1
|
Partipilo G, Bowman EK, Palmer EJ, Gao Y, Ridley RS, Alper HS, Keitz BK. Single-cell phenotyping of extracellular electron transfer via microdroplet encapsulation. Appl Environ Microbiol 2025; 91:e0246524. [PMID: 39807859 PMCID: PMC11784080 DOI: 10.1128/aem.02465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET. Here, we describe the development of a microdroplet emulsion system to sort and enrich EET-capable organisms from complex populations. We validated our system using the model electrogen Shewanella oneidensis and described the tooling of a benchtop microfluidic system for oxygen-limited conditions. We demonstrated the enrichment of strains exhibiting electroactive phenotypes from mixed wild-type and EET-deficient populations. As a proof-of-concept application, we collected samples from iron sedimentation in Town Lake (Austin, TX) and subjected them to microdroplet enrichment. We measured an increase in electroactive organisms in the sorted population that was distinct compared to a population growing in bulk culture with Fe(III) as the sole electron acceptor. Finally, two bacterial species not previously shown to be EET-capable, Cronobacter sakazakii and Vagococcus fessus, were further cultured and characterized for electroactivity. Our results demonstrate the utility of microdroplet emulsions for isolating and identifying EET-capable bacteria.IMPORTANCEThis work outlines a new high-throughput method for identifying electroactive bacteria from mixed populations. Electroactive bacteria play key roles in iron trafficking, soil remediation, and pollutant degradation. Many existing methods for identifying electroactive bacteria are coupled to microbial growth and fitness-as a result, the contributions from weak or poor-growing electrogens are often muted. However, extracellular electron transfer (EET) has historically been difficult to study in high-throughput in a mixed population since extracellular reduction is challenging to trace back to the parent cell and there are no suitable fluorescent readouts for EET. Our method circumvents these challenges by utilizing an aqueous microdroplet emulsion wherein a single cell is statistically isolated in a pico- to nano-liter-sized droplet. Then, via fluorescence obtained from copper reduction, the mixed population can be fluorescently sorted and gated by performance. Utilizing our technique, we characterize two previously unrecognized weak electrogens Vagococcus fessus and Cronobacter sakazakii.
Collapse
Affiliation(s)
- Gina Partipilo
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Emily K. Bowman
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas, USA
| | - Emma J. Palmer
- Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Yang Gao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Rodney S. Ridley
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Benjamin K. Keitz
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Hou L, Bai X, Sima Z, Zhang J, Yan L, Li D, Jiang Y. Biological and Chemical Processes of Nitrate Reduction and Ferrous Oxidation Mediated by Shewanella oneidensis MR-1. Microorganisms 2024; 12:2454. [PMID: 39770657 PMCID: PMC11676297 DOI: 10.3390/microorganisms12122454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Iron, Earth's most abundant redox-active metal, undergoes both abiotic and microbial redox reactions that regulate the formation, transformation, and dissolution of iron minerals. The electron transfer between ferrous iron (Fe(II)) and ferric iron (Fe(III)) is critical for mineral dynamics, pollutant remediation, and global biogeochemical cycling. Bacteria play a significant role, especially in anaerobic Fe(II) oxidation, contributing to Fe(III) mineral formation in oxygen-depleted environments. In iron-rich, neutral anaerobic settings, microbial nitrate-reducing Fe(II) oxidation (NRFO) and iron reduction processes happen simultaneously. This study used Shewanella oneidensis MR-1 to create an anaerobic NRFO system between Fe(II) and nitrate, revealing concurrent Fe(II) oxidation and nitrate reduction. Both gene-mediated biological Fe(II) oxidation and chemical Fe(II) oxidation, facilitated by nitrite (a byproduct of nitrate reduction), were observed. The MtrABC gene cluster was linked to this process. At low Fe(II) concentrations, toxicity and mineral precipitation inhibited nitrate reduction by Shewanella oneidensis MR-1, whereas high Fe(II) levels led to Fe(II) oxidation, resulting in cell encrustation, which further constrained nitrate reduction.
Collapse
Affiliation(s)
- Lingyu Hou
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430078, China; (L.H.)
| | - Xiangyu Bai
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (X.B.)
| | - Zihe Sima
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430078, China; (L.H.)
| | - Jiani Zhang
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430078, China; (L.H.)
| | - Luyao Yan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China; (X.B.)
| | - Ding Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430078, China; (L.H.)
| |
Collapse
|
3
|
Graham AJ, Partipilo G, Dundas CM, Miniel Mahfoud IE, Halwachs KN, Holwerda AJ, Simmons TR, FitzSimons TM, Coleman SM, Rinehart R, Chiu D, Tyndall AE, Sajbel KC, Rosales AM, Keitz BK. Transcriptional regulation of living materials via extracellular electron transfer. Nat Chem Biol 2024; 20:1329-1340. [PMID: 38783133 DOI: 10.1038/s41589-024-01628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Engineered living materials combine the advantages of biological and synthetic systems by leveraging genetic and metabolic programming to control material-wide properties. Here, we demonstrate that extracellular electron transfer (EET), a microbial respiration process, can serve as a tunable bridge between live cell metabolism and synthetic material properties. In this system, EET flux from Shewanella oneidensis to a copper catalyst controls hydrogel cross-linking via two distinct chemistries to form living synthetic polymer networks. We first demonstrate that synthetic biology-inspired design rules derived from fluorescence parameterization can be applied toward EET-based regulation of polymer network mechanics. We then program transcriptional Boolean logic gates to govern EET gene expression, which enables design of computational polymer networks that mechanically respond to combinations of molecular inputs. Finally, we control fibroblast morphology using EET as a bridge for programmed material properties. Our results demonstrate how rational genetic circuit design can emulate physiological behavior in engineered living materials.
Collapse
Affiliation(s)
- Austin J Graham
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Gina Partipilo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Christopher M Dundas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Ismar E Miniel Mahfoud
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, USA
| | - Kathleen N Halwachs
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Alexis J Holwerda
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, USA
| | - Trevor R Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Thomas M FitzSimons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Sarah M Coleman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Rebecca Rinehart
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Darian Chiu
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Avery E Tyndall
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Kenneth C Sajbel
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Partipilo G, Bowman EK, Palmer EJ, Gao Y, Ridley RS, Alper HS, Keitz BK. Single-Cell Phenotyping of Extracellular Electron Transfer via Microdroplet Encapsulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598847. [PMID: 38915652 PMCID: PMC11195189 DOI: 10.1101/2024.06.13.598847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes. Studying this phenomenon in high-throughput is challenging since extracellular reduction cannot easily be traced back to its cell of origin within a mixed population. Here, we describe the development of a microdroplet emulsion system to enrich EET-capable organisms. We validated our system using the model electroactive organism S. oneidensis and describe the tooling of a benchtop microfluidic system for oxygen-limited processes. We demonstrated enrichment of EET-capable phenotypes from a mixed wild-type and EET-knockout population. As a proof-of-concept application, bacteria were collected from iron sedimentation from Town Lake (Austin, TX) and subjected to microdroplet enrichment. We observed an increase in EET-capable organisms in the sorted population that was distinct when compared to a population enriched in a bulk culture more closely akin to traditional techniques for discovering EET-capable bacteria. Finally, two bacterial species, C. sakazakii and V. fessus not previously shown to be electroactive, were further cultured and characterized for their ability to reduce channel conductance in an organic electrochemical transistor (OECT) and to reduce soluble Fe(III). We characterized two bacterial species not previously shown to exhibit electrogenic behavior. Our results demonstrate the utility of a microdroplet emulsions for identifying putative EET-capable bacteria and how this technology can be leveraged in tandem with existing methods.
Collapse
Affiliation(s)
- Gina Partipilo
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Emily K. Bowman
- Interdisciplinary Life Sciences Graduate Program, University of Texas at Austin, Austin, TX, 78712
| | - Emma J. Palmer
- Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Yang Gao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Rodney S. Ridley
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| | - Benjamin K. Keitz
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712
| |
Collapse
|
5
|
Recent Applications and Strategies to Enhance Performance of Electrochemical Reduction of CO2 Gas into Value-Added Chemicals Catalyzed by Whole-Cell Biocatalysts. Processes (Basel) 2023. [DOI: 10.3390/pr11030766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Carbon dioxide (CO2) is one of the major greenhouse gases that has been shown to cause global warming. Decreasing CO2 emissions plays an important role to minimize the impact of climate change. The utilization of CO2 gas as a cheap and sustainable source to produce higher value-added chemicals such as formic acid, methanol, methane, and acetic acid has been attracting much attention. The electrochemical reduction of CO2 catalyzed by whole-cell biocatalysts is a promising process for the production of value-added chemicals because it does not require costly enzyme purification steps and the supply of exogenous cofactors such as NADH. This study covered the recent applications of the diversity of microorganisms (pure cultures such as Shewanella oneidensis MR1, Sporomusa species, and Clostridium species and mixed cultures) as whole-cell biocatalysts to produce a wide range of value-added chemicals including methane, carboxylates (e.g., formate, acetate, butyrate, caproate), alcohols (e.g., ethanol, butanol), and bioplastics (e.g., Polyhydroxy butyrate). Remarkably, this study provided insights into the molecular levels of the proteins/enzymes (e.g., formate hydrogenases for CO2 reduction into formate and electron-transporting proteins such as c-type cytochromes) of microorganisms which are involved in the electrochemical reduction of CO2 into value-added chemicals for the suitable application of the microorganism in the chemical reduction of CO2 and enhancing the catalytic efficiency of the microorganisms toward the reaction. Moreover, this study provided some strategies to enhance the performance of the reduction of CO2 to produce value-added chemicals catalyzed by whole-cell biocatalysts.
Collapse
|
6
|
Bertling K, Banerjee A, Saffarini D. Aerobic Respiration and Its Regulation in the Metal Reducer Shewanella oneidensis. Front Microbiol 2021; 12:723835. [PMID: 34566926 PMCID: PMC8458880 DOI: 10.3389/fmicb.2021.723835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
Shewanella oneidensis MR-1 is a facultative anaerobe known for its ability to reduce metal oxides. Anaerobic respiration, especially metal reduction, has been the subject of extensive research. In contrast, S. oneidensis aerobic respiration has received less attention. S. oneidensis expresses cbb3- and aa3-type cytochrome c oxidases and a bd-type quinol oxidase. The aa3-type oxidase, which in other bacteria is the major oxygen reductase under oxygen replete conditions, does not appear to contribute to aerobic respiration and growth in S. oneidensis. Our results indicated that although the aa3-type oxidase does not play a role in aerobic growth on lactate, the preferred carbon source for S. oneidensis, it is involved in growth on pyruvate or acetate. These results highlight the importance of testing multiple carbon and energy sources when attempting to identify enzyme activities and mutant phenotypes. Several regulatory proteins contribute to the regulation of aerobic growth in S. oneidensis including CRP and ArcA. The 3',5'-cAMP phosphodiesterase (CpdA) appears to play a more significant role in aerobic growth than either CRP or ArcA, yet the deficiency does not appear to be the result of reduced oxidase genes expression. Interestingly, the ∆cpdA mutant was more deficient in aerobic respiration with several carbon sources tested compared to ∆crp, which was moderately deficient only in the presence of lactate. To identify the reason for ∆cpdA aerobic growth deficiency, we isolated a suppressor mutant with transposon insertion in SO_3550. Inactivation of this gene, which encodes an anti-sigma factor, restored aerobic growth in the cpdA mutant to wild-type levels. Inactivation of SO_3550 in wild-type cells, however, did not affect aerobic growth. The S. oneidensis genome encodes two additional CRP-like proteins that we designated CrpB and CrpC. Mutants that lack crpB and crpC were deficient in aerobic growth, but this deficiency was not due to the loss of oxidase gene expression.
Collapse
Affiliation(s)
- Kristen Bertling
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Areen Banerjee
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Daad Saffarini
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
7
|
Floyd MAM, Williams AJ, Grubisic A, Emerson D. Metabolic Processes Preserved as Biosignatures in Iron-Oxidizing Microorganisms: Implications for Biosignature Detection on Mars. ASTROBIOLOGY 2019; 19:40-52. [PMID: 30044121 PMCID: PMC6338579 DOI: 10.1089/ast.2017.1745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Iron-oxidizing bacteria occupy a distinct environmental niche. These chemolithoautotrophic organisms require very little oxygen (when neutrophilic) or outcompete oxygen for access to Fe(II) (when acidophilic). The utilization of Fe(II) as an electron donor makes them strong analog organisms for any potential life that could be found on Mars. Despite their importance to the elucidation of early life on, and potentially beyond, Earth, many details of their metabolism remain unknown. By using on-line thermochemolysis and gas chromatography-mass spectrometry (GC-MS), a distinct signal for a low-molecular-weight molecule was discovered in multiple iron-oxidizing isolates as well as several iron-dominated environmental samples, from freshwater and marine environments and in both modern and older iron rock samples. This GC-MS signal was neither detected in organisms that did not use Fe(II) as an electron donor nor present in iron mats in which organic carbon was destroyed by heating. Mass spectral analysis indicates that the molecule bears the hallmarks of a pterin-bearing molecule. Genomic analysis has previously identified a molybdopterin that could be part of the electron transport chain in a number of lithotrophic iron-oxidizing bacteria, suggesting one possible source for this signal is the pterin component of this protein. The rock samples indicate the possibility that the molecule can be preserved within lithified sedimentary rocks. The specificity of the signal to organisms requiring iron in their metabolism makes this a novel biosignature with which to investigate both the evolution of life on ancient Earth and potential life on Mars.
Collapse
Affiliation(s)
| | - Amy J Williams
- 1 NASA Goddard Space Flight Center , Greenbelt, Maryland
- 2 Department of Physics, Astronomy, and Geosciences, Towson University , Towson, Maryland
| | | | - David Emerson
- 3 Bigelow Laboratory for Ocean Sciences , East Boothbay, Maine
| |
Collapse
|
8
|
Le QAT, Kim HG, Kim YH. Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst. Enzyme Microb Technol 2018; 116:1-5. [DOI: 10.1016/j.enzmictec.2018.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 01/19/2023]
|
9
|
Beblawy S, Bursac T, Paquete C, Louro R, Clarke TA, Gescher J. Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Mol Microbiol 2018; 109:571-583. [PMID: 29995975 DOI: 10.1111/mmi.14067] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Shewanella oneidensis is the best understood model organism for the study of dissimilatory iron reduction. This review focuses on the current state of our knowledge regarding this extracellular respiratory process and highlights its physiologic, regulatory and biochemical requirements. It seems that we have widely understood how respiratory electrons can reach the cell surface and what the minimal set of electron transport proteins to the cell surface is. Nevertheless, even after decades of work in different research groups around the globe there are still several important questions that were not answered yet. In particular, the physiology of this organism, the possible evolutionary benefit of some responses to anoxic conditions, as well as the exact mechanism of electron transfer onto solid electron acceptors are yet to be addressed. The elucidation of these questions will be a great challenge for future work and important for the application of extracellular respiration in biotechnological processes.
Collapse
Affiliation(s)
- Sebastian Beblawy
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (CS), Karlsruhe, Germany
| | - Thea Bursac
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (CS), Karlsruhe, Germany
| | - Catarina Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República-EAN, Oeiras, 2780-157, Portugal
| | - Ricardo Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República-EAN, Oeiras, 2780-157, Portugal
| | - Thomas A Clarke
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (CS), Karlsruhe, Germany.,Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Bennett BD, Redford KE, Gralnick JA. MgtE Homolog FicI Acts as a Secondary Ferrous Iron Importer in Shewanella oneidensis Strain MR-1. Appl Environ Microbiol 2018; 84:e01245-17. [PMID: 29330185 PMCID: PMC5835737 DOI: 10.1128/aem.01245-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 01/05/2018] [Indexed: 01/28/2023] Open
Abstract
The transport of metals into and out of cells is necessary for the maintenance of appropriate intracellular concentrations. Metals are needed for incorporation into metalloproteins but become toxic at higher concentrations. Many metal transport proteins have been discovered in bacteria, including the Mg2+ transporter E (MgtE) family of passive Mg2+/Co2+ cation-selective channels. Low sequence identity exists between members of the MgtE family, indicating that substrate specificity may differ among MgtE transporters. Under anoxic conditions, dissimilatory metal-reducing bacteria, such as Shewanella and Geobacter species, are exposed to high levels of soluble metals, including Fe2+ and Mn2+ Here we characterize SO_3966, which encodes an MgtE homolog in Shewanella oneidensis that we name FicI (ferrous iron and cobalt importer) based on its role in maintaining metal homeostasis. A SO_3966 deletion mutant exhibits enhanced growth over that of the wild type under conditions with high Fe2+ or Co2+ concentrations but exhibits wild-type Mg2+ transport and retention phenotypes. Conversely, deletion of feoB, which encodes an energy-dependent Fe2+ importer, causes a growth defect under conditions of low Fe2+ concentrations but not high Fe2+ concentrations. We propose that FicI represents a secondary, less energy-dependent mechanism for iron uptake by S. oneidensis under high Fe2+ concentrations.IMPORTANCEShewanella oneidensis MR-1 is a target of microbial engineering for potential uses in biotechnology and the bioremediation of heavy-metal-contaminated environments. A full understanding of the ways in which S. oneidensis interacts with metals, including the means by which it transports metal ions, is important for optimal genetic engineering of this and other organisms for biotechnology purposes such as biosorption. The MgtE family of metal importers has been described previously as Mg2+ and Co2+ transporters. This work broadens that designation with the discovery of an MgtE homolog in S. oneidensis that imports Fe2+ but not Mg2+ The research presented here also expands our knowledge of the means by which microorganisms have adapted to take up essential nutrients such as iron under various conditions.
Collapse
Affiliation(s)
- Brittany D Bennett
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Kaitlyn E Redford
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
11
|
Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1. Bioelectrochemistry 2018; 119:172-179. [DOI: 10.1016/j.bioelechem.2017.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 11/19/2022]
|
12
|
Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering. Metab Eng 2017; 45:109-120. [PMID: 29229581 DOI: 10.1016/j.ymben.2017.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/15/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
Abstract
More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering.
Collapse
|
13
|
Qiu TA, Meyer BM, Christenson KG, Klaper RD, Haynes CL. A mechanistic study of TiO 2 nanoparticle toxicity on Shewanella oneidensis MR-1 with UV-containing simulated solar irradiation: Bacterial growth, riboflavin secretion, and gene expression. CHEMOSPHERE 2017; 168:1158-1168. [PMID: 27823777 DOI: 10.1016/j.chemosphere.2016.10.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/14/2016] [Accepted: 10/22/2016] [Indexed: 06/06/2023]
Abstract
Toxicity of nanomaterials to ecological systems has recently emerged as an important field of research, and thus, many researchers are exploring the mechanisms of how nanoparticles impact organisms. Herein, we probe the mechanisms of bacteria-nanoparticle interaction by investigating how TiO2 nanoparticles impact a model organism, the metal-reducing bacterium Shewanella oneidensis MR-1. In addition to examining the effect of TiO2 exposure, the effect of synergistic simulated solar irradiation containing UV was explored in this study, as TiO2 nanoparticles are known photocatalysts. The data reveal that TiO2 nanoparticles cause an inhibition of S. oneidensis growth at high dosage without compromising cell viability, yet co-exposure of nanoparticles and illumination does not increase the adverse effects on bacterial growth relative to TiO2 alone. Measurements of intracellular reactive oxygen species and riboflavin secretion, on the same nanoparticle-exposed bacteria, reveal that TiO2 nanoparticles have no effect on these cell functions, but application of UV-containing illumination with TiO2 nanoparticles has an impact on the level of riboflavin outside bacterial cells. Finally, gene expression studies were employed to explore how cells respond to TiO2 nanoparticles and illumination, and these results were correlated with cell growth and cell function assessment. Together these data suggest a minimal impact of TiO2 NPs and simulated solar irradiation containing UV on S. oneidensis MR-1, and the minimal impact could be accounted for by the nutrient-rich medium used in this work. These measurements demonstrate a comprehensive scheme combining various analytical tools to enable a mechanistic understanding of nanoparticle-cell interactions and to evaluate the potential adverse effects of nanoparticles beyond viability/growth considerations.
Collapse
Affiliation(s)
- Tian A Qiu
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, United States
| | - Ben M Meyer
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, United States
| | - Ky G Christenson
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, United States
| | - Rebecca D Klaper
- School of Freshwater Sciences, University of Wisconsin Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, United States
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
14
|
Sheng A, Liu F, Shi L, Liu J. Aggregation Kinetics of Hematite Particles in the Presence of Outer Membrane Cytochrome OmcA of Shewanella oneidenesis MR-1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11016-11024. [PMID: 27648604 DOI: 10.1021/acs.est.6b02963] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The aggregation behavior of 9, 36, and 112 nm hematite particles was studied in the presence of OmcA, a bacterial extracellular protein, in aqueous dispersions at pH 5.7 through time-resolved dynamic light scattering, electrophoretic mobility, and circular dichroism spectra, respectively. At low salt concentration, the attachment efficiencies of hematite particles in all sizes first increased, then decreased, and finally remained stable with the increase of OmcA concentration, indicating the dominant interparticle interaction changed along with the increase in the protein-to-particle ratio. Nevertheless, at high salt concentration, the attachment efficiencies of all hematite samples gradually decreased with increasing OmcA concentration, which can be attributed to increasing steric force. Additionally, the aggregation behavior of OmcA-hematite conjugates was more correlated to total particle-surface area than primary particle size. It was further established that OmcA could stabilize hematite nanoparticles more efficiently than bovine serum albumin (BSA), a model plasma protein, due to the higher affinity of OmcA to hematite surface. This study highlighted the effects of particle properties, solution conditions, and protein properties on the complicated aggregation behavior of protein-nanoparticle conjugates in aqueous environments.
Collapse
Affiliation(s)
- Anxu Sheng
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, P. R. China
| | - Feng Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, P. R. China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geoscience in Wuhan , Wuhan, Hubei 430074, China
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University , Beijing 100871, P. R. China
| |
Collapse
|
15
|
Soe CZ, Telfer TJ, Levina A, Lay PA, Codd R. Simultaneous biosynthesis of putrebactin, avaroferrin and bisucaberin by Shewanella putrefaciens and characterisation of complexes with iron(III), molybdenum(VI) or chromium(V). J Inorg Biochem 2016; 162:207-215. [DOI: 10.1016/j.jinorgbio.2015.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/06/2015] [Accepted: 12/14/2015] [Indexed: 12/19/2022]
|
16
|
Lu M, Chan S, Babanova S, Bretschger O. Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems. Biotechnol Bioeng 2016; 114:96-105. [PMID: 27399911 PMCID: PMC5132103 DOI: 10.1002/bit.26046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/06/2016] [Indexed: 02/03/2023]
Abstract
Extracellular electron transfer (EET) is a mechanism that enables microbes to respire solid‐phase electron acceptors. These EET reactions most often occur in the absence of oxygen, since oxygen can act as a competitive electron acceptor for many facultative microbes. However, for Shewanella oneidensis MR‐1, oxygen may increase biomass development, which could result in an overall increase in EET activity. Here, we studied the effect of oxygen on S. oneidensis MR‐1 EET rates using bioelectrochemical systems (BESs). We utilized optically accessible BESs to monitor real‐time biomass growth, and studied the per‐cell EET rate as a function of oxygen and riboflavin concentrations in BESs of different design and operational conditions. Our results show that oxygen exposure promotes biomass development on the electrode, but significantly impairs per‐cell EET rates even though current production does not always decrease with oxygen exposure. Additionally, our results indicated that oxygen can affect the role of riboflavin in EET. Under anaerobic conditions, both current density and per‐cell EET rate increase with the riboflavin concentration. However, as the dissolved oxygen (DO) value increased to 0.42 mg/L, riboflavin showed very limited enhancement on per‐cell EET rate and current generation. Since it is known that oxygen can promote flavins secretion in S. oneidensis, the role of riboflavin may change under anaerobic and aerobic conditions. Biotechnol. Bioeng. 2017;114: 96–105. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mengqian Lu
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037
| | - Shirley Chan
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037
| | - Sofia Babanova
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037.,Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico
| | - Orianna Bretschger
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037
| |
Collapse
|
17
|
Baker PW, Högstrand C, Lead J, Pickup RW, Zhang H. Immobilization of Shewanella oneidensis MR-1 in diffusive gradients in thin films for determining metal bioavailability. CHEMOSPHERE 2015; 138:309-315. [PMID: 26093096 DOI: 10.1016/j.chemosphere.2015.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 05/26/2015] [Accepted: 06/08/2015] [Indexed: 06/04/2023]
Abstract
Assessing metal bioavailability in soil is important in modeling the effects of metal toxicity on the surrounding ecosystem. Current methods based on diffusive gradient thin films (DGTs) and Gel-Integrated Microelectrode are limited in their availability and sensitivity. To address this, Shewanella oneidensis, an anaerobic iron reducing bacterium, was incorporated into a thin layer of agarose to replace the polyacrylamide gel that is normally present in DGT to form biologically mobilizing DGT (BMDGT). Viability analysis revealed that 16-35% of the cells remained viable within the BMDGTs depending on the culturing conditions over a 20 h period with/without metals. Deployment of BMDGTs in standardized metal solutions showed significant differences to cell-free BMDGTs when cells grown in Luria Broth (LB) were incorporated into BMDGTs and deployed under anaerobic conditions. Deployment of these BMDGTs in hematite revealed no significant differences between BMDGTs and BMDGTs containing heat killed cells. Whether heat killed cells retain the ability to affect bioavailability is uncertain. This is the first study to investigate how a microorganism that was incorporated into a DGT device such as the metal reducing bacteria, S. oneidensis, may affect the mobility of metals.
Collapse
Affiliation(s)
- Paul W Baker
- Lancaster Environmental Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Christer Högstrand
- School of Biomedical Sciences, 1.14 Hodgkin Building, Guy's Campus, London LE1 1UL, UK
| | - Jamie Lead
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roger W Pickup
- Division of Biomedicine and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hao Zhang
- Lancaster Environmental Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| |
Collapse
|
18
|
Guo W, Luo S, He Z, Feng X. 13C pathway analysis of biofilm metabolism of Shewanella oneidensis MR-1. RSC Adv 2015. [DOI: 10.1039/c5ra05573c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biofilm metabolism ofShewanellawas analyzedvia13C tracing experiments for the first time.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Biological Systems Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Shuai Luo
- Department of Civil and Environmental Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Zhen He
- Department of Civil and Environmental Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Xueyang Feng
- Department of Biological Systems Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| |
Collapse
|
19
|
Clark IC, Melnyk RA, Iavarone AT, Novichkov PS, Coates JD. Chlorate reduction in Shewanella algae ACDC is a recently acquired metabolism characterized by gene loss, suboptimal regulation and oxidative stress. Mol Microbiol 2014; 94:107-25. [PMID: 25099177 DOI: 10.1111/mmi.12746] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2014] [Indexed: 12/25/2022]
Abstract
Previous work on respiratory chlorate reduction has biochemically identified the terminal reductase ClrABC and the chlorite detoxifying enzyme Cld. In Shewanella algae ACDC, genes encoding these enzymes reside on composite transposons whose core we refer to as the chlorate reduction composite transposon interior (CRI). To better understand this metabolism in ACDC, we used RNA-seq and proteomics to predict carbon and electron flow during chlorate reduction and posit that formate is an important electron carrier with lactate as the electron donor, but that NADH predominates on acetate. Chlorate-specific transcription of electron transport chain components or the CRI was not observed, but clr and cld transcription was attenuated by oxygen. The major chlorate-specific response related to oxidative stress and was indicative of reactive chlorine species production. A genetic system based on rpsL-streptomycin counter selection was developed to further dissect the metabolism, but ACDC readily lost the CRI via homologous recombination of the composite transposon's flanking insertion sequences. An engineered strain containing a single chromosomal CRI did not grow on chlorate, but overexpression of cld and its neighbouring cytochrome c restored growth. We postulate that the recently acquired CRI underwent copy-number expansion to circumvent insufficient expression of key genes in the pathway.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA
| | | | | | | | | |
Collapse
|
20
|
Zhang H, Lu H, Wang J, Zhang T, Liu G, Zhou J. Transcriptional analysis of Escherichia coli during Acid Red 18 decolorization. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Yang Y, Xiang Y, Xia C, Wu WM, Sun G, Xu M. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2014; 164:270-275. [PMID: 24862003 DOI: 10.1016/j.biortech.2014.04.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 06/03/2023]
Abstract
To understand the interactions between bacterial electrode respiration and the other ambient bacterial electron acceptor reductions, alternative electron acceptors (nitrate, Fe2O3, fumarate, azo dye MB17) were added singly or multiply into Shewanella decolorationis microbial fuel cells (MFCs). All the added electron acceptors were reduced simultaneously with current generation. Adding nitrate or MB17 resulted in more rapid cell growth, higher flavin concentration and higher biofilm metabolic viability, but lower columbic efficiency (CE) and normalized energy recovery (NER) while the CE and NER were enhanced by Fe2O3 or fumarate. The added electron acceptors also significantly influenced the cyclic voltammetry profile of anode biofilm probably via altering the cytochrome c expression. The highest power density was observed in MFCs added with MB17 due to the electron shuttle role of the naphthols from MB17 reduction. The results provided important information for MFCs applied in practical environments where contains various electron acceptors.
Collapse
Affiliation(s)
- Yonggang Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yinbo Xiang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Chunyu Xia
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Wei-Min Wu
- Department of Civil & Environmental Engineering, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford 94305-4020, USA
| | - Guoping Sun
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.
| |
Collapse
|
22
|
Paquete CM, Saraiva IH, Louro RO. Redox tuning of the catalytic activity of soluble fumarate reductases from Shewanella. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:717-25. [DOI: 10.1016/j.bbabio.2014.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
23
|
Global transcriptome analysis of Escherichia coli exposed to immobilized anthraquinone-2-sulfonate and azo dye under anaerobic conditions. Appl Microbiol Biotechnol 2013; 97:6895-905. [PMID: 23820558 DOI: 10.1007/s00253-013-5066-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/04/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
The immobilization of quinone compounds is regarded as a promising strategy to accelerate anaerobic decolorization of xenobiotic compounds azo dyes in the presence of quinone-reducing microorganisms. However, little is known about the basic response of these microorganisms to immobilized quinones in the presence of azo dyes. In the present study, whole-genome DNA microarrays were used to investigate a quinone-reducing bacterium Escherichia coli K-12 transcription response to immobilized anthraquinone-2-sulfonate (AQSim) reduction and azo dye acid red 18 (AR 18) decolorization. Transcriptome analysis showed that AQSim was more accessible for the cells of E. coli K-12 than AR 18. Despite there being some differences between AQSim and soluble AQS mediated decolorization of AR 18, AQSim reduction and AR 18 decolorization, more similarity could be observed in the four processes. Among over 60 % shared genes, several groups of genes exhibited high expression levels, including those genes encoding terminal reductases, menaquinone biosynthesis, formate dehydrogenases and outer membrane proteins. Especially, nrfABCD, frdBCD and dsmABC encoding terminal reductases were significantly upregulated. Further gene deletion experiments demonstrated that the above three groups of genes were involved in AQSim-mediated AR 18 decolorization. In addition, significant upregulation of stress response genes was observed, which indicated the adaptation of E. coli K-12 to AQSim and AR 18 exposures.
Collapse
|
24
|
Roy JN, Luckarift HR, Sizemore SR, Farrington KE, Lau C, Johnson GR, Atanassov P. Microbial-enzymatic-hybrid biological fuel cell with optimized growth conditions for Shewanella oneidensis DSP-10. Enzyme Microb Technol 2013; 53:123-7. [DOI: 10.1016/j.enzmictec.2013.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 10/26/2022]
|
25
|
Aklujkar M, Coppi MV, Leang C, Kim BC, Chavan MA, Perpetua LA, Giloteaux L, Liu A, Holmes DE. Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. MICROBIOLOGY-SGM 2013; 159:515-535. [PMID: 23306674 DOI: 10.1099/mic.0.064089-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole-genome microarray analysis of Geobacter sulfurreducens grown on insoluble Fe(III) oxide or Mn(IV) oxide versus soluble Fe(III) citrate revealed significantly different expression patterns. The most upregulated genes, omcS and omcT, encode cell-surface c-type cytochromes, OmcS being required for Fe(III) and Mn(IV) oxide reduction. Other electron transport genes upregulated on both metal oxides included genes encoding putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc4 and Cbc5, periplasmic c-type cytochromes Dhc2 and PccF, outer membrane c-type cytochromes OmcC, OmcG and OmcV, multicopper oxidase OmpB, the structural components of electrically conductive pili, PilA-N and PilA-C, and enzymes that detoxify reactive oxygen/nitrogen species. Genes upregulated on Fe(III) oxide encode putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc3 and Cbc6, periplasmic c-type cytochromes, including PccG and PccJ, and outer membrane c-type cytochromes, including OmcA, OmcE, OmcH, OmcL, OmcN, OmcO and OmcP. Electron transport genes upregulated on Mn(IV) oxide encode periplasmic c-type cytochromes PccR, PgcA, PpcA and PpcD, outer membrane c-type cytochromes OmaB/OmaC, OmcB and OmcZ, multicopper oxidase OmpC and menaquinone-reducing enzymes. Genetic studies indicated that MacA, OmcB, OmcF, OmcG, OmcH, OmcI, OmcJ, OmcM, OmcV and PccH, the putative Cbc5 complex subunit CbcC and the putative Cbc3 complex subunit CbcV are important for reduction of Fe(III) oxide but not essential for Mn(IV) oxide reduction. Gene expression patterns for Geobacter uraniireducens were similar. These results demonstrate that the physiology of Fe(III)-reducing bacteria differs significantly during growth on different insoluble and soluble electron acceptors and emphasize the importance of c-type cytochromes for extracellular electron transfer in G. sulfurreducens.
Collapse
Affiliation(s)
- M Aklujkar
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - M V Coppi
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - C Leang
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - B C Kim
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - M A Chavan
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - L A Perpetua
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - L Giloteaux
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - A Liu
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - D E Holmes
- Department of Physical and Biological Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
26
|
The quest to achieve the detailed structural and functional characterization of CymA. Biochem Soc Trans 2012; 40:1291-4. [PMID: 23176470 DOI: 10.1042/bst20120114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Shewanella oneidensis MR-1 is a sediment organism capable of dissimilatory reduction of insoluble metal compounds such as those of Fe(II) and Mn(IV). This bacterium has been used as a model organism for potential applications in bioremediation of contaminated environments and in the production of energy in microbial fuel cells. The capacity of Shewanella to perform extracellular reduction of metals is linked to the action of several multihaem cytochromes that may be periplasmic or can be associated with the inner or outer membrane. One of these cytochromes is CymA, a membrane-bound tetrahaem cytochrome localized in the periplasm that mediates the electron transfer between the quinone pool in the cytoplasmic membrane and several periplasmic proteins. Although CymA has the capacity to regulate multiple anaerobic respiratory pathways, little is known about the structure and functional mechanisms of this focal protein. Understanding the structure and function of membrane proteins is hampered by inherent difficulties associated with their purification since the choice of the detergents play a critical role in the protein structure and stability. In the present mini-review, we detail the current state of the art in the characterization of CymA, and add recent information on haem structural behaviour for CymA solubilized in different detergents. These structural differences are deduced from NMR spectroscopy data that provide information on the geometry of the haem axial ligands. At least two different conformational forms of CymA are observed for different detergents, which seem to be related to the micelle size. These results provide guidance for the discovery of the most promising detergent that mimics the native lipid bilayer and is compatible with biochemical and structural studies.
Collapse
|
27
|
Brutinel ED, Gralnick JA. Anomalies of the anaerobic tricarboxylic acid cycle inShewanella oneidensisrevealed by Tn-seq. Mol Microbiol 2012; 86:273-83. [DOI: 10.1111/j.1365-2958.2012.08196.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Evan D. Brutinel
- BioTechnology Institute and Department of Microbiology; University of Minnesota-Twin Cities; St Paul; MN; 55108; USA
| | - Jeffrey A. Gralnick
- BioTechnology Institute and Department of Microbiology; University of Minnesota-Twin Cities; St Paul; MN; 55108; USA
| |
Collapse
|
28
|
Beg QK, Zampieri M, Klitgord N, Collins SB, Altafini C, Serres MH, Segrè D. Detection of transcriptional triggers in the dynamics of microbial growth: application to the respiratorily versatile bacterium Shewanella oneidensis. Nucleic Acids Res 2012; 40:7132-49. [PMID: 22638572 PMCID: PMC3424579 DOI: 10.1093/nar/gks467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The capacity of microorganisms to respond to variable external conditions requires a coordination of environment-sensing mechanisms and decision-making regulatory circuits. Here, we seek to understand the interplay between these two processes by combining high-throughput measurement of time-dependent mRNA profiles with a novel computational approach that searches for key genetic triggers of transcriptional changes. Our approach helped us understand the regulatory strategies of a respiratorily versatile bacterium with promising bioenergy and bioremediation applications, Shewanella oneidensis, in minimal and rich media. By comparing expression profiles across these two conditions, we unveiled components of the transcriptional program that depend mainly on the growth phase. Conversely, by integrating our time-dependent data with a previously available large compendium of static perturbation responses, we identified transcriptional changes that cannot be explained solely by internal network dynamics, but are rather triggered by specific genes acting as key mediators of an environment-dependent response. These transcriptional triggers include known and novel regulators that respond to carbon, nitrogen and oxygen limitation. Our analysis suggests a sequence of physiological responses, including a coupling between nitrogen depletion and glycogen storage, partially recapitulated through dynamic flux balance analysis, and experimentally confirmed by metabolite measurements. Our approach is broadly applicable to other systems.
Collapse
Affiliation(s)
- Qasim K Beg
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Coursolle D, Gralnick JA. Reconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1. Front Microbiol 2012; 3:56. [PMID: 22363330 PMCID: PMC3282943 DOI: 10.3389/fmicb.2012.00056] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/02/2012] [Indexed: 11/13/2022] Open
Abstract
Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components facilitate transfer of electrons from the c-type cytochrome CymA in the cytoplasmic membrane to electron acceptors at and beyond the outer-membrane. The genes encoding these core proteins have paralogs in the S. oneidensis genome (mtrB and mtrA each have four while mtrC has three) and some of the paralogs of mtrC and mtrA are able to form functional Mtr complexes. We demonstrate that of the additional three mtrB paralogs found in the S. oneidensis genome, only MtrE can replace MtrB to form a functional respiratory pathway to soluble iron(III) citrate. We also evaluate which mtrC/mtrA paralog pairs (a total of 12 combinations) are able to form functional complexes with endogenous levels of mtrB paralog expression. Finally, we reconstruct all possible functional Mtr complexes and test them in a S. oneidensis mutant strain where all paralogs have been eliminated from the genome. We find that each combination tested with the exception of MtrA/MtrE/OmcA is able to reduce iron(III) citrate at a level significantly above background. The results presented here have implications toward the evolution of anaerobic extracellular respiration in Shewanella and for future studies looking to increase the rates of substrate reduction for water treatment, bioremediation, or electricity production.
Collapse
Affiliation(s)
- Dan Coursolle
- Department of Microbiology, BioTechnology Institute, University of Minnesota Twin Cities St. Paul, MN, USA
| | | |
Collapse
|
30
|
Rosenbaum MA, Bar HY, Beg QK, Segrè D, Booth J, Cotta MA, Angenent LT. Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor. PLoS One 2012; 7:e30827. [PMID: 22319591 PMCID: PMC3271074 DOI: 10.1371/journal.pone.0030827] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/29/2011] [Indexed: 11/19/2022] Open
Abstract
Shewanella oneidensis is a target of extensive research in the fields of bioelectrochemical systems and bioremediation because of its versatile metabolic capabilities, especially with regard to respiration with extracellular electron acceptors. The physiological activity of S. oneidensis to respire at electrodes is of great interest, but the growth conditions in thin-layer biofilms make physiological analyses experimentally challenging. Here, we took a global approach to evaluate physiological activity with an electrode as terminal electron acceptor for the generation of electric current. We performed expression analysis with DNA microarrays to compare the overall gene expression with an electrode to that with soluble iron(III) or oxygen as the electron acceptor and applied new hierarchical model-based statistics for the differential expression analysis. We confirmed the differential expression of many genes that have previously been reported to be involved in electrode respiration, such as the entire mtr operon. We also formulate hypotheses on other possible gene involvements in electrode respiration, for example, a role of ScyA in inter-protein electron transfer and a regulatory role of the cbb3-type cytochrome c oxidase under anaerobic conditions. Further, we hypothesize that electrode respiration imposes a significant stress on S. oneidensis, resulting in higher energetic costs for electrode respiration than for soluble iron(III) respiration, which fosters a higher metabolic turnover to cover energy needs. Our hypotheses now require experimental verification, but this expression analysis provides a fundamental platform for further studies into the molecular mechanisms of S. oneidensis electron transfer and the physiologically special situation of growth on a poised-potential surface.
Collapse
Affiliation(s)
- Miriam A. Rosenbaum
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, United States of America
| | - Haim Y. Bar
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Qasim K. Beg
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - James Booth
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
| | - Michael A. Cotta
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service (ARS), National Center for Agricultural Utilization Research (NCAUR), Peoria, Illinois, United States of America
| | - Largus T. Angenent
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Liang Y, Gao H, Guo X, Chen J, Qiu G, He Z, Zhou J, Liu X. Transcriptome analysis of pellicle formation of Shewanella oneidensis. Arch Microbiol 2012; 194:473-82. [PMID: 22228442 DOI: 10.1007/s00203-011-0782-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
Although the pellicle is one of the major growth modes of microorganisms, the metabolic features of pellicle cells and the determinative factors for pellicle formation are largely unknown. In recent years, biofilm development of Shewanella oneidensis, an important model organism for bioremediation studies, has been extensively studied. In this paper, a transcriptional profiling of pellicle cells relative to planktonic cells indicated that cells in pellicles were more metabolically active than the planktonic cells. Most notably, up-transcription of general secretion system proteins and iron/heme uptake and transport proteins was observed in pellicle cells. Unexpectedly, neither the hmuT nor hugA heme transport mutant exhibited a significant defect in pellicle formation. Expectedly, three type I secretion system mutants were severely deficient in pellicle formation, suggesting an essential role of these proteins.
Collapse
Affiliation(s)
- Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Raimunda D, Khare T, Giometti C, Vogt S, Argüello JM, Finney L. Identifying metalloproteins through X-ray fluorescence mapping and mass spectrometry. Metallomics 2012; 4:921-7. [DOI: 10.1039/c2mt20095c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Purification and characterization of the [NiFe]-hydrogenase of Shewanella oneidensis MR-1. Appl Environ Microbiol 2011; 77:5584-90. [PMID: 21724888 DOI: 10.1128/aem.00260-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Shewanella oneidensis MR-1 possesses a periplasmic [NiFe]-hydrogenase (MR-1 [NiFe]-H(2)ase) that has been implicated in H(2) production and oxidation as well as technetium [Tc(VII)] reduction. To characterize the roles of MR-1 [NiFe]-H(2)ase in these proposed reactions, the genes encoding both subunits of MR-1 [NiFe]-H(2)ase were cloned and then expressed in an MR-1 mutant without hyaB and hydA genes. Expression of recombinant MR-1 [NiFe]-H(2)ase in trans restored the mutant's ability to produce H(2) at 37% of that for the wild type. Following purification, MR-1 [NiFe]-H(2)ase coupled H(2) oxidation to reduction of Tc(VII)O(4)(-) and methyl viologen. Change of the buffers used affected MR-1 [NiFe]-H(2)ase-mediated reduction of Tc(VII)O(4)(-) but not methyl viologen. Under the conditions tested, all Tc(VII)O(4)(-) used was reduced in Tris buffer, while in HEPES buffer, only 20% of Tc(VII)O(4)(-) was reduced. The reduced products were soluble in Tris buffer but insoluble in HEPES buffer. Transmission electron microscopy analysis revealed that Tc precipitates reduced in HEPES buffer were aggregates of crystallites with diameters of ∼5 nm. Measurements with X-ray absorption near-edge spectroscopy revealed that the reduction products were a mixture of Tc(IV) and Tc(V) in Tris buffer but only Tc(IV) in HEPES buffer. Measurements with extended X-ray adsorption fine structure showed that while the Tc bonding environment in Tris buffer could not be determined, the Tc(IV) product in HEPES buffer was very similar to Tc(IV)O(2)·nH(2)O, which was also the product of Tc(VII)O(4)(-) reduction by MR-1 cells. These results shows for the first time that MR-1 [NiFe]-H(2)ase catalyzes Tc(VII)O(4)(-) reduction directly by coupling to H(2) oxidation.
Collapse
|
34
|
An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences. PLoS One 2010; 5:e13968. [PMID: 21103051 PMCID: PMC2980473 DOI: 10.1371/journal.pone.0013968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 08/24/2010] [Indexed: 01/08/2023] Open
Abstract
Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300-500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella.
Collapse
|
35
|
Phenotypic characterization of Shewanella oneidensis MR-1 under aerobic and anaerobic growth conditions by using fourier transform infrared spectroscopy and high-performance liquid chromatography analyses. Appl Environ Microbiol 2010; 76:6266-76. [PMID: 20675447 DOI: 10.1128/aem.00912-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis is able to conserve energy for growth by reducing a wide variety of terminal electron acceptors during anaerobic respiration, including several environmentally hazardous pollutants. This bacterium employs various electron transfer mechanisms for anaerobic respiration, including cell-bound reductases and secreted redox mediators. The aim of this study was to develop rapid tools for profiling the key metabolic changes associated with these different growth regimes and physiological responses. Initial experiments focused on comparing cells grown under aerobic and anaerobic conditions. Fourier transform infrared (FT-IR) spectroscopy with cluster analysis showed that there were significant changes in the metabolic fingerprints of the cells grown under these two culture conditions. FT-IR spectroscopy clearly differentiated cells of S. oneidensis MR-1 cultured at various growth points and cells grown using different electron acceptors, resulting in different phenotypic trajectories in the cluster analysis. This growth-related trajectory analysis is applied successfully for the first time, here with FT-IR spectroscopy, to investigate the phenotypic changes in contrasting S. oneidensis cells. High-performance liquid chromatography (HPLC) was also used to quantify the concentrations of flavin compounds, which have been identified recently as extracellular redox mediators released by a range of Shewanella species. The partial least-squares regression (PLSR) multivariate statistical technique was combined with FT-IR spectroscopy to predict the concentrations of the flavins secreted by cells of S. oneidensis MR-1, suggesting that this combination could be used as a rapid alternative to conventional chromatographic methods for analysis of flavins in cell cultures. Furthermore, coupling of the FT-IR spectroscopy and HPLC techniques appears to offer a potentially useful tool for rapid characterization of the Shewanella cell metabolome in various process environments.
Collapse
|
36
|
Paquete CM, Louro RO. Molecular details of multielectron transfer: the case of multiheme cytochromes from metal respiring organisms. Dalton Trans 2009; 39:4259-66. [PMID: 20422082 DOI: 10.1039/b917952f] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Shewanella are facultative anaerobic bacteria of remarkable respiratory versatility that includes the dissimilatory reduction of metal ores. They contain a large number of multiheme c-type cytochromes that play a significant role in various anaerobic respiratory processes. Of all the cytochromes found in Shewanella, only the two most abundant periplasmic cytochromes, the small tetraheme cytochrome (STC) and flavocytochrome c(3) (Fcc(3)) have been structurally characterized. For these two proteins the molecular bases for their redox properties were determined using spectroscopic methods based on paramagnetic NMR, that allow the contribution of specific hemes to be discriminated. In this perspective these results are reviewed in the context of the continuing effort to understand the molecular mechanisms of electron transfer in the respiratory chains of these organisms.
Collapse
|
37
|
Xu X, Ji Y, Stormo GD. Discovering cis-regulatory RNAs in Shewanella genomes by Support Vector Machines. PLoS Comput Biol 2009; 5:e1000338. [PMID: 19343219 PMCID: PMC2659441 DOI: 10.1371/journal.pcbi.1000338] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 02/24/2009] [Indexed: 12/31/2022] Open
Abstract
An increasing number of cis-regulatory RNA elements have been found to regulate gene expression post-transcriptionally in various biological processes in bacterial systems. Effective computational tools for large-scale identification of novel regulatory RNAs are strongly desired to facilitate our exploration of gene regulation mechanisms and regulatory networks. We present a new computational program named RSSVM (RNA Sampler+Support Vector Machine), which employs Support Vector Machines (SVMs) for efficient identification of functional RNA motifs from random RNA secondary structures. RSSVM uses a set of distinctive features to represent the common RNA secondary structure and structural alignment predicted by RNA Sampler, a tool for accurate common RNA secondary structure prediction, and is trained with functional RNAs from a variety of bacterial RNA motif/gene families covering a wide range of sequence identities. When tested on a large number of known and random RNA motifs, RSSVM shows a significantly higher sensitivity than other leading RNA identification programs while maintaining the same false positive rate. RSSVM performs particularly well on sets with low sequence identities. The combination of RNA Sampler and RSSVM provides a new, fast, and efficient pipeline for large-scale discovery of regulatory RNA motifs. We applied RSSVM to multiple Shewanella genomes and identified putative regulatory RNA motifs in the 5′ untranslated regions (UTRs) in S. oneidensis, an important bacterial organism with extraordinary respiratory and metal reducing abilities and great potential for bioremediation and alternative energy generation. From 1002 sets of 5′-UTRs of orthologous operons, we identified 166 putative regulatory RNA motifs, including 17 of the 19 known RNA motifs from Rfam, an additional 21 RNA motifs that are supported by literature evidence, 72 RNA motifs overlapping predicted transcription terminators or attenuators, and other candidate regulatory RNA motifs. Our study provides a list of promising novel regulatory RNA motifs potentially involved in post-transcriptional gene regulation. Combined with the previous cis-regulatory DNA motif study in S. oneidensis, this genome-wide discovery of cis-regulatory RNA motifs may offer more comprehensive views of gene regulation at a different level in this organism. The RSSVM software, predictions, and analysis results on Shewanella genomes are available at http://ural.wustl.edu/resources.html#RSSVM. RNA is remarkably versatile, acting not only as messengers to transfer genetic information from DNA to protein but also as critical structural components and catalytic enzymes in the cell. More intriguingly, RNA elements in messenger RNAs have been widely found in bacteria to control the expression of their downstream genes. The functions of these RNA elements are intrinsically linked to their secondary structures, which are usually conserved across multiple closely related species during evolution and often shared by genes in the same metabolic pathways. We developed a new computational approach to find putative functional RNA elements by looking for conserved RNA secondary structures that are distinguished from random RNA secondary structures in the orthologous RNA sequences from related species. We applied this approach to multiple Shewanella genomes and predicted putative regulatory RNA elements in Shewanella oneidensis, a bacterium that has extraordinary respiratory and metal reducing abilities and great potential for bioremediation and alternative energy generation. Our findings not only recovered many RNA elements that are known or supported by literature evidence but also included exciting novel RNA elements for further exploration.
Collapse
Affiliation(s)
- Xing Xu
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yongmei Ji
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gary D. Stormo
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
38
|
Elias DA, Mukhopadhyay A, Joachimiak MP, Drury EC, Redding AM, Yen HCB, Fields MW, Hazen TC, Arkin AP, Keasling JD, Wall JD. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation. Nucleic Acids Res 2009; 37:2926-39. [PMID: 19293273 PMCID: PMC2685097 DOI: 10.1093/nar/gkp164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hypothetical (HyP) and conserved HyP genes account for >30% of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved HyP (9.5%) along with 887 HyP genes (24.4%). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 HyP and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC–MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. One thousand two hundred and twelve of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.
Collapse
Affiliation(s)
- Dwayne A Elias
- Department of Biochemistry, Virtual Institute for Microbial Stress and Survival, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gassman NR, Ho SO, Korlann Y, Chiang J, Wu Y, Perry LJ, Kim Y, Weiss S. In vivo assembly and single-molecule characterization of the transcription machinery from Shewanella oneidensis MR-1. Protein Expr Purif 2008; 65:66-76. [PMID: 19111618 DOI: 10.1016/j.pep.2008.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 11/12/2008] [Accepted: 11/12/2008] [Indexed: 11/30/2022]
Abstract
Harnessing the new bioremediation and biotechnology applications offered by the dissimilatory metal-reducing bacteria, Shewanella oneidensis MR-1, requires a clear understanding of its transcription machinery, a pivotal component in maintaining vitality and in responding to various conditions, including starvation and environmental stress. Here, we have reconstituted the S. oneidensis RNA polymerase (RNAP) core in vivo by generating a co-overexpression construct that produces a long polycistronic mRNA encoding all of the core subunits (alpha, beta, beta', and omega) and verified that this reconstituted core is capable of forming fully functional holoenzymes with the S. oneidensis sigma factors sigma(70), sigma(38), sigma(32), and sigma(24). Further, to demonstrate the applications for this reconstituted core, we report the application of single-molecule fluorescence resonance energy transfer (smFRET) assays to monitor the mechanisms of transcription by the S. oneidensis sigma(70)-RNAP holoenyzme. These results show that the reconstituted transcription machinery from S. oneidensis, like its Escherichia coli counterpart, "scrunches" the DNA into its active center during initial transcription, and that as the holoenzyme transitions into elongation, the release of sigma(70) is non-obligatory.
Collapse
Affiliation(s)
- Natalie R Gassman
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
While hundreds of microbial genomes are sequenced, the challenge remains to define their cis-regulatory maps. Here, we present a comparative genomic analysis of the cis-regulatory map of Shewanella oneidensis, an important model organism for bioremediation because of its extraordinary abilities to use a wide variety of metals and organic molecules as electron acceptors in respiration. First, from the experimentally verified transcriptional regulatory networks of Escherichia coli, we inferred 24 DNA motifs that are conserved in S. oneidensis. We then applied a new comparative approach on five Shewanella genomes that allowed us to systematically identify 194 nonredundant palindromic DNA motifs and corresponding regulons in S. oneidensis. Sixty-four percent of the predicted motifs are conserved in at least three of the seven newly sequenced and distantly related Shewanella genomes. In total, we obtained 209 unique DNA motifs in S. oneidensis that cover 849 unique transcription units. Besides conservation in other genomes, 77 of these motifs are supported by at least one additional type of evidence, including matching to known transcription factor binding motifs and significant functional enrichment or expression coherence of the corresponding target genes. Using the same approach on a more focused gene set, 990 differentially expressed genes derived from published microarray data of S. oneidensis during exposure to metal ions, we identified 31 putative cis-regulatory motifs (16 with at least one type of additional supporting evidence) that are potentially involved in the process of metal reduction. The majority (18/31) of those motifs had been found in our whole-genome comparative approach, further demonstrating that such an approach is capable of uncovering a large fraction of the regulatory map of a genome even in the absence of experimental data. The integrated computational approach developed in this study provides a useful strategy to identify genome-wide cis-regulatory maps and a novel avenue to explore the regulatory pathways for particular biological processes in bacterial systems.
Collapse
Affiliation(s)
- Jiajian Liu
- Department of Genetics, Washington University School of Medicine, 660 S Euclid, Box 8232, St Louis, MO 63110, USA
| | | | | |
Collapse
|
41
|
Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production. Appl Environ Microbiol 2008; 74:4277-84. [PMID: 18515480 DOI: 10.1128/aem.02901-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Pelobacter species are closely related to Geobacter species, recent studies suggested that Pelobacter carbinolicus may reduce Fe(III) via a different mechanism because it lacks the outer-surface c-type cytochromes that are required for Fe(III) reduction by Geobacter sulfurreducens. Investigation into the mechanisms for Fe(III) reduction demonstrated that P. carbinolicus had growth yields on both soluble and insoluble Fe(III) consistent with those of other Fe(III)-reducing bacteria. Comparison of whole-genome transcript levels during growth on Fe(III) versus fermentative growth demonstrated that the greatest apparent change in gene expression was an increase in transcript levels for four contiguous genes. These genes encode two putative periplasmic thioredoxins; a putative outer-membrane transport protein; and a putative NAD(FAD)-dependent dehydrogenase with homology to disulfide oxidoreductases in the N terminus, rhodanese (sulfurtransferase) in the center, and uncharacterized conserved proteins in the C terminus. Unlike G. sulfurreducens, transcript levels for cytochrome genes did not increase in P. carbinolicus during growth on Fe(III). P. carbinolicus could use sulfate as the sole source of sulfur during fermentative growth, but required elemental sulfur or sulfide for growth on Fe(III). The increased expression of genes potentially involved in sulfur reduction, coupled with the requirement for sulfur or sulfide during growth on Fe(III), suggests that P. carbinolicus reduces Fe(III) via an indirect mechanism in which (i) elemental sulfur is reduced to sulfide and (ii) the sulfide reduces Fe(III) with the regeneration of elemental sulfur. This contrasts with the direct reduction of Fe(III) that has been proposed for Geobacter species.
Collapse
|
42
|
Zhang H, Tang X, Munske GR, Zakharova N, Yang L, Zheng C, Wolff MA, Tolic N, Anderson GA, Shi L, Marshall MJ, Fredrickson JK, Bruce JE. In vivo identification of the outer membrane protein OmcA-MtrC interaction network in Shewanella oneidensis MR-1 cells using novel hydrophobic chemical cross-linkers. J Proteome Res 2008; 7:1712-20. [PMID: 18303833 DOI: 10.1021/pr7007658] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Outer membrane (OM) cytochromes OmcA (SO1779) and MtrC (SO1778) are the integral components of electron transfer used by Shewanella oneidensis for anaerobic respiration of metal (hydr)oxides. Here the OmcA-MtrC interaction was identified in vivo using a novel hydrophobic chemical cross-linker (MRN) combined with immunoprecipitation techniques. In addition, identification of other OM proteins from the cross-linked complexes allows first visualization of the OmcA-MtrC interaction network. Further experiments on omcA and mtrC mutant cells showed OmcA plays a central role in the network interaction. For comparison, two commercial cross-linkers were also used in parallel, and both resulted in fewer OM protein identifications, indicating the superior properties of MRN for identification of membrane protein interactions. Finally, comparison experiments of in vivo cross-linking and cell lysate cross-linking resulted in significantly different protein interaction data, demonstrating the importance of in vivo cross-linking for study of protein-protein interactions in cells.
Collapse
Affiliation(s)
- Haizhen Zhang
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The shewanellae are aquatic microorganisms with worldwide distribution. Their hallmark features include unparalleled respiratory diversity and the capacity to thrive at low temperatures. As a genus the shewanellae are physiologically diverse, and this review provides an overview of the varied roles they serve in the environment and describes what is known about how they might survive in such extreme and harsh environments. In light of their fascinating physiology, these organisms have several biotechnological uses, from bioremediation of chlorinated compounds, radionuclides, and other environmental pollutants to energy-generating biocatalysis. The ecology and biotechnology of these organisms are intertwined, with genomics playing a key role in our understanding of their physiology.
Collapse
Affiliation(s)
- Heidi H Hau
- Department of Microbiology and The BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
44
|
Elias DA, Tollaksen SL, Kennedy DW, Mottaz HM, Giometti CS, McLean JS, Hill EA, Pinchuk GE, Lipton MS, Fredrickson JK, Gorby YA. The influence of cultivation methods on Shewanella oneidensis physiology and proteome expression. Arch Microbiol 2007; 189:313-24. [PMID: 18030449 PMCID: PMC2270922 DOI: 10.1007/s00203-007-0321-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/31/2007] [Accepted: 10/24/2007] [Indexed: 11/29/2022]
Abstract
High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanellaoneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research.
Collapse
Affiliation(s)
- Dwayne A Elias
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ahrendt AJ, Tollaksen SL, Lindberg C, Zhu W, Yates JR, Nevin KP, Babnigg G, Lovley DR, Giometti CS. Steady state protein levels inGeobacter metallireducensgrown with iron (III) citrate or nitrate as terminal electron acceptor. Proteomics 2007; 7:4148-57. [DOI: 10.1002/pmic.200600955] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Tang X, Yi W, Munske GR, Adhikari DP, Zakharova NL, Bruce JE. Profiling the membrane proteome of Shewanella oneidensis MR-1 with new affinity labeling probes. J Proteome Res 2007; 6:724-34. [PMID: 17269728 PMCID: PMC2527595 DOI: 10.1021/pr060480e] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The membrane proteome plays a critical role in electron transport processes in Shewanella oneidensis MR-1, a bacterial organism that has great potential for bioremediation. Biotinylation of intact cells with subsequent affinity-enrichment has become a useful tool for characterization of the membrane proteome. As opposed to these commonly used, water-soluble commercial reagents, we here introduce a family of hydrophobic, cell-permeable affinity probes for extensive labeling and detection of membrane proteins. When applied to S. oneidensis cells, all three new chemical probes allowed identification of a substantial proportion of membrane proteins from total cell lysate without the use of specific membrane isolation method. From a total of 410 unique proteins identified, approximately 42% are cell envelope proteins that include outer membrane, periplasmic, and inner membrane proteins. This report demonstrates the first application of this intact cell biotinylation method to S. oneidensis and presents the results of many identified proteins that are involved in metal reduction processes. As a general labeling method, all chemical probes we introduced in this study can be extended to other organisms or cell types and will help expedite the characterization of membrane proteomes.
Collapse
Affiliation(s)
| | | | | | | | | | - James E. Bruce
- *Corresponding author: James E. Bruce, (E-mail): , (Phone): 509-335-2116, (Fax): 509-335-8867
| |
Collapse
|
47
|
Meshulam-Simon G, Behrens S, Choo AD, Spormann AM. Hydrogen metabolism in Shewanella oneidensis MR-1. Appl Environ Microbiol 2006; 73:1153-65. [PMID: 17189435 PMCID: PMC1828657 DOI: 10.1128/aem.01588-06] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of DeltahydA, DeltahyaB, and DeltahydA DeltahyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions.
Collapse
Affiliation(s)
- Galit Meshulam-Simon
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-5429, USA
| | | | | | | |
Collapse
|
48
|
Elias DA, Yang F, Mottaz HM, Beliaev AS, Lipton MS. Enrichment of functional redox reactive proteins and identification by mass spectrometry results in several terminal Fe(III)-reducing candidate proteins in Shewanella oneidensis MR-1. J Microbiol Methods 2006; 68:367-75. [PMID: 17137661 DOI: 10.1016/j.mimet.2006.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/14/2006] [Accepted: 09/15/2006] [Indexed: 10/23/2022]
Abstract
Identification of the proteins directly involved in microbial metal-reduction is important to understanding the biochemistry involved in heavy metal-reduction/immobilization and the ultimate cleanup of DOE contaminated sites. Although previous strategies for the identification of these proteins have traditionally required laborious protein purification/characterization of metal-reducing capability, activity is often lost before the final purification step, thus creating a significant knowledge gap. In the current study, subcellular fractions of Shewanella oneidensis MR-1 were enriched for Fe(III)-NTA reducing proteins in a single step using several orthogonal column matrices. The protein content of eluted fractions that demonstrated activity was determined by ultra-high pressure liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). A comparison of the proteins identified from active fractions in all separations produced 30 proteins that may act as the terminal electron-accepting protein for Fe(III)-reduction. These include MtrA, MtrB, MtrC and OmcA as well as a number of other proteins not previously associated with Fe(III)-reduction. This is the first report of such an approach where the laborious procedures for protein purification are not required for identification of metal-reducing proteins. Such work provides the basis for a similar approach with other cultured organisms as well as analysis of sediment and groundwater samples from biostimulation efforts at contaminated sites.
Collapse
Affiliation(s)
- Dwayne A Elias
- Department of Biochemistry, University of Missouri-Columbia, United States
| | | | | | | | | |
Collapse
|
49
|
Cruz-García C, Murray AE, Klappenbach JA, Stewart V, Tiedje JM. Respiratory nitrate ammonification by Shewanella oneidensis MR-1. J Bacteriol 2006; 189:656-62. [PMID: 17098906 PMCID: PMC1797406 DOI: 10.1128/jb.01194-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaerobic cultures of Shewanella oneidensis MR-1 grown with nitrate as the sole electron acceptor exhibited sequential reduction of nitrate to nitrite and then to ammonium. Little dinitrogen and nitrous oxide were detected, and no growth occurred on nitrous oxide. A mutant with the napA gene encoding periplasmic nitrate reductase deleted could not respire or assimilate nitrate and did not express nitrate reductase activity, confirming that the NapA enzyme is the sole nitrate reductase. Hence, S. oneidensis MR-1 conducts respiratory nitrate ammonification, also termed dissimilatory nitrate reduction to ammonium, but not respiratory denitrification.
Collapse
Affiliation(s)
- Claribel Cruz-García
- Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824-1325, USA
| | | | | | | | | |
Collapse
|
50
|
Teal TK, Lies DP, Wold BJ, Newman DK. Spatiometabolic stratification of Shewanella oneidensis biofilms. Appl Environ Microbiol 2006; 72:7324-30. [PMID: 16936048 PMCID: PMC1636161 DOI: 10.1128/aem.01163-06] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms, or surface-attached microbial communities, are both ubiquitous and resilient in the environment. Although much is known about how biofilms form, develop, and detach, very little is understood about how these events are related to metabolism and its dynamics. It is commonly thought that large subpopulations of cells within biofilms are not actively producing proteins or generating energy and are therefore dead. An alternative hypothesis is that within the growth-inactive domains of biofilms, significant populations of living cells persist and retain the capacity to dynamically regulate their metabolism. To test this, we employed unstable fluorescent reporters to measure growth activity and protein synthesis in vivo over the course of biofilm development and created a quantitative routine to compare domains of activity in independently grown biofilms. Here we report that Shewanella oneidensis biofilm structures reproducibly stratify with respect to growth activity and metabolism as a function of size. Within domains of growth-inactive cells, genes typically upregulated under anaerobic conditions are expressed well after growth has ceased. These findings reveal that, far from being dead, the majority of cells in mature S. oneidensis biofilms have actively turned-on metabolic programs appropriate to their local microenvironment and developmental stage.
Collapse
Affiliation(s)
- Tracy K Teal
- Division of Biological Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|