1
|
Physiological effects of microcurrent and its application for maximising acute responses and chronic adaptations to exercise. Eur J Appl Physiol 2023; 123:451-465. [PMID: 36399190 PMCID: PMC9941239 DOI: 10.1007/s00421-022-05097-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Microcurrent is a non-invasive and safe electrotherapy applied through a series of sub-sensory electrical currents (less than 1 mA), which are of a similar magnitude to the currents generated endogenously by the human body. This review focuses on examining the physiological mechanisms mediating the effects of microcurrent when combined with different exercise modalities (e.g. endurance and strength) in healthy physically active individuals. The reviewed literature suggests the following candidate mechanisms could be involved in enhancing the effects of exercise when combined with microcurrent: (i) increased adenosine triphosphate resynthesis, (ii) maintenance of intercellular calcium homeostasis that in turn optimises exercise-induced structural and morphological adaptations, (iii) eliciting a hormone-like effect, which increases catecholamine secretion that in turn enhances exercise-induced lipolysis and (iv) enhanced muscle protein synthesis. In healthy individuals, despite a lack of standardisation on how microcurrent is combined with exercise (e.g. whether the microcurrent is pulsed or continuous), there is evidence concerning its effects in promoting body fat reduction, skeletal muscle remodelling and growth as well as attenuating delayed-onset muscle soreness. The greatest hindrance to understanding the combined effects of microcurrent and exercise is the variability of the implemented protocols, which adds further challenges to identifying the mechanisms, optimal patterns of current(s) and methodology of application. Future studies should standardise microcurrent protocols by accurately describing the used current [e.g. intensity (μA), frequency (Hz), application time (minutes) and treatment duration (e.g. weeks)] for specific exercise outcomes, e.g. strength and power, endurance, and gaining muscle mass or reducing body fat.
Collapse
|
2
|
Vilarinho R, Faria SM, Monteiro PRR, Melo C, Santos R, Noites A. Effects of Abdominal Microcurrent in the Consumption and Proportion of Energy Substrates during Aerobic Exercise: A Pilot Study. Healthcare (Basel) 2022; 10:917. [PMID: 35628054 PMCID: PMC9141201 DOI: 10.3390/healthcare10050917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 01/13/2023] Open
Abstract
Microcurrent therapy can increase lipolytic activity. However, it is unknown if the increased availability of lipids can influence the selection of energy substrates during a single session of aerobic exercise. We aimed to analyze the effect of microcurrent application to the abdominal region in the consumption of lipids and carbohydrates, and respiratory exchange ratio (RER) during a single session of moderate aerobic exercise in young adults. A pilot study was conducted in which participants were allocated to intervention (IG) or placebo (PG) groups. In both groups, 40 min of microcurrent application with two frequencies (25 and 10 Hz) followed by 50 min of moderate-intensity aerobic exercise (45−55% of heart rate reserve) on a cycloergometer were performed. The microcurrent application was performed without intensity in the PG. A portable gas analyzer (K4b2) was used during exercise in both groups. Thirty-eight participants (20.6 ± 1.8 years; 18 in IG and 20 in PG) were enrolled. There were no significant differences in the consumption of substrates or RER between the groups during exercise (p > 0.05). Microcurrent application seems to be insufficient to influence the consumption of energy substrates and RER during a single session of aerobic exercise in young adults.
Collapse
Affiliation(s)
- Rui Vilarinho
- Center for Rehabilitation Research, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal; (P.R.R.M.); (C.M.); (R.S.); (A.N.)
- Department of Physiotherapy, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal;
| | - Susana Miriam Faria
- Department of Physiotherapy, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal;
| | - Pedro Ribeiro Rocha Monteiro
- Center for Rehabilitation Research, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal; (P.R.R.M.); (C.M.); (R.S.); (A.N.)
- Department of Functional Sciences, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Cristina Melo
- Center for Rehabilitation Research, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal; (P.R.R.M.); (C.M.); (R.S.); (A.N.)
- Department of Physiotherapy, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal;
| | - Rubim Santos
- Center for Rehabilitation Research, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal; (P.R.R.M.); (C.M.); (R.S.); (A.N.)
- Department of Physics, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Andreia Noites
- Center for Rehabilitation Research, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal; (P.R.R.M.); (C.M.); (R.S.); (A.N.)
- Department of Physiotherapy, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal;
| |
Collapse
|
3
|
Amelia do Nascimento J, Araújo Martins LD, Duarte MM, Matias FL, de Araújo Pereira Venceslau SC, Honorato dos Santos H, de Almeida Ferreira JJ, Rodrigues de Andrade P. Electrolipolysis associated with aerobic activity does not reduce subcutaneous adipose tissue of the abdominal region of young women: A randomized clinical trial. J Bodyw Mov Ther 2022; 29:106-111. [DOI: 10.1016/j.jbmt.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/18/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
|
4
|
Effects of Acute Microcurrent Electrical Stimulation on Muscle Function and Subsequent Recovery Strategy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094597. [PMID: 33926114 PMCID: PMC8123612 DOI: 10.3390/ijerph18094597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 11/24/2022]
Abstract
Microcurrent electrical neuromuscular stimulation (MENS) is believed to alter blood flow, increasing cutaneous blood perfusion, with vasodilation and hyperemia. According to these physiological mechanisms, we investigated the short-term effects of MENS on constant-load exercise and the subsequent recovery process. Ten healthy subjects performed, on separate days, constant-load cycling, which was preceded and followed by active or inactive stimulation to the right quadricep. Blood lactate, pulmonary oxygen, and muscle deoxyhemoglobin on-transition kinetics were recorded. Hemodynamic parameters, heart rate variability, and baroreflex sensitivity were collected and used as a tool to investigate the recovery process. Microcurrent stimulation caused a faster deoxyhemoglobin (4.43 ± 0.5 vs. 5.80 ± 0.5 s) and a slower VO2 (25.19 ± 2.1 vs. 21.94 ± 1.3 s) on-kinetics during cycling, with higher lactate levels immediately after treatments executed before exercise (1.55 ± 0.1 vs. 1.40 ± 0.1 mmol/L) and after exercise (2.15 ± 0.1 vs. 1.79 ± 0.1 mmol/L). In conclusion, MENS applied before exercise produced an increase in oxygen extraction at muscle microvasculature. In contrast, MENS applied after exercise improved recovery, with the sympathovagal balance shifted toward a state of parasympathetic predominance. MENS also caused higher lactate values, which may be due to the magnitude of the muscular stress by both manual treatment and electrical stimulation than control condition in which the muscle received only a manual treatment.
Collapse
|
5
|
Kim K, Eun D, Jee YS. Higher Impulse Electromyostimulation Contributes to Psychological Satisfaction and Physical Development in Healthy Men. ACTA ACUST UNITED AC 2021; 57:medicina57030191. [PMID: 33668740 PMCID: PMC7996253 DOI: 10.3390/medicina57030191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/02/2022]
Abstract
Background and Objectives: This study investigated the various impulse effects of whole-body electromyostimulation (WB-EMS) on psychophysiological responses and adaptations. Materials and Methods: The participants included fifty-four men between 20 and 27 years of age who practiced isometric exercises for 20 min, three days a week, for 12 weeks while wearing WB-EMS suits, which enabled the simultaneous activation of eight muscle groups with three types of impulse intensities. Participants were allocated to one of four groups: control group (CON), low-impulse-intensity group (LIG), mid-impulse-intensity group (MIG), and high-impulse-intensity group (HIG). Psychophysiological conditions were measured at week 0, week 4, week 8, and week 12. Results: Compared with the CON, (1) three psychological conditions in LIG, MIG, and HIG showed positive tendencies every four weeks, and the analysis of covariance (ANCOVA) test revealed that body image (p = 0.004), body shape (p = 0.007), and self-esteem (p = 0.001) were significantly different among the groups. (2) Body weight, fat mass, body mass index, and percent fat in the CON showed decreasing tendencies, whereas those in LIG, MIG, and HIG showed a noticeable decrease, which revealed that there were significant differences among the groups. Specifically, a higher impulse intensity resulted in a greater increase in muscle mass. (3) Although there was no interaction effect in the abdominal visceral fat area, there were significant interactions in the abdominal subcutaneous fat (ASF) and total fat (ATF) areas. Both the ASF and ATF in the CON showed decreasing tendencies, whereas those in other groups showed a noticeable decrease. The ANCOVA revealed that the ASF (p = 0.002) and ATF (p = 0.001) were significantly different among the groups. In particular, the higher the impulse intensity, the greater the decrease in abdominal fat. Conclusions: This study confirmed that high-impulse-intensity EMS can improve psychophysiological conditions. In other words, healthy young adults felt that the extent to which their body image, body shape, and self-esteem improved depended on how intense their EMS impulse intensities were. The results also showed that higher levels of impulse intensity led to improved physical conditions.
Collapse
|
6
|
Naclerio F, Moreno-Perez D, Seijo M, Karsten B, Larrosa M, García-Merino JÁL, Thirkell J, Larumbe-Zabala E. Effects of adding post-workout microcurrent in males cross country athletes. Eur J Sport Sci 2021; 21:1708-1717. [PMID: 33295832 DOI: 10.1080/17461391.2020.1862305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Post-exercise microcurrent based treatments have shown to optimise exercise-induced adaptations in athletes. We compared the effects of endurance training in combination with either, a microcurrent or a sham treatment, on endurance performance. Additionally, changes in body composition, post-exercise lactate kinetics and perceived delayed onset of muscle soreness (DOMS) were determined. Eighteen males (32.8 ± 6.3 years) completed an 8-week endurance training programme involving 5 to 6 workouts per week wearing a microcurrent (MIC, n=9) or a sham (SH, n=9) device for 3-h post-workout or in the morning during non-training days. Measurements were conducted at pre- and post-intervention. Compared to baseline, both groups increased (P < 0.01) maximal aerobic speed (MIC, pre = 17.6 ± 1.3 to post=18.3 ± 1.0; SH, pre=17.8 ± 1.5 to post = 18.3 ± 1.3 km.h-1) with no changes in V˙O2peak. No interaction effect per group and time was observed (P=0.193). Although both groups increased (P < 0.05) trunk lean mass (MIC, pre=23.2 ± 2.7 to post=24.2 ± 2.0; SH, pre=23.4 ± 1.7 to post=24.3 ± 1.6 kg) only MIC decreased (pre=4.8 ± 1.5 to post=4.5 ± 1.5, p=0.029) lower body fat. At post-intervention, no main differences between groups were observed for lactate kinetics over the 5 min recovery period. Only MIC decreased (P<0.05) DOMS at 24-h and 48-h, showing a significant average lower DOMS score over 72-h after the completion of the exercise-induced muscle soreness protocol. In conclusion, a 3-h daily application of microcurrent over an 8-week endurance training programme produced no further benefits on performance in endurance-trained males. Nonetheless, the post-workout microcurrent application promoted more desirable changes in body composition and attenuated the perception of DOMS over 72-h post-exercise.
Collapse
Affiliation(s)
- Fernando Naclerio
- Institute for Lifecourse Development, Centre for Exercise Activity and Rehabilitation, University of Greenwich, London, UK
| | - Diego Moreno-Perez
- Department of Education, Research and Evaluation Methods, Comillas Pontifical University, Madrid, Spain
| | - Marcos Seijo
- Institute for Lifecourse Development, Centre for Exercise Activity and Rehabilitation, University of Greenwich, London, UK
| | - Bettina Karsten
- European University of Applied Science (EUFH), Rostock, Germany
| | - Mar Larrosa
- MAS microbiota group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Jose Ánge L García-Merino
- MAS microbiota group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Jack Thirkell
- Department of Biological Sciences, Royal Holloway, University of London, London, UK
| | - Eneko Larumbe-Zabala
- MAS microbiota group, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Naclerio F, Seijo M, Karsten B, Brooker G, Carbone L, Thirkell J, Larumbe-Zabala E. Effectiveness of combining microcurrent with resistance training in trained males. Eur J Appl Physiol 2019; 119:2641-2653. [PMID: 31624949 PMCID: PMC6858393 DOI: 10.1007/s00421-019-04243-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022]
Abstract
Introduction Microcurrent has been used to promote tissue healing after injury or to hasten muscle remodeling post exercise post exercise. Purpose To compare the effects of resistance training in combination with either, microcurrent or sham treatment, on-body composition and muscular architecture. Additionally, changes in performance and perceived delayed onset muscle soreness (DOMS) were determined. Methods Eighteen males (25.7 ± 7.6 years) completed an 8-week resistance training program involving 3 workouts per week (24 total sessions) wearing a microcurrent (MIC, n = 9) or a sham (SH, n = 9) device for 3-h post-workout or in the morning during non-training days. Measurements were conducted at pre and post intervention. Results Compared to baseline, both groups increased (p < 0.05) muscle thickness of the elbow flexors (MIC + 2.9 ± 1.4 mm; SH + 3.0 ± 2.4 mm), triceps brachialis (MIC + 4.3 ± 2.8 mm; SH + 2.7 ± 2.6 mm), vastus medialis (MIC + 1.5 ± 1.5 mm; SH + 0.9 ± 0.8 mm) and vastus lateralis (MIC + 6.8 ± 8.0 mm; SH + 3.2 ± 1.8 mm). Although both groups increased (p < 0.01) the pennation angle of vastus lateralis (MIC + 2.90° ± 0.95°; SH + 1.90° ± 1.35°, p < 0.01), the change measured in MIC was higher (p = 0.045) than that observed in SH. Furthermore, only MIC enlarged (p < 0.01) the pennation angle of brachialis (MIC + 1.93 ± 1.51). Both groups improved (p < 0.05) bench press strength and power but only MIC enhanced (p < 0.01) vertical jump height. At post intervention, only MIC decreased (p < 0.05) DOMS at 12-h, 24-h, and 48-h after performing an exercise-induced muscle soreness protocol. Conclusion A 3-h daily use of microcurrent maximized muscular architectural changes and attenuated DOMS with no added significant benefits on body composition and performance.
Collapse
Affiliation(s)
- Fernando Naclerio
- Department of Life and Sport Science, University of Greenwich, Avery Hill Campus, Sparrows Farm, Avery Hill Road, Eltham, SE9 2BT, UK.
| | - Marcos Seijo
- Department of Life and Sport Science, University of Greenwich, Avery Hill Campus, Sparrows Farm, Avery Hill Road, Eltham, SE9 2BT, UK
| | - Bettina Karsten
- Department of Exercise and Sport Science, Lunex International University of Health, Exercise and Sports, Differdange, Luxemburg
| | - George Brooker
- Department of Life and Sport Science, University of Greenwich, Avery Hill Campus, Sparrows Farm, Avery Hill Road, Eltham, SE9 2BT, UK
| | - Leandro Carbone
- Department of Life and Sport Science, University of Greenwich, Avery Hill Campus, Sparrows Farm, Avery Hill Road, Eltham, SE9 2BT, UK
| | - Jack Thirkell
- Department of Biological Sciences, Royal Holloway, University of London, London, UK
| | - Eneko Larumbe-Zabala
- Clinical Research Institute, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
8
|
Pano-Rodriguez A, Beltran-Garrido JV, Hernández-González V, Reverter-Masia J. Effects of whole-body ELECTROMYOSTIMULATION on health and performance: a systematic review. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:87. [PMID: 31014310 PMCID: PMC6480820 DOI: 10.1186/s12906-019-2485-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/14/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Whole-body electrical myostimulation (WB-EMS) is a relatively recent training methodology that has been extraordinarily used in recent years. However, there is a lack of consensus on the effectiveness of WB-EMS in the situations in which its use has been largely popularized. The objective of this systematic review was to determine the effects produced by WB-EMS. METHODS A search of PubMed, Web of Science, Scopus and Cochrane was performed to identify all the studies that have applied electrical stimulation in lower and upper limbs simultaneously and that have clearly presented their protocols for the training and application of the stimulation. The last search was performed on September 9, 2018. Studies written in English or German were included. RESULTS A total of 21 articles met the inclusion criteria and were analyzed following the guidelines of the Cochrane Guide for Systematic Reviews. Nineteen studies analyzed the chronic effects of WB-EMS, and 2 analyzed acute effects with a total of 505 subjects (310 men and 195 women). In total, 35% were moderately trained, and 65% were sedentary subjects. Different dependent variables were studied, such as anthropometric parameters, strength parameters, energy expenditure, psychophysiological parameters and blood parameters. There is a lack of randomized controlled studies, and the studies included exhibit a moderate to high level of risk of bias. CONCLUSIONS Given the limited number of available studies on WB-EMS, the scarce amount of scientific evidence found does not allow definitive conclusions about its effects; therefore, future studies about WB-EMS are necessary.
Collapse
Affiliation(s)
- Alvaro Pano-Rodriguez
- Research Group Human Movement, University of Lleida, Av. de l’Estudi Generaln.4 E-25001Lleida, Lleida, Spain
| | | | - Vicenç Hernández-González
- Research Group Human Movement, University of Lleida, Av. de l’Estudi Generaln.4 E-25001Lleida, Lleida, Spain
| | - Joaquim Reverter-Masia
- Research Group Human Movement, University of Lleida, Av. de l’Estudi Generaln.4 E-25001Lleida, Lleida, Spain
| |
Collapse
|
9
|
Wang X, Ren Y, Liu J. Liquid Metal Enabled Electrobiology: A New Frontier to Tackle Disease Challenges. MICROMACHINES 2018; 9:E360. [PMID: 30424293 PMCID: PMC6082282 DOI: 10.3390/mi9070360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
In this article, a new conceptual biomedical engineering strategy to tackle modern disease challenges, called liquid metal (LM) enabled electrobiology, is proposed. This generalized and simple method is based on the physiological fact that specially administrated electricity induces a series of subsequent desired biological effects, either shortly, transitionally, or permanently. Due to high compliance within biological tissues, LM would help mold a pervasive method for treating physiological or psychological diseases. As highly conductive and non-toxic multifunctional flexible materials, such LMs can generate any requested electric treating fields (ETFields), which can adapt to various sites inside the human body. The basic mechanisms of electrobiology in delivering electricity to the target tissues and then inducing expected outputs for disease treatment are interpreted. The methods for realizing soft and conformable electronics based on LM are illustrated. Furthermore, a group of typical disease challenges are observed to illustrate the basic strategies for performing LM electrobiology therapy, which include but are not limited to: tissue electronics, brain disorder, immunotherapy, neural functional recovery, muscle stimulation, skin rejuvenation, cosmetology and dieting, artificial organs, cardiac pacing, cancer therapy, etc. Some practical issues regarding electrobiology for future disease therapy are discussed. Perspectives in this direction for incubating a simple biomedical tool for health care are pointed out.
Collapse
Affiliation(s)
- Xuelin Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Yi Ren
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
10
|
Noites A, Moreira A, Melo C, Faria M, Vilarinho R, Freitas C, Monteiro PR, Carvalho P, Adubeiro N, Amorim M, Nogueira L, Santos R. Acute effects of physical exercise with microcurrent in the adipose tissue of the abdominal region: A randomized controlled trial. Eur J Integr Med 2017. [DOI: 10.1016/j.eujim.2016.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Noites A, Pinto J, Freitas CP, Melo C, Albuquerque A, Teixeira M, Ribeiro F, Bastos JM. Effects of microcurrents and physical exercise on the abdominal fat in patients with coronary artery disease. Eur J Integr Med 2015. [DOI: 10.1016/j.eujim.2015.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|