1
|
Sanford LM, Keiser P, Fujii N, Woods H, Zhang C, Xu Z, Mahajani NS, Cortés JG, Plescia CB, Knipp G, Stahelin RV, Davey R, Davisson VJ. Evaluation of potency and metabolic stability of diphyllin-derived Vacuolar-ATPase inhibitors. Eur J Med Chem 2024; 275:116537. [PMID: 38875806 PMCID: PMC11236507 DOI: 10.1016/j.ejmech.2024.116537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Diphyllin is a naturally occurring lignan comprised of an aryl naphthalene lactone scaffold that demonstrates beneficial biological activities in disease models of cancer, obesity, and viral infection. A target of diphyllin and naturally occurring derivatives is the vacuolar ATPase (V-ATPase) complex. Although diphyllin-related natural products are active with in vitro models for viral entry, the potencies and unknown pharmacokinetic properties limit well-designed in vivo evaluations. Previous studies demonstrated that diphyllin derivatives have the utility of blocking the Ebola virus cell entry pathway. However, diphyllin shows limited potency and poor oral bioavailability in mice. An avenue to improve the potency was used in a new library of synthetic derivatives of diphyllin. Diphyllin derivatives exploiting ether linkages at the 4-position with one-to-three carbon spacers to an oxygen or nitrogen atom provided compounds with EC50 values ranging from 7 to 600 nM potency and selectivity up to >500 against Ebola virus in infection assays. These relative potencies are reflected in the Ebola virus infection of primary macrophages, a cell type involved in early pathogenesis. A target engagement study reveals that reducing the ATPV0a2 protein expression enhanced the potency of diphyllin derivatives to block EBOV entry, consistent with effects on the endosomal V-ATPase function. Despite the substantial enhancement of antiviral potencies, limitations were identified, including rapid clearance predicted by in vitro microsome stability assays. However, compounds with similar or improved half-lives relative to diphyllin demonstrated improved pharmacokinetic profiles in vivo. Importantly, these derivatives displayed suitable plasma levels using oral administration, establishing the feasibility of in vivo antiviral testing.
Collapse
Affiliation(s)
- Laura M Sanford
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Patrick Keiser
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, United States
| | - Naoaki Fujii
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Hannah Woods
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Charlie Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States; Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, 47907, United States
| | - Zhuangyan Xu
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, 47907, United States
| | - Nivedita S Mahajani
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Julián González Cortés
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Caroline B Plescia
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Gregory Knipp
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN, 47907, United States
| | - Robert V Stahelin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States
| | - Robert Davey
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02118, United States
| | - Vincent Jo Davisson
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
2
|
Sajjan M, Li J, Selvarajan R, Sureshbabu SH, Kale SS, Gupta R, Singh V, Kais S. Quantum machine learning for chemistry and physics. Chem Soc Rev 2022; 51:6475-6573. [PMID: 35849066 DOI: 10.1039/d2cs00203e] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Machine learning (ML) has emerged as a formidable force for identifying hidden but pertinent patterns within a given data set with the objective of subsequent generation of automated predictive behavior. In recent years, it is safe to conclude that ML and its close cousin, deep learning (DL), have ushered in unprecedented developments in all areas of physical sciences, especially chemistry. Not only classical variants of ML, even those trainable on near-term quantum hardwares have been developed with promising outcomes. Such algorithms have revolutionized materials design and performance of photovoltaics, electronic structure calculations of ground and excited states of correlated matter, computation of force-fields and potential energy surfaces informing chemical reaction dynamics, reactivity inspired rational strategies of drug designing and even classification of phases of matter with accurate identification of emergent criticality. In this review we shall explicate a subset of such topics and delineate the contributions made by both classical and quantum computing enhanced machine learning algorithms over the past few years. We shall not only present a brief overview of the well-known techniques but also highlight their learning strategies using statistical physical insight. The objective of the review is not only to foster exposition of the aforesaid techniques but also to empower and promote cross-pollination among future research in all areas of chemistry which can benefit from ML and in turn can potentially accelerate the growth of such algorithms.
Collapse
Affiliation(s)
- Manas Sajjan
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Junxu Li
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Physics and Astronomy, Purdue University, West Lafayette, IN-47907, USA
| | - Raja Selvarajan
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Physics and Astronomy, Purdue University, West Lafayette, IN-47907, USA
| | - Shree Hari Sureshbabu
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA.,Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN-47907, USA
| | - Sumit Suresh Kale
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Rishabh Gupta
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Vinit Singh
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Sabre Kais
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Physics and Astronomy, Purdue University, West Lafayette, IN-47907, USA.,Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN-47907, USA
| |
Collapse
|
3
|
Spruill ML, Maletic-Savatic M, Martin H, Li F, Liu X. Spatial analysis of drug absorption, distribution, metabolism, and toxicology using mass spectrometry imaging. Biochem Pharmacol 2022; 201:115080. [PMID: 35561842 PMCID: PMC9744413 DOI: 10.1016/j.bcp.2022.115080] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Mass spectrometry imaging (MSI) is emerging as a powerful analytical tool for detection, quantification, and simultaneous spatial molecular imaging of endogenous and exogenous molecules via in situ mass spectrometry analysis of thin tissue sections without the requirement of chemical labeling. The MSI generates chemically specific and spatially resolved ion distribution information for administered drugs and metabolites, which allows numerous applications for studies involving various stages of drug absorption, distribution, metabolism, excretion, and toxicity (ADMET). MSI-based pharmacokinetic imaging analysis provides a histological context and cellular environment regarding dynamic drug distribution and metabolism processes, and facilitates the understanding of the spatial pharmacokinetics and pharmacodynamic properties of drugs. Herein, we discuss the MSI's current technological developments that offer qualitative, quantitative, and spatial location information of small molecule drugs, antibody, and oligonucleotides macromolecule drugs, and their metabolites in preclinical and clinical tissue specimens. We highlight the macro and micro drug-distribution in the whole-body, brain, lung, liver, kidney, stomach, intestine tissue sections, organoids, and the latest applications of MSI in pharmaceutical ADMET studies.
Collapse
Affiliation(s)
- Michelle L Spruill
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mirjana Maletic-Savatic
- Department of Pediatrics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Feng Li
- Center for Drug Discovery and Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
4
|
Oh HA, Kim YJ, Moon KS, Seo JW, Jung BH, Woo DH. Identification of integrative hepatotoxicity induced by lysosomal phospholipase A2 inhibition of cationic amphiphilic drugs via metabolomics. Biochem Biophys Res Commun 2022; 607:1-8. [DOI: 10.1016/j.bbrc.2022.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/02/2022]
|
5
|
Hinkovska-Galcheva V, Treadwell T, Shillingford JM, Lee A, Abe A, Tesmer JJG, Shayman JA. Inhibition of lysosomal phospholipase A2 predicts drug-induced phospholipidosis. J Lipid Res 2021; 62:100089. [PMID: 34087196 PMCID: PMC8243516 DOI: 10.1016/j.jlr.2021.100089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Phospholipidosis, the excessive accumulation of phospholipids within lysosomes, is a pathological response observed following exposure to many drugs across multiple therapeutic groups. A clear mechanistic understanding of the causes and implications of this form of drug toxicity has remained elusive. We previously reported the discovery and characterization of a lysosome-specific phospholipase A2 (PLA2G15) and later reported that amiodarone, a known cause of drug-induced phospholipidosis, inhibits this enzyme. Here, we assayed a library of 163 drugs for inhibition of PLA2G15 to determine whether this phospholipase was the cellular target for therapeutics other than amiodarone that cause phospholipidosis. We observed that 144 compounds inhibited PLA2G15 activity. Thirty-six compounds not previously reported to cause phospholipidosis inhibited PLA2G15 with IC50 values less than 1 mM and were confirmed to cause phospholipidosis in an in vitro assay. Within this group, fosinopril was the most potent inhibitor (IC50 0.18 μM). Additional characterization of the inhibition of PLA2G15 by fosinopril was consistent with interference of PLA2G15 binding to liposomes. PLA2G15 inhibition was more accurate in predicting phospholipidosis compared with in silico models based on pKa and ClogP, measures of protonation, and transport-independent distribution in the lysosome, respectively. In summary, PLA2G15 is a primary target for cationic amphiphilic drugs that cause phospholipidosis, and PLA2G15 inhibition by cationic amphiphilic compounds provides a potentially robust screening platform for potential toxicity during drug development.
Collapse
Affiliation(s)
- Vania Hinkovska-Galcheva
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Taylour Treadwell
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan M Shillingford
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Angela Lee
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Akira Abe
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Pharmacology, Purdue University, West Lafayette, IN, USA
| | - James A Shayman
- Department of Internal Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Pedro L, Rudewicz PJ. Analysis of Live Single Cells by Confocal Microscopy and High-Resolution Mass Spectrometry to Study Drug Uptake, Metabolism, and Drug-Induced Phospholipidosis. Anal Chem 2020; 92:16005-16015. [PMID: 33280372 DOI: 10.1021/acs.analchem.0c03534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The analysis of large numbers of cells from a population results in information that does not reflect differences in cell phenotypes. Individual variations in cellular drug uptake, metabolism, and response to drug treatment may have profound effects on cellular survival and lead to the development of certain disease states, drug persistence, and resistance. Herein, we present a method that combines live cell confocal microscopy imaging with high-resolution mass spectrometry to achieve absolute cell quantification of the drug amiodarone (AMIO) and its major metabolite, N-desethylamiodarone (NDEA), in single liver cells (HepG2 and HepaRG cells). The method uses a prototype system that integrates a confocal microscope with an XYZ stage robot to image and automatically sample selected cells from a sample compartment, which is kept under growth conditions, with nanospray tips. Besides obtaining the distributions of AMIO and NDEA cell concentrations across a population of individual cells, as well as variabilities in drug metabolism, the effect of these on phospholipidosis and cell morphology was studied. The method was suited to identify subpopulations of cells that metabolized less drug and to correlate cell drug concentrations with cell phospholipid content, cell volume, sphericity, and other cell phenotypic features. Using principal component analysis (PCA), the treated cells could be clearly distinguished from vehicle control cells (0 μM AMIO) and HepaRG cells from HepG2 cells. The potential of using multidimensional and multimodal information collected from single cells to build predictive models for cell classification is demonstrated.
Collapse
Affiliation(s)
- Liliana Pedro
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - Patrick J Rudewicz
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| |
Collapse
|
7
|
Use of 3D Human Liver Organoids to Predict Drug-Induced Phospholipidosis. Int J Mol Sci 2020; 21:ijms21082982. [PMID: 32340283 PMCID: PMC7216064 DOI: 10.3390/ijms21082982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Drug-induced phospholipidosis (PL) is a storage disorder caused by the formation of phospholipid-drug complexes in lysosomes. Because of the diversity of PL between species, human cell-based assays have been used to predict drug-induced PL in humans. We established three-dimensional (3D) human liver organoids as described previously and investigated their liver characteristics through multiple analyses. Drug-induced PL was initiated in these organoids and in monolayer HepG2 cultures, and cellular changes were systemically examined. Organoids that underwent differentiation showed characteristics of hepatocytes rather than HepG2 cells. The organoids also survived under PL-inducing drug conditions for 48 h and maintained a more stable albumin secretion level than the HepG2 cells. More cytoplasmic vacuoles were observed in organoids and HepG2 cells treated with more potent PL-induced drugs, but to a greater extent in organoids than in HepG2 cells. Lysosome-associated membrane protein 2, a marker of lysosome membranes, showed a stronger immunohistochemical signal in the organoids. PL-distinctive lamellar bodies were observed only in amiodarone-treated organoids by transmission electron microscopy. Human liver organoids are thus more sensitive to drug-induced PL and less affected by cytotoxicity than HepG2 cells. Since PL is a chronic condition, these results indicate that organoids better reflect metabolite-mediated hepatotoxicity in vivo and could be a valuable system for evaluating the phospholipidogenic effects of different compounds during drug development.
Collapse
|
8
|
Kampa JM, Sahin M, Slopianka M, Giampà M, Bednarz H, Ernst R, Riefke B, Niehaus K, Fatangare A. Mass spectrometry imaging reveals lipid upregulation and bile acid changes indicating amitriptyline induced steatosis in a rat model. Toxicol Lett 2020; 325:43-50. [PMID: 32092452 DOI: 10.1016/j.toxlet.2020.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
As a consequence of the detoxification process, drugs and drug related metabolites can accumulate in the liver, resulting in drug induced liver injury (DILI), which is the major cause for dose limitation. Amitriptyline, a commonly used tricyclic anti-depressant, is known to cause DILI. The mechanism of Amitriptyline induced liver injury is not yet completely understood. However, as it undergoes extensive hepatic metabolism, unraveling the molecular changes in the liver upon Amitriptyline treatment can help understand Amitriptyline's mode of toxicity. In this study, Amitriptyline treated male rat liver tissue was analyzed using Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI) to investigate the spatial abundances of Amitriptyline, lipids, and bile acids. The metabolism of Amitriptyline in liver tissue was successfully demonstrated, as the spatial distribution of Amitriptyline and its metabolites localize throughout treatment group liver samples. Several lipids appear upregulated, from which nine were identified as distinct phosphatidylcholine (PC) species. The detected bile acids were found to be lower in Amitriptyline treatment group. The combined results from histological findings, Oil Red O staining, and lipid zonation by MSI revealed lipid upregulation in the periportal area indicating drug induced macrovesicular steatosis (DIS).
Collapse
Affiliation(s)
- Judith M Kampa
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Mikail Sahin
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Markus Slopianka
- Metabolic Profiling and Clinical Pathology, Investigational Toxicology, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Marco Giampà
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Hanna Bednarz
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Rainer Ernst
- Metabolic Profiling and Clinical Pathology, Investigational Toxicology, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Bjoern Riefke
- Metabolic Profiling and Clinical Pathology, Investigational Toxicology, Pharmaceuticals Division, Bayer AG, Berlin, Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Amol Fatangare
- Metabolic Profiling and Clinical Pathology, Investigational Toxicology, Pharmaceuticals Division, Bayer AG, Berlin, Germany.
| |
Collapse
|
9
|
Marcos AL, Corradi GR, Mazzitelli LR, Casali CI, Fernández Tome MDC, Adamo HP, de Tezanos Pinto F. The Parkinson-associated human P5B-ATPase ATP13A2 modifies lipid homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182993. [PMID: 31132336 DOI: 10.1016/j.bbamem.2019.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Mutations in the ATP13A2 gene (PARK9, CLN12, OMIM 610513) were initially associated with a form of Parkinson's Disease (PD) known as Kufor Rakeb Syndrome (KRS). However, the genetic spectrum of ATP13A2-associated disorders was expanded in the last years, because it has been found to underlay variants of neuronal ceroid-lipofuscinoses (NCLs) and hereditary spastic paraplegia. As ATP13A2 seems to be a key component of the endo-lysosome pathway, the fact that these pathologies are commonly characterized by endo-lysosomal dysfunction is not surprising. Here we report that increasing the level of functional ATP13A2 in a stable SH-SY5Y cell line disrupts lipid homeostasis. ATP13A2 overexpression increases the fluorescence intensity of the fluorescent analog phosphatidylethanolamine (NBD-PE) and the formation of multilamellar bodies, resembling the so-called "drug-induced phospholipidosis". We also found that expression of ATP13A2 reduces the ceramide-fluorescence intensity and the content of bis(monoacylglyceryl)phosphate (BMP). BMP is required for lipid degradation and exosome biogenesis inside acidic compartments, so this result suggests that ATP13A2 may be modifying the lipid digestion capacity and/or the redistribution of lipids in these subcellular organelles. In addition, ATP13A2-overexpression decreased the total content of triglycerides (TGs), cholesterol and lipid droplets. As TGs are necessary for the synthesis of new membranes, this observation suggests that increasing the function of ATP13A2 switches the endo-lysosomal system towards vesicle secretion.
Collapse
Affiliation(s)
- Alejandra Lucía Marcos
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Gerardo Raul Corradi
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Luciana Romina Mazzitelli
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Cecilia Irene Casali
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - María Del Carmen Fernández Tome
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Hugo Pedro Adamo
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina
| | - Felicitas de Tezanos Pinto
- Department of Biological Sciences, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Junín 956, 1113 Buenos Aires, Argentina; Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos (UBA), Junín 956, 1113 Buenos Aires, Argentina; Institute of Biochemistry and Biophysics, Consejo Nacional de Investigaciones Científicas y Tecnológicas (IQUIFIB-CONICET), Junín 956, 1113 Buenos Aires, Argentina.
| |
Collapse
|
10
|
Yang L, Zhong X, Li Q, Zhang X, Wang Y, Yang K, Zhang LW. From the Cover: Potentiation of Drug-Induced Phospholipidosis In Vitro through PEGlyated Graphene Oxide as the Nanocarrier. Toxicol Sci 2018; 156:39-53. [PMID: 28013220 DOI: 10.1093/toxsci/kfw233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cationic amphiphilic drugs (CADs) are small molecules that can induce phospholipidosis (PLD), causing the intracellular accumulation of phospholipid in the lamellar bodies. Nanotechnology based drug delivery systems have been used widely, while it is unknown if drug-induced PLD (DIP) can be potentiated through drug retention by indigestible nanocarriers. Due to the high drug loading capacity of graphene, we investigated if PEGylated graphene oxide (PEG-GO) loaded with CAD could potentiate DIP. Tamoxifen induced the accumulation of NBD-PE, a fluorescence labeled phospholipid in human hepatoma HepG2 cells, while PEG-GO loaded with tamoxifen (PEG-GO/tamoxifen) further potentiated PLD. PEG-GO/tamoxifen induced more gene expression of PLD marker than tamoxifen alone. PEG-GO enhanced DIP was also observed for other CAD, indicating that nanocarrier potentiated DIP could be universal. More lamellar bodies were observed in PEG-GO/tamoxifen treated cells than tamoxifen alone by transmission electron microscopy. When compared with tamoxifen alone, PEG-GO/tamoxifen showed a delayed but potent PLD. In addition, the retarded PLD recovery by PEG-GO/tamoxifen indicated that the reversibility of DIP was interfered. Confocal microscopy revealed the increased number of lysosomes, greater expression of lysosomal associated membrane protein 2 (LAMP2) (a PLD marker), and an increase in the co-localization between lysosome/LAMP2 and NBD-PE by PEG-GO/tamoxifen rather than tamoxifen alone. Finally, we found that PEG-GO or/and tamoxifen-induced PLD seemed to have no correlation with autophagy. This research suggests pharmaceutical companies and regulatory agencies that if nanoparticles are used as the vectors for drug delivery, the adverse drug effects may be further potentiated probably through the long-term accumulation of nanocarriers.
Collapse
Affiliation(s)
- Liecheng Yang
- School for Radiological and interdisciplinary Sciences (RAD-X).,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions.,School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiaoyan Zhong
- School for Radiological and interdisciplinary Sciences (RAD-X).,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
| | - Qian Li
- School for Radiological and interdisciplinary Sciences (RAD-X).,School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xihui Zhang
- School for Radiological and interdisciplinary Sciences (RAD-X).,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
| | - Yangyun Wang
- School for Radiological and interdisciplinary Sciences (RAD-X).,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
| | - Kai Yang
- School for Radiological and interdisciplinary Sciences (RAD-X).,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
| | - Leshuai W Zhang
- School for Radiological and interdisciplinary Sciences (RAD-X).,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
| |
Collapse
|
11
|
Synthesis and phospholipidosis effect of a series of cationic amphiphilic compounds: a case study to evaluate in silico and in vitro assays. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2093-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Tomida T, Ishimura M, Iwaki M. A cell-based assay using HepaRG cells for predicting drug-induced phospholipidosis. J Toxicol Sci 2017; 42:641-650. [PMID: 28904299 DOI: 10.2131/jts.42.641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The utility of HepaRG cells as an in vitro cell-based assay system for predicting drug-induced phospholipidosis (PLD) was investigated. In experiment 1, 10 PLD-positive compounds and 11 PLD-negative compounds were selected. HepaRG cells were treated with each compound for 48 hr. In experiment 2, loratadine and desloratadine, a major metabolite of loratadine, were used to assess metabolic activation for PLD. HepaRG cells were treated with loratadine and desloratadine in the presence or absence of 500 μM 1-aminobenzotriazole (ABT), a broad CYP inhibitor, for 48 hr. After treatment with compounds in experiments 1 and 2, the relative fluorescence intensity (RFI) was measured using LYSO-ID Red dye to assess the PLD induction. In experiment 1, our cell-based assay system using HepaRG cells exhibited 100% sensitivity and 100% specificity for predicting drug-induced PLD. In experiment 2, loratadine increased the RFI in the PLD assay. However, the increase in the RFI was not observed in co-treatment with loratadine and ABT. In addition, desloratadine increased the RFI in the presence and absence of ABT. These results suggested that metabolic activation of loratadine may contribute to PLD in HepaRG cells. We newly demonstrated that HepaRG cells have a high ability for predicting drug-induced PLD. In addition, we newly showed that HepaRG cells may predict drug-induced PLD mediated by metabolic activation of loratadine. Thus, a cell-based assay system using HepaRG cells is a useful model for predicting drug-induced PLD.
Collapse
Affiliation(s)
- Takafumi Tomida
- Pharmacokinetics and Safety Department, Drug Research Center, Kyoto Research Center, Kaken Pharmaceutical Co., LTD
| | - Masakazu Ishimura
- Pharmacokinetics and Safety Department, Drug Research Center, Kyoto Research Center, Kaken Pharmaceutical Co., LTD
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University
| |
Collapse
|
13
|
Harper BH, Wang L, Zhu C, Kar NF, Li B, Moyes CR, Goble SD, Costa M, Dingley K, Di Salvo J, Ha SN, Hurley A, Li X, Miller RR, Nagabukuro H, Salituro GM, Smith S, Struthers M, Hale JJ, Edmondson SD, Berger R. Investigation of piperazine benzamides as human β 3 adrenergic receptor agonists for the treatment of overactive bladder. Bioorg Med Chem Lett 2017; 27:1094-1098. [PMID: 28089699 DOI: 10.1016/j.bmcl.2016.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 01/15/2023]
Abstract
The synthesis of a novel class of piperazine benzamide (reverse amides) targeting the human β3-adrenergic receptor for the treatment of overactive bladder (OAB) is described. The SAR studies directed towards maintaining well established β3 potency and selectivities while improving the overall pharmacokinetic profile in the reverse amide class will be evaluated. The results and consequences associated with functional activity at the norepinephrine transporter (NET) will also be discussed.
Collapse
Affiliation(s)
- Bart H Harper
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States.
| | - Liping Wang
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Cheng Zhu
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Nam F Kar
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Bing Li
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | | | - Stephen D Goble
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Melissa Costa
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Karen Dingley
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Jerry Di Salvo
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Sookhee N Ha
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Amanda Hurley
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Xiaofang Li
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Randy R Miller
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | | | - Gino M Salituro
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Sean Smith
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Mary Struthers
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Jeffrey J Hale
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Scott D Edmondson
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| | - Richard Berger
- Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ 07065, United States
| |
Collapse
|
14
|
Edmondson SD, Zhu C, Kar NF, Di Salvo J, Nagabukuro H, Sacre-Salem B, Dingley K, Berger R, Goble SD, Morriello G, Harper B, Moyes CR, Shen DM, Wang L, Ball R, Fitzmaurice A, Frenkl T, Gichuru LN, Ha S, Hurley AL, Jochnowitz N, Levorse D, Mistry S, Miller RR, Ormes J, Salituro GM, Sanfiz A, Stevenson AS, Villa K, Zamlynny B, Green S, Struthers M, Weber AE. Discovery of Vibegron: A Potent and Selective β3 Adrenergic Receptor Agonist for the Treatment of Overactive Bladder. J Med Chem 2016; 59:609-23. [DOI: 10.1021/acs.jmedchem.5b01372] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Scott D. Edmondson
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Cheng Zhu
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Nam Fung Kar
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Jerry Di Salvo
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Hiroshi Nagabukuro
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Beatrice Sacre-Salem
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Karen Dingley
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Richard Berger
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Stephen D. Goble
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Gregori Morriello
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Bart Harper
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Christopher R. Moyes
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Dong-Ming Shen
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Liping Wang
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Richard Ball
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Aileen Fitzmaurice
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Tara Frenkl
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Loise N. Gichuru
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Sookhee Ha
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Amanda L. Hurley
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Nina Jochnowitz
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Dorothy Levorse
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Shruty Mistry
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Randy R. Miller
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - James Ormes
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Gino M. Salituro
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Anthony Sanfiz
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Andra S. Stevenson
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Katherine Villa
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Beata Zamlynny
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Stuart Green
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Mary Struthers
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| | - Ann E. Weber
- Merck Research Laboratories, 2015 Galloping Hill Road, PO Box
539, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
15
|
Takagi M, Sanoh S, Santoh M, Ejiri Y, Kotake Y, Ohta S. Detection of metabolic activation leading to drug-induced phospholipidosis in rat hepatocyte spheroids. J Toxicol Sci 2016; 41:155-64. [DOI: 10.2131/jts.41.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Masashi Takagi
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masataka Santoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Yoko Ejiri
- Molding Component Business Department, New business Development Division, Kuraray Co., Ltd
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
16
|
Svennebring A. The role of intramolecular self-destruction of reactive metabolic intermediates in determining toxicity. J Appl Toxicol 2015; 36:483-500. [DOI: 10.1002/jat.3248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Andreas Svennebring
- Department of Pharmaceutical Biosciences, Faculty of Pharmacy; Uppsala University; Box 591 Uppsala 751 24 Sweden
| |
Collapse
|
17
|
High-content screening technology for studying drug-induced hepatotoxicity in cell models. Arch Toxicol 2015; 89:1007-22. [PMID: 25787152 DOI: 10.1007/s00204-015-1503-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/05/2015] [Indexed: 01/13/2023]
Abstract
High-content screening is the application of automated microscopy and image analysis to both cell biology and drug discovery. Over the last decade, this technique has emerged as a useful technology that allows the simultaneous measurement of different parameters at a single-cell level. Hepatotoxicity is a compelling reason for drug nonapprovals and withdrawals. It is recognized that the safety of a compound cannot be based on a single in vitro assay, and existing methods are not predictive of drug-induced toxicity. However, different HCS assays have been recently demonstrated as being powerful for identifying different mechanisms implicated in drug-induced toxicity with high sensitivity and specificity. These assays integrate the data obtained from different cell function indicators and can be easily incorporated into basic screening processes for the safety evaluation and selection of drug candidates; thus, they contribute greatly to lessen the likelihood of drug failure. Exploring the use of cellular imaging technology in drug-induced liver injury by reviewing the different tests proposed provides evidence that this technology has a strong impact on drug discovery.
Collapse
|
18
|
Hamaguchi R, Tanimoto T, Kuroda Y. Putative biomarker for phospholipid accumulation in cultured cells treated with phospholipidosis-inducing drugs: alteration of the phosphatidylinositol composition detected using high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 967:110-7. [PMID: 25086420 DOI: 10.1016/j.jchromb.2014.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/10/2014] [Accepted: 07/13/2014] [Indexed: 11/18/2022]
Abstract
We developed a high-performance liquid chromatography-tandem mass spectrometric method for phospholipid biomarker discovery and applied it to a cell-based assay system for the screening of phospholipidosis-inducing drugs. We studied the compositions of phospholipid molecules exceeding 100 species in cultured cells and found a characteristic alteration in the composition by treatment with cationic amphiphilic drugs possessing phospholipidosis-inducing potency. The compositions of phosphatidylinositol in RAW264 cells were significantly affected by the drug treatment. Similar alterations were also found in THP-1 cells. These phenomena were not observed when cells were treated with warfarin, which does not have phospholipidosis-inducing potency. Structural analysis of the altered phosphatidylinositols by a product ion scan revealed the presence of certain fatty acyl chains. Based on our findings, we proposed a prediction parameter (PP) for phospholipid accumulation calculated from the relative compositions of phosphatidylinositol species. As the dosage of imipramine (a cationic amphiphilic drug) increased, both the PP and cellular phospholipid content increased. Our results suggest that PP has potency as a biomarker for phospholipid accumulation in cells treated with drugs.
Collapse
Affiliation(s)
- Ryohei Hamaguchi
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Japan
| | - Toshiko Tanimoto
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Japan
| | - Yukihiro Kuroda
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Japan.
| |
Collapse
|
19
|
Przybylak KR, Alzahrani AR, Cronin MTD. How Does the Quality of Phospholipidosis Data Influence the Predictivity of Structural Alerts? J Chem Inf Model 2014; 54:2224-32. [DOI: 10.1021/ci500233k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Katarzyna R. Przybylak
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, England
| | - Abdullah Rzgallah Alzahrani
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, England
| | - Mark T. D. Cronin
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, England
| |
Collapse
|
20
|
Shahane SA, Huang R, Gerhold D, Baxa U, Austin CP, Xia M. Detection of phospholipidosis induction: a cell-based assay in high-throughput and high-content format. JOURNAL OF BIOMOLECULAR SCREENING 2014; 19:66-76. [PMID: 24003057 PMCID: PMC4550094 DOI: 10.1177/1087057113502851] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Drug-induced phospholipidosis is characterized by the accumulation of intracellular phospholipids in cells exposed to cationic amphiphilic drugs. The appearance of unicentric or multicentric multilamellar bodies viewed under an electron microscope (EM) is the morphological hallmark of phospholipidosis. Although the EM method is the gold standard for detecting cellular phospholipidosis, this method has its drawbacks, including low throughput, high cost, and unsuitability for screening a large chemical library. In this study, a cell-based phospholipidosis assay has been developed using the LipidTOX Red reagent in HepG2 cells and miniaturized into a 1536-well plate format. To validate this assay for high-throughput screening (HTS), the LOPAC library of 1280 compounds was screened using a quantitative HTS platform. A group of known phospholipidosis inducers, such as amiodarone, propranolol, chlorpromazine, desipramine, promazine, clomipramine, and amitriptyline, was identified by the screen, consistent with previous reports. Several novel phospholipidosis inducers, including NAN-190, ebastine, GR127935, and cis-(Z)-flupentixol, were identified in this study and confirmed using the EM method. These results demonstrate that this assay can be used to evaluate and profile large numbers of chemicals for drug-induced phospholipidosis.
Collapse
Affiliation(s)
- Sampada A. Shahane
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Gerhold
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christopher P. Austin
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Sun H, Shahane S, Xia M, Austin CP, Huang R. Structure based model for the prediction of phospholipidosis induction potential of small molecules. J Chem Inf Model 2012; 52:1798-805. [PMID: 22725677 PMCID: PMC3484221 DOI: 10.1021/ci3001875] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Drug-induced phospholipidosis (PLD), characterized by an intracellular accumulation of phospholipids and formation of concentric lamellar bodies, has raised concerns in the drug discovery community, due to its potential adverse effects. To evaluate the PLD induction potential, 4,161 nonredundant drug-like molecules from the National Institutes of Health Chemical Genomics Center (NCGC) Pharmaceutical Collection (NPC), the Library of Pharmacologically Active Compounds (LOPAC), and the Tocris Biosciences collection were screened in a quantitative high-throughput screening (qHTS) format. The potential of drug-lipid complex formation can be linked directly to the structures of drug molecules, and many PLD inducing drugs were found to share common structural features. Support vector machine (SVM) models were constructed by using customized atom types or Molecular Operating Environment (MOE) 2D descriptors as structural descriptors. Either the compounds from LOPAC or randomly selected from the entire data set were used as the training set. The impact of training data with biased structural features and the impact of molecule descriptors emphasizing whole-molecule properties or detailed functional groups at the atom level on model performance were analyzed and discussed. Rebalancing strategies were applied to improve the predictive power of the SVM models. Using the undersampling method, the consensus model using one-third of the compounds randomly selected from the data set as the training set achieved high accuracy of 0.90 in predicting the remaining two-thirds of the compounds constituting the test set, as measured by the area under the receiver operator characteristic curve (AUC-ROC).
Collapse
Affiliation(s)
- Hongmao Sun
- National Institutes of Health (NIH) Chemical Genomics Center, NIH, Bethesda, Maryland 20892, United States.
| | | | | | | | | |
Collapse
|
22
|
Fey SJ, Wrzesinski K. Determination of drug toxicity using 3D spheroids constructed from an immortal human hepatocyte cell line. Toxicol Sci 2012; 127:403-11. [PMID: 22454432 PMCID: PMC3355318 DOI: 10.1093/toxsci/kfs122] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Numerous publications have documented that the immortal cells grown in three-dimensional (3D) cultures possess physiological behavior, which is more reminiscent of their parental organ than when the same cells are cultivated using classical two-dimensional (2D) culture techniques. The goal of this study was to investigate whether this observation could be extended to the determination of LD50 values and whether 3D data could be correlated to in vivo observations. We developed a noninvasive means to estimate the amount of protein present in a 3D spheroid from it is planar area (± 21%) so that a precise dose can be provided in a manner similar to in vivo studies. This avoided correction of the actual dose given based on a protein determination after treatment (when some cells may have lysed). Conversion of published in vitro LC50 data (mM) for six common drugs (acetaminophen, amiodarone, diclofenac, metformin, phenformin, and valproic acid) to LD50 data (mg compound/mg cellular protein) showed that the variation in LD50 values was generally less than that suggested by the original LC50 data. Toxicological analysis of these six compounds in 3D spheroid culture (either published or presented here) demonstrated similar LD50 values. Although in vitro 2D HepG2 data showed a poor correlation, the primary hepatocyte and 3D spheroid data resulted in a much higher degree of correlation with in vivo lethal blood plasma levels. These results corroborate that 3D hepatocyte cultures are significantly different from 2D cultures and are more representative of the liver in vivo.
Collapse
Affiliation(s)
- Stephen J Fey
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | |
Collapse
|
23
|
Tilmant K, Gerets H, Dhalluin S, Hanon E, Depelchin O, Cossu-Leguille C, Vasseur P, Atienzar F. Comparison of a genomic and a multiplex cell imaging approach for the detection of phospholipidosis. Toxicol In Vitro 2011; 25:1414-24. [DOI: 10.1016/j.tiv.2011.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/10/2011] [Accepted: 04/07/2011] [Indexed: 11/24/2022]
|
24
|
Przybylak KR, Cronin MTD. In Silico Studies of the Relationship Between Chemical Structure and Drug Induced Phospholipidosis. Mol Inform 2011; 30:415-29. [DOI: 10.1002/minf.201000164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/18/2011] [Indexed: 11/06/2022]
|
25
|
Stockert JC, Abasolo MI, Blázquez-Castro A, Horobin RW, Revilla M, Lombardo DM. Selective labeling of lipid droplets in aldehyde fixed cell monolayers by lipophilic fluorochromes. Biotech Histochem 2010; 85:277-83. [DOI: 10.3109/10520290903196183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Grandl M, Schmitz G. Fluorescent high-content imaging allows the discrimination and quantitation of E-LDL-induced lipid droplets and Ox-LDL-generated phospholipidosis in human macrophages. Cytometry A 2010; 77:231-42. [PMID: 20014301 DOI: 10.1002/cyto.a.20828] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Macrophage foam cells formed during uptake of atherogenic lipoproteins are a hallmark of atherosclerotic lesion development. In this study, human macrophages were incubated with two prototypic atherogenic LDL modifications enzymatically degraded LDL (E-LDL) and oxidized LDL (Ox-LDL) prepared from the same donor LDL. To detect differences in macrophage lipid storage, fluorescent high-content imaging was used. Lipid droplets were stained using Bodipy 493/503, and the fluorescent phospholipid probe NBD-PE was used to detect endolysosomal phospholipidosis in high-content imaging assays. The phospholipidosis assay was validated using phospholipidosis-inducing cationic amphiphilic drugs. In addition, neutral lipids and phospholipidosis were determined using LipidTOX. Images of 96-well cell culture microtiter plates were captured with multichannel laser-based high-content confocal microscopy, and subsequently cell- and well-based data were analyzed. E-LDL-loaded macrophages show increased intensity of Bodipy 493/503 and LipidTOX-Green neutral lipid droplet staining and a greater mean area and number of lipid droplets per cell compared to Ox-LDL-loaded and M-CSF-differentiated control macrophages. In contrast, Ox-LDL-loaded macrophages show increased intensity of NBD-PE and LipidTOX-Red detectable phospholipidosis in the endolysosomal compartment compared to E-LDL-loaded and M-CSF-differentiated macrophages. Treatment with the peroxisome proliferator-activated receptor-gamma agonist pioglitazone leads to lipid droplet induction depending on the lipid loading state of the macrophages. These results indicate that E-LDL preferentially induces lipid droplets, while Ox-LDL provokes endolysosomal phospholipidosis in human macrophages representing two different lipid storage principles. Therefore, fluorescent high-content imaging is a useful tool to discriminate between and quantify lipid storage compartments in macrophages also in response to drugs affecting cellular lipid metabolism.
Collapse
Affiliation(s)
- Margot Grandl
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
27
|
Evaluation of amiodarone-induced phospholipidosis by in vitro system of 3D cultured rat hepatocytes in gel entrapment. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Hanumegowda UM, Wenke G, Regueiro-Ren A, Yordanova R, Corradi JP, Adams SP. Phospholipidosis as a Function of Basicity, Lipophilicity, and Volume of Distribution of Compounds. Chem Res Toxicol 2010; 23:749-55. [DOI: 10.1021/tx9003825] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Umesh M. Hanumegowda
- Departments of Discovery Toxicology, Discovery Analytical Sciences, Discovery Chemistry, and Bioinformatics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492
| | - Gottfried Wenke
- Departments of Discovery Toxicology, Discovery Analytical Sciences, Discovery Chemistry, and Bioinformatics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492
| | - Alicia Regueiro-Ren
- Departments of Discovery Toxicology, Discovery Analytical Sciences, Discovery Chemistry, and Bioinformatics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492
| | - Roumyana Yordanova
- Departments of Discovery Toxicology, Discovery Analytical Sciences, Discovery Chemistry, and Bioinformatics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492
| | - John P. Corradi
- Departments of Discovery Toxicology, Discovery Analytical Sciences, Discovery Chemistry, and Bioinformatics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492
| | - Stephen P. Adams
- Departments of Discovery Toxicology, Discovery Analytical Sciences, Discovery Chemistry, and Bioinformatics, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492
| |
Collapse
|
29
|
Coleman J, Xiang Y, Pande P, Shen D, Gatica D, Patton WF. A live-cell fluorescence microplate assay suitable for monitoring vacuolation arising from drug or toxic agent treatment. ACTA ACUST UNITED AC 2010; 15:398-405. [PMID: 20237207 DOI: 10.1177/1087057110364242] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lysosomes are membrane-bound subcellular organelles involved in the degradation of macromolecules and pathogens in diverse processes, including endocytosis, phagocytosis, and autophagy. A red fluorescent probe was developed that is selectively sequestered in acidic organelles. U20S cells pretreated with 64 microM chloroquine for as little as 5 h show a dramatic increase in lysosome-like vesicle number and volume. The probe can be employed for highlighting lysosome-like organelles under conditions wherein cells produce vacuoles that contain most of the degradative enzymes of the lysosome but are not as acidic as the parent organelle. Using a conventional fluorescence microplate reader, the half-maximal effective concentration (EC(50)) of chloroquine was estimated. The high Z' score obtained using the assay demonstrated excellent signal-to-noise ratios. The fluorescence microplate assay was successfully employed to screen a small-molecule compound library for agents that increase lysosomal volume and number. One potential application of the new assay is in the toxicology portion of preclinical drug safety assessment (ADME-Tox) workflows, using in vitro cell culture models to aid in the drug development process.
Collapse
Affiliation(s)
- Jack Coleman
- R&D, Enzo Life Sciences, Farmingdale, New York 11735, USA
| | | | | | | | | | | |
Collapse
|
30
|
Miyamoto S, Matsumoto A, Mori I, Horinouchi A. Relationship between in vitro phospholipidosis assay using HepG2 cells and 2-week toxicity studies in rats. Toxicol Mech Methods 2010; 19:477-85. [PMID: 19793005 DOI: 10.1080/15376510903322834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Drug candidates under development by industry frequently show phospholipidosis as a side-effect in pre-clinical toxicity studies. This study sets up a cell-based assay for drug-induced phospholipidosis (PLD) and its performance was evaluated based on the in vivo PLD potential of compounds in 2-week toxicity studies in rats. When HepG2 cells were exposed simultaneously to PLD-inducing chemicals and a phospholipid having a fluorophore, an accumulation of phospholipids was detected as an increasing fluorescent intensity. Amiodarone, amitriptyline, fluoxetine, AY-9944, and perhexiline, which are common PLD-inducing chemicals, increased the fluorescent intensity, but acetaminophen, ampicillin, cimetidine, famotidine, or valproic acid, which are non-PLD-inducing chemicals, did not. The fluorescent intensity showed concordance with the pathological observations of phospholipid lamellar bodies in the cells. Then to confirm the predictive performance of the in vitro PLD assay, the 32 proprietary compounds characterized in 2-week toxicity studies in rats were evaluated with this in vitro assay. Because this in vitro assay was vulnerable to cytotoxicity, the innate PLD potential was calculated for each compound. A statistically significant increase in the in vitro PLD potential was seen for the compounds having in vivo PLD-inducing potential in the rat toxicity studies. The results suggest that the in vitro PLD potential could be appropriate to detect the appearance of PLD as a side effect in pre-clinical toxicity studies in rats.
Collapse
Affiliation(s)
- Saku Miyamoto
- Development Research Center, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Osaka, Japan.
| | | | | | | |
Collapse
|
31
|
Alakoskela JM, Vitovic P, Kinnunen PKJ. Screening for the drug-phospholipid interaction: correlation to phospholipidosis. ChemMedChem 2009; 4:1224-51. [PMID: 19551800 DOI: 10.1002/cmdc.200900052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phospholipid bilayers represent a complex, anisotropic environment fundamentally different from bulk oil or octanol, for instance. Even "simple" drug association to phospholipid bilayers can only be fully understood if the slab-of-hydrocarbon approach is abandoned and the complex, anisotropic properties of lipid bilayers reflecting the chemical structures and organization of the constituent phospholipids are considered. The interactions of drugs with phospholipids are important in various processes, such as drug absorption, tissue distribution, and subcellular distribution. In addition, drug-lipid interactions may lead to changes in lipid-dependent protein activities, and further, to functional and morphological changes in cells, a prominent example being the phospholipidosis (PLD) induced by cationic amphiphilic drugs. Herein we briefly review drug-lipid interactions in general and the significance of these interactions in PLD in particular. We also focus on a potential causal connection between drug-induced PLD and steatohepatitis, which is induced by some cationic amphiphilic drugs.
Collapse
Affiliation(s)
- Juha-Matti Alakoskela
- Division of Biochemistry, Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland.
| | | | | |
Collapse
|
32
|
Automated microscopic quantification of adipogenic differentiation of human gland stem cells. Ann Anat 2009; 191:13-22. [DOI: 10.1016/j.aanat.2008.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 09/04/2008] [Accepted: 09/09/2008] [Indexed: 02/07/2023]
|
33
|
Drug-induced phospholipidosis is caused by blockade of mannose 6-phosphate receptor-mediated targeting of lysosomal enzymes. Biochem Biophys Res Commun 2008; 377:268-74. [DOI: 10.1016/j.bbrc.2008.09.121] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 11/20/2022]
|