1
|
Alexander IE, Russell DW. The Potential of AAV-Mediated Gene Targeting for Gene and Cell Therapy Applications. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-014-0001-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Wang S, Zhang K, Ding F, Zhao R, Li S, Li R, Xu L, Song C, Dai Y, Li N. A novel promoterless gene targeting vector to efficiently disrupt PRNP gene in cattle. J Biotechnol 2012. [PMID: 23201560 DOI: 10.1016/j.jbiotec.2012.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The PRNP gene encodes a cellular protein named prion, whose misfolded form has been implicated in a number of neuropathic diseases in mammals such as the Bovine Spongiform Encephalopathy (BSE) in cattle. BSE has brought devastating impact on the world economy and human health. Recently, several groups have performed the gene targeting strategy to disrupt the PRNP gene in bovine fibroblast cells and produce BSE-resistant cattle by somatic cell nuclear transfer (SCNT). However, the enrichment efficiency of the gene targeting vector was low. Here, we constructed a novel promoterless gene targeting vector to sequentially disrupt the PRNP gene in bovine fibroblast cells and generate gene targeted cattle by SCNT. The enrichment efficiency of the novel vector was 100% and 60%, respectively. After nuclear transfer, no significant difference was found in the rate of cleavage and blastocyst formation between the knockout and wild type cloned embryos. One PRNP⁺/⁻ calf was born with no obvious abnormal development by now. Fusion RT-PCR and real-time PCR showed one allele of the PRNP gene was functionally disrupted, and the mRNA expression reduced dramatically in the PRNP⁺/⁻ cattle. The reconstituted PRNP⁻/⁻ embryos showed double alleles disruption, and no difference in the rate of cleavage and blastocyst formation.
Collapse
Affiliation(s)
- Shaohua Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Laible G, Alonso-González L. Gene targeting from laboratory to livestock: current status and emerging concepts. Biotechnol J 2009; 4:1278-92. [PMID: 19606430 DOI: 10.1002/biot.200900006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of methods for cell-mediated transgenesis, based on somatic cell nuclear transfer, provides a tremendous opportunity to shape the genetic make-up of livestock animals in a much more directed approach than traditional animal breeding and selection schemes. Progress in the site-directed modulation of livestock genomes is currently limited by the low efficiencies of gene targeting imposed by the low frequency of homologous recombination and limited proliferative capacity of primary somatic cells that are used to produce transgenic animals. Here we review the current state of the art in the field, discuss the crucial aspects of the methodology and provide an overview of emerging approaches to increase the efficiency of gene targeting in somatic cells.
Collapse
Affiliation(s)
- Götz Laible
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand.
| | | |
Collapse
|
4
|
Wang S, Lv X, Zhang K, Lin T, Liu X, Yuan J, Dai Y, Li N. Knockdown of the prion gene expression by RNA interference in bovine fibroblast cells. Mol Biol Rep 2009; 37:3193-8. [PMID: 19821149 DOI: 10.1007/s11033-009-9900-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 10/02/2009] [Indexed: 01/14/2023]
Abstract
PRNP is the gene encoding prion protein whose misfolded and β-sheet-rich isoform is the infectious agent of transmissible spongiform encephalopathy (TSE). TSE, also called prion diseases, cause fatal neurodegenerative and transmissible disorders in human and animals. Among these diseases, bovine spongiform encephalopathy (BSE) has tremendous impact on economy and human health in the world. In the present study, we hypothesize suppression of the PRNP gene expression could raise resistance to BSE in cattle by using vector-based small interfering RNA (siRNA) expression systems. Therefore, the objective was to screen effective DNA-encoding short hairpin RNAs (shRNAs) which could knockdown the PRNP gene expression in bovine fibroblast cells. Human U6 promoter was employed to drive shRNA transcription from the DNA vector, and seven shRNAs, that designed to target coding region and 3' untranslated region of the PRNP gene, were selected. Four out of seven shRNAs tested were found to be effective in inhibiting the PRNP gene expression, and the most significant suppression level was as much as 62.9% evidenced by real-time RT-PCR. Furthermore, the protein abundance was obviously reduced compared to the control. Overall, the present study demonstrated that vector-based siRNA expression systems is an efficient approach to knockdown the PRNP gene expression in bovine fibroblast cells and thereby provide donor cells for somatic cell nuclear cloning to produce cattle that is resistant to prion related diseases.
Collapse
Affiliation(s)
- Shaohua Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zuber C, Mitteregger G, Schuhmann N, Rey C, Knackmuss S, Rupprecht W, Reusch U, Pace C, Little M, Kretzschmar HA, Hallek M, Büning H, Weiss S. Delivery of single-chain antibodies (scFvs) directed against the 37/67 kDa laminin receptor into mice via recombinant adeno-associated viral vectors for prion disease gene therapy. J Gen Virol 2008; 89:2055-2061. [PMID: 18632978 DOI: 10.1099/vir.0.83670-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 37/67 kDa laminin receptor (LRP/LR) acts as a receptor for prions providing a promising target for the treatment of prion diseases. Recently, we selected anti-LRP/LR single-chain antibodies (scFvs) and proved a reduction of the peripheral PrP(Sc) propagation by passive immunotransfer into scrapie-infected mice. Here, we report the development of an in vivo gene delivery system based on adeno-associated virus (AAV) vectors expressing scFvs-S18 and -N3 directed against LRP/LR. Transduction of neuronal and non-neuronal cells with recombinant (r)AAV serotype 2 vectors encoding scFv-S18, -N3 and -C9 verified the efficient secretion of the antibodies. These vectors were administered via stereotactic intracerebral microinjection into the hippocampus of C57BL/6 mice, followed by intracerebral inoculation with 10 % RML at the same site 2 weeks post-injection of rAAV. After 90 days post-infection, scFv-S18 and -N3 expression resulted in the reduction of peripheral PrP(Sc) propagation by approximately 60 and 32 %, respectively, without a significant prolongation of incubation times and survival. Proof of rAAV vector DNA in spleen samples by real-time PCR strongly suggests a transport or trafficking of rAAV from the brain to the spleen, resulting in rAAV-mediated expression of scFv followed by reduced PrP(Sc) levels in the spleen most likely due to the blockage of the prion receptor LRP/LR by scFv.
Collapse
Affiliation(s)
- Chantal Zuber
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Gerda Mitteregger
- Zentrum für Neuropathologie und Prionforschung der LMU München, Feodor-Lynen-Str. 23, 81377 München, Germany
| | - Natascha Schuhmann
- Universität zu Köln, Klinik I für Innere Medizin, Kerpener Str. 62, 50937 Köln, Germany
| | - Clémence Rey
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Stefan Knackmuss
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Wolfgang Rupprecht
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| | - Uwe Reusch
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Claudia Pace
- Zentrum für Neuropathologie und Prionforschung der LMU München, Feodor-Lynen-Str. 23, 81377 München, Germany
| | - Melvyn Little
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Hans A Kretzschmar
- Zentrum für Neuropathologie und Prionforschung der LMU München, Feodor-Lynen-Str. 23, 81377 München, Germany
| | - Michael Hallek
- Zentrum für Molekulare Medizin Köln, Universität zu Köln, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany.,Universität zu Köln, Klinik I für Innere Medizin, Kerpener Str. 62, 50937 Köln, Germany
| | - Hildegard Büning
- Zentrum für Molekulare Medizin Köln, Universität zu Köln, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany.,Universität zu Köln, Klinik I für Innere Medizin, Kerpener Str. 62, 50937 Köln, Germany
| | - Stefan Weiss
- Laboratorium für Molekulare Biologie - Genzentrum - Institut für Biochemie der LMU München, Feodor-Lynen-Str. 25, D-81377 München, Germany
| |
Collapse
|
6
|
Meehan DT, Zink MA, Mahlen M, Nelson M, Sanger WG, Mitalipov SM, Wolf DP, Ouellette MM, Norgren RB. Gene targeting in adult rhesus macaque fibroblasts. BMC Biotechnol 2008; 8:31. [PMID: 18366794 PMCID: PMC2292692 DOI: 10.1186/1472-6750-8-31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 03/26/2008] [Indexed: 11/28/2022] Open
Abstract
Background Gene targeting in nonhuman primates has the potential to produce critical animal models for translational studies related to human diseases. Successful gene targeting in fibroblasts followed by somatic cell nuclear transfer (SCNT) has been achieved in several species of large mammals but not yet in primates. Our goal was to establish the protocols necessary to achieve gene targeting in primary culture of adult rhesus macaque fibroblasts as a first step in creating nonhuman primate models of genetic disease using nuclear transfer technology. Results A primary culture of adult male fibroblasts was transfected with hTERT to overcome senescence and allow long term in vitro manipulations. Successful gene targeting of the HPRT locus in rhesus macaques was achieved by electroporating S-phase synchronized cells with a construct containing a SV40 enhancer. Conclusion The cell lines reported here could be used for the production of null mutant rhesus macaque models of human genetic disease using SCNT technology. In addition, given the close evolutionary relationship and biological similarity between rhesus macaques and humans, the protocols described here may prove useful in the genetic engineering of human somatic cells.
Collapse
Affiliation(s)
- Daniel T Meehan
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198-5805, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Honaramooz A, Megee S, Zeng W, Destrempes MM, Overton SA, Luo J, Galantino-Homer H, Modelski M, Chen F, Blash S, Melican DT, Gavin WG, Ayres S, Yang F, Wang PJ, Echelard Y, Dobrinski I. Adeno‐associated virus (AAV)‐mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB J 2007; 22:374-82. [PMID: 17873102 DOI: 10.1096/fj.07-8935com] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We explored whether exposure of mammalian germ line stem cells to adeno-associated virus (AAV), a gene therapy vector, would lead to stable transduction and transgene transmission. Mouse germ cells harvested from experimentally induced cryptorchid donor testes were exposed in vitro to AAV vectors carrying a GFP transgene and transplanted to germ cell-depleted syngeneic recipient testes, resulting in colonization of the recipient testes by transgenic donor cells. Mating of recipient males to wild-type females yielded 10% transgenic offspring. To broaden the approach to nonrodent species, AAV-transduced germ cells from goats were transplanted to recipient males in which endogenous germ cells had been depleted by fractionated testicular irradiation. Transgenic germ cells colonized recipient testes and produced transgenic sperm. When semen was used for in vitro fertilization (IVF), 10% of embryos were transgenic. Here, we report for the first time that AAV-mediated transduction of mammalian germ cells leads to transmission of the transgene through the male germ line. Equally important, this is also the first report of transgenesis via germ cell transplantation in a nonrodent species, a promising approach to generate transgenic large animal models for biomedical research.
Collapse
Affiliation(s)
- Ali Honaramooz
- Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania, 382 W. State Road, Kennett Square, PA 19348, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang Y, Huang F, Cai R, Qian C, Liu X. Targeting strategies for adeno-associated viral vector. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0260-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Marques MM, Thomson AJ, McCreath KJ, McWhir J. Conventional gene targeting protocols lead to loss of targeted cells when applied to a silent gene locus in primary fibroblasts. J Biotechnol 2006; 125:185-93. [PMID: 16621085 DOI: 10.1016/j.jbiotec.2006.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 02/03/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
Gene targeting in livestock fibroblasts has proven difficult to achieve, particularly if the target gene is silent. We first tested whether efficient gene targeting at the transcriptionally active ovine alpha1(I) procollagen (COL1A1) locus required the use of a promoter trap vector. We compared gene targeting frequencies at the ovine COL1A1 locus using both a promoter trap and a non-promoter trap selection strategy. We demonstrated that targeted cells could be isolated regardless of whether an enrichment step (promoter trap) was used. Next, we used our optimised protocol to target a non-expressed gene, ovine beta-casein. We obtained clones that were scored positive by PCR for the targeting event, but were negative after cell expansion and Southern analysis. We propose that targeted cells were initially generated but that they were at a selective growth disadvantage during culture. We suggest modifications to the conventional targeting protocol that would prevent such loss of targeted cells.
Collapse
Affiliation(s)
- Margarita M Marques
- Instituto de Desarrollo Ganadero, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | | | | |
Collapse
|
10
|
Abstract
Vectors based on the adeno-associated virus (AAV) have attracted much attention as potent gene-delivery vehicles, mainly because of the persistence of this non-pathogenic virus in the host cell and its sustainable therapeutic gene expression. However, virus infection can be accompanied by potentially mutagenic random vector integration into the genome. A novel approach to AAV-mediated gene therapy based on gene targeting through homologous recombination allows efficient, high-fidelity, non-mutagenic gene repair in a host cell.
Collapse
Affiliation(s)
- Ana Vasileva
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
11
|
Sorrell DA, Kolb AF. Targeted modification of mammalian genomes. Biotechnol Adv 2005; 23:431-69. [PMID: 15925473 DOI: 10.1016/j.biotechadv.2005.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Revised: 03/14/2005] [Accepted: 03/14/2005] [Indexed: 12/22/2022]
Abstract
The stable and site-specific modification of mammalian genomes has a variety of applications in biomedicine and biotechnology. Here we outline two alternative approaches that can be employed to achieve this goal: homologous recombination (HR) or site-specific recombination. Homologous recombination relies on sequence similarity (or rather identity) of a piece of DNA that is introduced into a host cell and the host genome. In most cell types, the frequency of homologous recombination is markedly lower than the frequency of random integration. Especially in somatic cells, homologous recombination is an extremely rare event. However, recent strategies involving the introduction of DNA double-strand breaks, triplex forming oligonucleotides or adeno-associated virus can increase the frequency of homologous recombination. Site-specific recombination makes use of enzymes (recombinases, transposases, integrases), which catalyse DNA strand exchange between DNA molecules that have only limited sequence homology. The recognition sites of site-specific recombinases (e.g. Cre, Flp or PhiC31 integrase) are usually 30-50 bp. In contrast, retroviral integrases only require a specific dinucleotide sequence to insert the viral cDNA into the host genome. Depending on the individual enzyme, there are either innumerable or very few potential target sites for a particular integrase/recombinase in a mammalian genome. A number of strategies have been utilised successfully to alter the site-specificity of recombinases. Therefore, site-specific recombinases provide an attractive tool for the targeted modification of mammalian genomes.
Collapse
Affiliation(s)
- David A Sorrell
- Molecular Recognition Group, Hannah Research Institute, Ayr, KA6 5HL, UK
| | | |
Collapse
|
12
|
Bosch P, Pratt SL, Stice SL. Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. Biol Reprod 2005; 74:46-57. [PMID: 16162872 DOI: 10.1095/biolreprod.105.045138] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) are adult pluripotent cells that are considered to be an important resource for human cell-based therapies. Understanding the clinical potential of MSCs may require their use in preclinical large-animal models, such as pigs. The objectives of the present study were 1) to establish porcine MSC (pMSC) cultures; 2) to optimize in vitro pMSC culture conditions, 3) to investigate whether pMSCs are amenable to genetic manipulation, and 4) to determine pMSC reprogramming potential using somatic cell nuclear transfer (SCNT). The pMSCs isolated from bone marrow grew, attached to plastic with a fibroblast-like morphology, and expressed the mesenchymal surface marker THY1 but not the hematopoietic marker ITGAM. Furthermore, pMSCs underwent lipogenic, chondrogenic, and osteogenic differentiation when exposed to specific inducing conditions. The pMSCs grew well in a variety of media, and proliferative capacity was enhanced by culture under low oxygen atmosphere. Transient transduction of pMSCs and isogenic skin fibroblasts (SFs) with a human adenovirus carrying the gene for green fluorescent protein (GFP; Ad5-F35eGFP) resulted in more pMSCs expressing GFP compared with SFs. Cell lines with stable genetic modifications and extended expression of transgene were obtained when pMSCs were transfected with a plasmid containing the GFP gene. Infection of pMSC and SF cell lines by an adeno-associated virus resulted in approximately 12% transgenic cells, which formed transgenic clonal lines after propagation as single cells. The pMSCs can be expanded in vitro and used as nuclear donors to produce SCNT embryos. Thus, pMSCs are an attractive cell type for large-animal autologous and allogenic cell therapy models and for SCNT transgenesis.
Collapse
Affiliation(s)
- Pablo Bosch
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602-2771, USA
| | | | | |
Collapse
|
13
|
Hendrie PC, Russell DW. Gene Targeting with Viral Vectors. Mol Ther 2005; 12:9-17. [PMID: 15932801 DOI: 10.1016/j.ymthe.2005.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/06/2005] [Accepted: 04/06/2005] [Indexed: 10/25/2022] Open
Abstract
Genetic manipulation of cells for scientific and therapeutic goals can be achieved by both gene-addition and gene-targeting methods. Gene targeting precisely alters a gene in its natural chromosome location, providing distinct advantages over gene-addition approaches. Classic gene-targeting delivery systems (microinjection, electroporation, or calcium phosphate transfection) have led to major scientific advances, but are too inefficient in their current state to be used for some applications, including gene therapy. This review describes the development of gene-targeting vectors based on three types of viruses (retrovirus, adenovirus, and adeno-associated virus) and discusses the design, possible mechanisms of action, and applications of gene-targeting vectors based on adeno-associated virus.
Collapse
Affiliation(s)
- Paul C Hendrie
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
14
|
Stuke AW, Strom A. Tetracycline-regulated highly inducible expression of the human prion protein in murine 3T3 cells. Protein Expr Purif 2004; 39:8-17. [PMID: 15596355 DOI: 10.1016/j.pep.2004.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 09/21/2004] [Indexed: 11/24/2022]
Abstract
To provide an in vitro system that allows inducible or conditional overexpression of human prion protein (PrP), we have established a tetracycline (Tc)-regulated system in murine 3T3 L1 fibroblast cells. A replacement-type gene targeting vector cassette was constructed to express the human fatal familial insomnia (FFI) prion protein gene (PRNP) under control of a Tc-responsive element. Following stable integration of the vector into 3T3 Tet-Off cells, we have isolated and characterised six 3T3 L1 pTet-Off FFI clones. These clones were analysed by PCR and their expression level was determined by Western blot using species specific monoclonal antibodies (anti-mouse and human 3B5, 4F2, 12F10, 11C6, 8G8, and 14D3; anti-mouse l3). Addition of the antibiotic Tc to the culture medium turned off expression of human PrP. This supression was repeatedly reversible. However, no significant transcriptional leakiness of repressed PminCMV promoter was observed. In the absence of Tc, expression of human PrP was induced 10- to 20-fold as estimated from densitometric analyses. PrP was analysed by Proteinase K (PK) digestions and found to be PK sensitive. Subcellular fractionation revealed that PrP was located mainly in the cytoplasmic membrane fraction. Furthermore, we partially purified PrP by PrP-specific copper-binding. After immobilised metal affinity chromatography, majority of PrP showed a molecular weight consistent with non-glycosylated PrP. These clones offer a new tool to facilitate the investigation of PrP interaction with potential cellular ligands and PrP ex vivo propagation.
Collapse
Affiliation(s)
- Andreas W Stuke
- German Primate Centre (DPZ), Department of Virology and Immunology, Kellnerweg 4, D-37077 Göttingen, Germany.
| | | |
Collapse
|