VV. Design of liposome-based pH sensitive nanoSPIN probes: nano-sized particles with incorporated nitroxides. Analyst 2009; 134:904-10. [PMID: 19381383 PMCID: PMC2897711 DOI: 10.1039/b818184e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liposome-based nanoSized Particles with Incorporated Nitroxides, or nanoSPINs, were designed for EPR applications as pH probes in biological systems. Phospholipid membrane of the liposomes with incorporated gramicidin A showed selective permeability to a small analyte, H(+), while protecting entrapped sensing nitroxide from biological reductants. An application of the pH-sensitive nanoSPIN in an ischemia model in rat heart homogenate allows for monitoring ischemia-induced acidosis while protecting encapsulated nitroxide against bioreduction.
Collapse
Affiliation(s)
- Yakov Y. Woldman
- The Ohio State University Medical Center, Columbus, 43210, USA
- Valdosta State University, Valdosta, GA, 31698, USA
| | - Sergey V. Semenov
- The Ohio State University Medical Center, Columbus, 43210, USA
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
| | - Andrey A. Bobko
- The Ohio State University Medical Center, Columbus, 43210, USA
| | - Igor A. Kirilyuk
- Novosibirsk Institute of Organic Chemistry, Novosibirsk, 630090, Russia
| | - Julya F. Polienko
- Novosibirsk Institute of Organic Chemistry, Novosibirsk, 630090, Russia
| | - Maxim A. Voinov
- North Carolina State University, Department of Chemistry, Raleigh, NC, 27695, USA
| | | | | |
Collapse
|
30
|
Fomenko EV, Bobko AA, Salanov AN, Kirilyuk IA, Grigor’ev IA, Khramtsov VV, Anshits AG. Perforated cenosphere-supported pH-sensitive spin probes. Russ Chem Bull 2009. [DOI: 10.1007/s11172-008-0076-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Kulkarni AC, Bratasz A, Rivera B, Krishna MC, Kuppusamy P. Redox Mapping of Biological Samples Using EPR Imaging. Isr J Chem 2008. [DOI: 10.1560/ijc.48.1.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Roshchupkina GI, Bobko AA, Bratasz A, Reznikov VA, Kuppusamy P, Khramtsov VV. In vivo EPR measurement of glutathione in tumor-bearing mice using improved disulfide biradical probe. Free Radic Biol Med 2008; 45:312-20. [PMID: 18468522 PMCID: PMC2494956 DOI: 10.1016/j.freeradbiomed.2008.04.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/04/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
Abstract
Disulfide nitroxide biradicals, DNB, have been used for glutathione, GSH, measurements by X-band electron paramagnetic resonance, EPR, in various cells and tissues. In the present paper, the postulated potential use of DNB for EPR detection of GSH in vivo was explored. Isotopic substitution in the structure of the DNB was performed for the enhancement of its EPR spectral properties. (15)N substitution in the NO fragment of the DNB decreased the number of EPR spectral lines and resulted in an approximately two-fold increase in the signal-to-noise ratio, SNR. An additional two-fold increase in the SNR was achieved by substitution of the hydrogen atoms with deuterium resulting in narrowing the EPR lines from 1.35 G to 0.95 G. The spectral changes of DNB upon reaction with GSH and cysteine were studied in vitro in a wide range of pHs at room temperature and "body" temperature, 37 degrees C, and the corresponding bimolecular rate constants were calculated. In in vivo experiments the kinetics of the L-band EPR spectral changes after injection of DNB into ovarian xenograft tumors grown in nude mice were measured by L-band EPR spectroscopy, and analyzed in terms of the two main contributing reactions, splitting of the disulfide bond and reduction of the NO fragment. The initial exponential increase of the "monoradical" peak intensity has been used for the calculation of the GSH concentration using the value of the observed rate constant for the reaction of DNB with GSH, k(obs) (pH 7.1, 37 degrees C)=2.6 M(-1)s(-1). The concentrations of GSH in cisplatin-resistant and cisplatin-sensitive tumors were found to be 3.3 mM and 1.8 mM, respectively, in quantitative agreement with the in vitro data.
Collapse
Affiliation(s)
- Galina I. Roshchupkina
- Dorothy M. Davis Heart & Lung Research Institute, the Ohio State University, Columbus, OH 43210
- Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, Novosibirsk 630090, Russia
| | - Andrey A. Bobko
- Dorothy M. Davis Heart & Lung Research Institute, the Ohio State University, Columbus, OH 43210
| | - Anna Bratasz
- Dorothy M. Davis Heart & Lung Research Institute, the Ohio State University, Columbus, OH 43210
| | - Vladimir A. Reznikov
- Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Periannan Kuppusamy
- Dorothy M. Davis Heart & Lung Research Institute, the Ohio State University, Columbus, OH 43210
| | - Valery V. Khramtsov
- Dorothy M. Davis Heart & Lung Research Institute, the Ohio State University, Columbus, OH 43210
| |
Collapse
|
33
|
Swartz HM, Khan N, Khramtsov VV. Use of electron paramagnetic resonance spectroscopy to evaluate the redox state in vivo. Antioxid Redox Signal 2007; 9:1757-71. [PMID: 17678441 PMCID: PMC2702846 DOI: 10.1089/ars.2007.1718] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this article is to provide an overview of how electron paramagnetic resonance (EPR) can be used to measure redox-related parameters in vivo. The values of this approach include that the measurements are made under fully physiological conditions, and some of the measurements cannot be made by other means. Three complementary approaches are used with in vivo EPR: the rate of reduction or reactions of nitroxides, spin trapping of free radicals, and measurements of thiols. All three approaches already have produced unique and useful information. The measurement of the rate of decrease of nitroxides technically is the simplest, but difficult to interpret because the measured parameter, reduction in the intensity of the nitroxide signal, can occur by several different mechanisms. In vivo spin trapping can provide direct evidence for the occurrence of specific free radicals in vivo and reflect relative changes, but accurate absolute quantification remains challenging. The measurement of thiols in vivo also appears likely to be useful, but its development as an in vivo technique is at an early stage. It seems likely that the use of in vivo EPR to measure redox processes will become an increasingly utilized and valuable tool.
Collapse
Affiliation(s)
- Harold M Swartz
- Department of Radiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | |
Collapse
|
34
|
Potapenko DI, Foster MA, Lurie DJ, Kirilyuk IA, Hutchison JMS, Grigor'ev IA, Bagryanskaya EG, Khramtsov VV. Real-time monitoring of drug-induced changes in the stomach acidity of living rats using improved pH-sensitive nitroxides and low-field EPR techniques. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 182:1-11. [PMID: 16798033 DOI: 10.1016/j.jmr.2006.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/18/2006] [Accepted: 06/04/2006] [Indexed: 05/10/2023]
Abstract
New improved pH-sensitive nitroxides were applied for in vivo studies. An increased stability of the probes towards reduction was achieved by the introduction of the bulky ethyl groups in the vicinity of the paramagnetic NO fragment. In addition, the range of pH sensitivity of the approach was extended by the synthesis of probes with two ionizable groups, and, therefore, with two pKa values. Stability towards reduction and spectral characteristics of the three new probes were determined in vitro using 290 MHz radiofrequency (RF)- and X-band electron paramagnetic resonance (EPR), longitudinally detected EPR (LODEPR), and field-cycled dynamic nuclear polarization (FC-DNP) techniques. The newly synthesized probe, 4-[bis(2-hydroxyethyl)amino]-2-pyridine-4-yl-2,5,5-triethyl-2,5-dihydro-1H-imidazol-oxyl, was found to be the most appropriate for the application in the stomach due to both higher stability and convenient pH sensitivity range from pH 1.8 to 6. LODEPR, FC-DNP and proton-electron double resonance imaging (PEDRI) techniques were used to detect the nitroxide localization and acidity in the rat stomach. Improved probe characteristics allowed us to follow in vivo the drug-induced perturbation in the stomach acidity and its normalization afterwards during 1 h or longer period of time. The results show the applicability of the techniques for monitoring drug pharmacology and disease in the living animals.
Collapse
|
35
|
Potapenko DI, Bagryanskaya EG, Grigoriev IA, Maksimov AM, Reznikov VA, Platonov VE, Clanton TL, Khramtsov VV. Quantitative determination of SH groups using 19F NMR spectroscopy and disulfide of 2,3,5,6-tetrafluoro-4-mercaptobenzoic acid. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2005; 43:902-9. [PMID: 16114102 DOI: 10.1002/mrc.1652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A new method of measurement of thiol concentration by 19F NMR spectroscopy is developed. The method is based on the detection of products of the exchange reaction of thiols with a newly synthesized fluorinated disulfide, 2,3,5,6-tetrafluoro-4-mercaptobenzoic acid (BSSB). A significant broadening of the 19F NMR signal of BSSB in the presence of thiols was observed and attributed to the exchange reaction between the parent disulfide and 2,3,5,6-tetrafluoro-4-mercaptobenzoic acid. The rate constant for this reaction was found to be equal to (63 +/- 11) x 10(3) M(-1) s(-1) at pH 7.0. The method was applied for the measurement of concentration of glutathione and albumin in rat blood.
Collapse
|
36
|
Li H, Cui H, Liu X, Zweier JL. Xanthine oxidase catalyzes anaerobic transformation of organic nitrates to nitric oxide and nitrosothiols: characterization of this mechanism and the link between organic nitrate and guanylyl cyclase activation. J Biol Chem 2005; 280:16594-600. [PMID: 15695823 DOI: 10.1074/jbc.m411905200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Organic nitrates have been used clinically in the treatment of ischemic heart disease for more than a century. Recently, xanthine oxidase (XO) has been reported to catalyze organic nitrate reduction under anaerobic conditions, but questions remain regarding the initial precursor of nitric oxide (NO) and the link of organic nitrate to the activation of soluble guanylyl cyclase (sGC). To characterize the mechanism of XO-mediated biotransformation of organic nitrate, studies using electron paramagnetic resonance spectroscopy, chemiluminescence NO analyzer, NO electrode, and immunoassay were performed. The XO reducing substrates xanthine, NADH, and 2,3-dihydroxybenz-aldehyde triggered the reduction of organic nitrate to nitrite anion (NO2-). Studies of the pH dependence of nitrite formation indicated that XO-mediated organic nitrate reduction occurred via an acid-catalyzed mechanism. In the absence of thiols or ascorbate, no NO generation was detected from XO-mediated organic nitrate reduction; however, addition of L-cysteine or ascorbate triggered prominent NO generation. Studies suggested that organic nitrite (R-O-NO) is produced from XO-mediated organic nitrate reduction. Further reaction of organic nitrite with thiols or ascorbate leads to the generation of NO or nitrosothiols and thus stimulates the activation of sGC. Only flavin site XO inhibitors such as diphenyleneiodonium inhibited XO-mediated organic nitrate reduction and sGC activation, indicating that organic nitrate reduction occurs at the flavin site. Thus, organic nitrite is the initial product in the process of XO-mediated organic nitrate biotransformation and is the precursor of NO and nitrosothiols, serving as the link between organic nitrate and sGC activation.
Collapse
Affiliation(s)
- Haitao Li
- Center for Biomedical Electron Paramagnetic Resonance Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
37
|
Kirilyuk IA, Bobko AA, Khramtsov VV, Grigor'ev IA. Nitroxides with two pK values—useful spin probes for pH monitoring within a broad range. Org Biomol Chem 2005; 3:1269-74. [PMID: 15785817 DOI: 10.1039/b418707e] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 4-dialkylamino-2,5-dihydroimidazole nitroxides with pyridine-4-yl, 4-dimethylaminophenyl or 4-hydroxyphenyl groups in position 2 of the imidazole ring were prepared using the reaction of RMgBr with corresponding 5-dialkylamino-4,4-dimethyl-4H-imidazole 3-oxides. The EPR spectra of the nitroxides were shown to be pH-sensitive due to consecutive protonation of the amidino moiety and the basic group(s) at position 2 of the imidazole ring. The 5,5-dimethyl-4-(dimethylamino)-2-ethyl-2-pyridine-4-yl-2,5-dihydro-1H-imidazol-1-oxyl showed a monotonic increase in the isotropic nitrogen hyperfine (hfi) coupling constant alpha(N) of 1 .4 G over a pH range from 2 to 6.5. Such a broad range of pH-sensitivity could be useful for many biophysical and biomedical applications, including pH-monitoring in the stomach.
Collapse
Affiliation(s)
- Igor A Kirilyuk
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Academician Lavrent'ev 9, Novosibirsk, 630090, Russia.
| | | | | | | |
Collapse
|
38
|
|