1
|
Dey AK, Burke B, Sun Y, Sirokman K, Nandi A, Hartog K, Lian Y, Geonnotti AR, Montefiori D, Franti M, Martin G, Carfi A, Kessler P, Martin L, Srivastava IK, Barnett SW. Elicitation of neutralizing antibodies directed against CD4-induced epitope(s) using a CD4 mimetic cross-linked to a HIV-1 envelope glycoprotein. PLoS One 2012; 7:e30233. [PMID: 22291921 PMCID: PMC3265465 DOI: 10.1371/journal.pone.0030233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/12/2011] [Indexed: 11/19/2022] Open
Abstract
The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved "CD4 induced" (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-2(7312/V434M) and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application.
Collapse
Affiliation(s)
- Antu K. Dey
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Brian Burke
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Yide Sun
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Klara Sirokman
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Avishek Nandi
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Karin Hartog
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Ying Lian
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Anthony R. Geonnotti
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael Franti
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Grégoire Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Andrea Carfi
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Pascal Kessler
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Loïc Martin
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines, Gif sur Yvette, France
| | - Indresh K. Srivastava
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Susan W. Barnett
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| |
Collapse
|
2
|
Li Y, Cleveland B, Klots I, Travis B, Richardson BA, Anderson D, Montefiori D, Polacino P, Hu SL. Removal of a single N-linked glycan in human immunodeficiency virus type 1 gp120 results in an enhanced ability to induce neutralizing antibody responses. J Virol 2008; 82:638-51. [PMID: 17959660 PMCID: PMC2224603 DOI: 10.1128/jvi.01691-07] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 10/18/2007] [Indexed: 11/20/2022] Open
Abstract
Glycans on human immunodeficiency virus (HIV) envelope protein play an important role in infection and evasion from host immune responses. To examine the role of specific glycans, we introduced single or multiple mutations into potential N-linked glycosylation sites in hypervariable regions (V1 to V3) of the env gene of HIV type 1 (HIV-1) 89.6. Three mutants tested showed enhanced sensitivity to soluble CD4. Mutant N7 (N197Q) in the carboxy-terminal stem of the V2 loop showed the most pronounced increase in sensitivity to broadly neutralizing antibodies (NtAbs), including those targeting the CD4-binding site (IgG1b12) and the V3 loop (447-52D). This mutant is also sensitive to CD4-induced NtAb 17b in the absence of CD4. Unlike the wild-type (WT) Env, mutant N7 mediates CD4-independent infection in U87-CXCR4 cells. To study the immunogenicity of mutant Env, we immunized pig-tailed macaques with recombinant vaccinia viruses, one expressing SIVmac239 Gag-Pol and the other expressing HIV-1 89.6 Env gp160 in WT or mutant forms. Animals were boosted 14 to 16 months later with simian immunodeficiency virus gag DNA and the cognate gp140 protein before intrarectal challenge with SHIV89.6P-MN. Day-of-challenge sera from animals immunized with mutant N7 Env had significantly higher and broader neutralizing activities than sera from WT Env-immunized animals. Neutralizing activity was observed against SHIV89.6, SHIV89.6P-MN, HIV-1 SF162, and a panel of subtype B primary isolates. Compared to control animals, immunized animals showed significant reduction of plasma viral load and increased survival after challenge, which correlated with prechallenge NtAb titers. These results indicate the potential advantages for glycan modification in vaccine design, although the role of specific glycans requires further examination.
Collapse
Affiliation(s)
- Yun Li
- Washington National Primate Center, University of Washington, 3000 Western Ave., Seattle, WA 98121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhan X, Slobod KS, Surman S, Brown SA, Coleclough C, Hurwitz JL. Minor components of a multi-envelope HIV vaccine are recognized by type-specific T-helper cells. Vaccine 2004; 22:1206-13. [PMID: 15003649 DOI: 10.1016/j.vaccine.2003.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 09/18/2003] [Accepted: 09/24/2003] [Indexed: 11/25/2022]
Abstract
HIV has thus far evaded control by vaccines, in part due to the high diversity among viral isolates. To effectively target HIV diversity, we propose that multi-envelope HIV vaccines should be designed. We hypothesize that minor components of complex envelope cocktail vaccines can be immunogenic and can thus elicit unique T-cell responses. To test our hypothesis, we first defined unique T-helper cell determinants on 1007 (clade B) and UG92005 (UG, clade D) gp140 envelope proteins delivered by DNA vaccination. Peptide-specific T-helper cell responses were then used as markers for type-specific immune activity. Results showed that type-specific responses could indeed be generated when an envelope protein was represented as only 1 part per 100 of the total vaccine. We also found that type-specific T-helper cell responses were elicited and sustained toward an envelope that appeared only once within a sequential prime/boost/boost regimen. Our results illustrate the flexibility and durability of immune responses toward individual components of mixed envelope vaccines and encourage the continued development of vaccine cocktails for the control of HIV.
Collapse
Affiliation(s)
- Xiaoyan Zhan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
4
|
McKenzie BS, Corbett AJ, Brady JL, Dyer CM, Strugnell RA, Kent SJ, Kramer DR, Boyle JS, Lew AM. Nucleic acid vaccines: tasks and tactics. Immunol Res 2002; 24:225-44. [PMID: 11817323 DOI: 10.1385/ir:24:3:225] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are no adequate vaccines against some of the new or reemerged infectious scourges such as HIV and TB. They may require strong and enduring cell-mediated immunity to be elicited. This is quite a task, as the only known basis of protection by current commercial vaccines is antibody. As DNA or RNA vaccines may induce both cell-mediated and humoral immunity, great interest has been shown in them. However, doubt remains whether their efficacy will suffice for their clinical realization. We look at the various tactics to increase the potency of nucleic acid vaccines and divided them broadly under those affecting delivery and those affecting immune induction. For delivery, we have considered ways of improving uptake and the use of bacterial, replicon or viral vectors. For immune induction, we considered aspects of immunostimulatory CpG motifs, coinjection of cytokines or costimulators and alterations of the antigen, its cellular localization and its anatomical localization including the use of ligand-targeting to lymphoid tissue. We also thought that mucosal application of DNA deserved a separate section. In this review, we have taken the liberty to discuss these enhancement methods, whenever possible, in the context of the underlying mechanisms that might argue for or against these strategies.
Collapse
Affiliation(s)
- B S McKenzie
- The Walter & Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Polacino PS, Stallard V, Klaniecki JE, Pennathur S, Montefiori DC, Langlois AJ, Richardson BA, Morton WR, Benveniste RE, Hu SL. Role of immune responses against the envelope and the core antigens of simian immunodeficiency virus SIVmne in protection against homologous cloned and uncloned virus challenge in Macaques. J Virol 1999; 73:8201-15. [PMID: 10482571 PMCID: PMC112838 DOI: 10.1128/jvi.73.10.8201-8215.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that envelope (gp160)-based vaccines, used in a live recombinant virus priming and subunit protein boosting regimen, protected macaques against intravenous and intrarectal challenges with the homologous simian immunodeficiency virus SIVmne clone E11S. However, the breadth of protection appears to be limited, since the vaccines were only partially effective against intravenous challenge by the uncloned SIVmne. To examine factors that could affect the breadth and the efficacy of this immunization approach, we studied (i) the effect of priming by recombinant vaccinia virus; (ii) the role of surface antigen gp130; and (iii) the role of core antigens (Gag and Pol) in eliciting protective immunity. Results indicate that (i) priming with recombinant vaccinia virus was more effective than subunit antigen in eliciting protective responses; (ii) while both gp130 and gp160 elicited similar levels of SIV-specific antibodies, gp130 was not as effective as gp160 in protection, indicating a possible role for the transmembrane protein in presenting functionally important epitopes; and (iii) although animals immunized with core antigens failed to generate any neutralizing antibody and were infected upon challenge, their virus load was 50- to 100-fold lower than that of the controls, suggesting the importance of cellular immunity or other core-specific immune responses in controlling acute infection. Complete protection against intravenous infection by the pathogenic uncloned SIVmne was achieved by immunization with both the envelope and the core antigens. These results indicate that immune responses to both antigens may contribute to protection and thus argue for the inclusion of multiple antigens in recombinant vaccine designs.
Collapse
Affiliation(s)
- P S Polacino
- Regional Primate Research Center, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Polacino P, Stallard V, Klaniecki JE, Montefiori DC, Langlois AJ, Richardson BA, Overbaugh J, Morton WR, Benveniste RE, Hu SL. Limited breadth of the protective immunity elicited by simian immunodeficiency virus SIVmne gp160 vaccines in a combination immunization regimen. J Virol 1999; 73:618-30. [PMID: 9847367 PMCID: PMC103868 DOI: 10.1128/jvi.73.1.618-630.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that immunization with recombinant simian immunodeficiency virus SIVmne envelope (gp160) vaccines protected macaques against an intravenous challenge by the cloned homologous virus, E11S. In this study, we confirmed this observation and found that the vaccines were effective not only against virus grown on human T-cell lines but also against virus grown on macaque peripheral blood mononuclear cells (PBMC). The breadth of protection, however, was limited. In three experiments, 3 of 10 animals challenged with the parental uncloned SIVmne were completely protected. Of the remaining animals, three were transiently virus positive and four were persistently positive after challenge, as were 10 nonimmunized control animals. Protection was not correlated with levels of serum-neutralizing antibodies against the homologous SIVmne or a related virus, SIVmac251. To gain further insight into the protective mechanism, we analyzed nucleotide sequences in the envelope region of the uncloned challenge virus and compared them with those present in the PBMC of infected animals. The majority (85%) of the uncloned challenge virus was homologous to the molecular clone from which the vaccines were made (E11S type). The remaining 15% contained conserved changes in the V1 region (variant types). Control animals infected with this uncloned virus had different proportions of the two genotypes, whereas three of four immunized but persistently infected animals had >99% of the variant types early after infection. These results indicate that the protective immunity elicited by recombinant gp160 vaccines is restricted primarily to the homologous virus and suggest the possibility that immune responses directed to the V1 region of the envelope protein play a role in protection.
Collapse
Affiliation(s)
- P Polacino
- Regional Primate Research Center, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kuller L, Thompson J, Watanabe R, Iskandriati D, Alpers CE, Morton WR, Agy MB. Mucosal antibody expression following rapid SIV(Mne) dissemination in intrarectally infected Macaca nemestrina. AIDS Res Hum Retroviruses 1998; 14:1345-56. [PMID: 9788676 DOI: 10.1089/aid.1998.14.1345] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The early kinetics of antibody expression following transmucosal infection by SIV(Mne) were examined in several mucosal compartments in Macaca nemestrina. Five male-female pairs of macaques were inoculated intrarectally with SIV(Mne) E11S, a biological clone, and serially euthanized at 1, 2, 4, 8, and 12 weeks postinoculation. Plasma, tears, saliva, rectal secretions, and vaginal washes were collected serially and just prior to euthanasia. Both total and SIV-specific IgG and IgA levels were measured by immunoglobulin isotype-specific quantitative enzyme-linked immunosorbent assays (ELISAs), and were further examined by conventional and enhanced chemiluminescence (ECL) immunoblots. Virus coculture, polymerase chain reaction, and in situ hybridization assays revealed the systemic spread of virus as early as 1 week postinoculation in 8 of 10 animals. ECL immunoblots detected SIV-specific antibodies in mucosal samples collected 1 week postinoculation. The most dramatic increases in both total and SIV-specific IgA levels were detected in rectal secretion samples. In contrast, plasma and nonrectal mucosal samples from the same time points increased only slightly, suggesting that the most robust antibody response occurred at the portal of infection. Our results show that the SIV-infected macaque is an excellent model for studies designed to assess mucosal immune responses to primate lentivirus infections. Additional studies will assess the correlation between the antiviral protection afforded by candidate vaccines and mucosal antibody responses.
Collapse
Affiliation(s)
- L Kuller
- Washington Regional Primate Research Center, University of Washington, Seattle 98195-7330, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Kent SJ, Hu SL, Corey L, Morton WR, Greenberg PD. Detection of simian immunodeficiency virus (SIV)-specific CD8+ T cells in macaques protected from SIV challenge by prior SIV subunit vaccination. J Virol 1996; 70:4941-7. [PMID: 8763998 PMCID: PMC190445 DOI: 10.1128/jvi.70.8.4941-4947.1996] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vaccines for lentiviruses would ideally induce in the host complete resistance to infection of host cells. However, such sterilizing immunity may be neither readily achievable nor absolutely necessary to provide protection from exposure to the immunodeficiency viruses. To examine the nature of protective immunity to simian immunodeficiency virus (SIV), we studied three macaques that had been immunized with a recombinant vaccinia virus-based SIV subunit vaccine regimen and exhibited protection from a challenge with cell-free SIV (MNE) as determined by viral cultures, serology, and PCR for viral genomes. Peripheral blood mononuclear cells were obtained from the protected macaques and analyzed for CD8+ cytotoxic T-lymphocyte (CTL) responses to SIV proteins. CTL reactive to SIV proteins not included in the subunit vaccine, and thus to which these animals had not been exposed prior to challenge, were detected postchallenge in the vaccine-protected animals and persisted for up to 1 year. These CTL, as reflected by studies of cytolytic lines and derived T-cell clones, were CD8+, did not recognize allogeneic targets, and recognized the SIV proteins in the context of class I major histocompatibility complex molecules. The frequency of precursor CD8+ CTL reactive to SIV proteins was determined by limiting-dilution analysis and demonstrated that the responses elicited following challenge of protected animals to SIV proteins not present in the vaccine were quantitatively similar to those of animals persistently infected with SIV. The presence of these CD8+ CTL responses to SIV proteins present only in the challenge virus suggests that infection of some host cells occurred postchallenge. These results suggest that the development of a low level of SIV infection following exposure of vaccinated hosts to SIV does not preclude protection from lethal SIV disease by vaccine-induced immunity.
Collapse
Affiliation(s)
- S J Kent
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
9
|
Hu SL, Polacino P, Stallard V, Klaniecki J, Pennathur S, Travis BM, Misher L, Kornas H, Langlois AJ, Morton WR, Benveniste RE. Recombinant subunit vaccines as an approach to study correlates of protection against primate lentivirus infection. Immunol Lett 1996; 51:115-9. [PMID: 8811354 DOI: 10.1016/0165-2478(96)02564-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using pathogenic simian immunodeficiency virus (SIV) infection of macaques as a model, we explored the limits of the protective immunity elicited by recombinant subunit vaccines and examined factors that affect their efficacy. Envelope gp 160 vaccines, when used in a live recombinant virus-priming and subunit-protein-boosting regimen, protected macaques against a low-dose, intravenous infection by a cloned homologous virus SIVmne E11S. The same regimen was also effective against intrarectal challenge by the same virus and against intravenous challenge by E11S grown on primary macaque peripheral blood mononuclear cells (PBMC). However, only limited protection was observed against uncloned SIVmne. Priming with live recombinant virus was more effective than immunization with subunit gp 160 alone, indicating a potential advantage of native antigen presentation and the possible role of cell-mediated immunity in protection. Whole gp 160 was more effective than the surface antigen (gp 130), even though both antigens elicited similar levels of neutralizing antibodies. Animals immunized with the core (gag-pol) antigens failed to generate any neutralizing antibody and were all infected following challenge. However, their proviral load was 10-100-fold lower than that of the control animals, indicating that immune mechanisms such as cytotoxic T lymphocytes (CTL) may play a role. Finally, animals immunized with both the core and the envelope antigens generated significant protective immunity, even with relatively low neutralizing antibodies. Taken together, these results indicate that multiple mechanisms may contribute to protection. It may therefore be advantageous to incorporate multiple antigens in the design of recombinant subunit vaccines against acquired immunodeficiency syndrome (AIDS).
Collapse
Affiliation(s)
- S L Hu
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, WA 98121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Franchini G, Robert-Guroff M, Tartaglia J, Aggarwal A, Abimiku A, Benson J, Markham P, Limbach K, Hurteau G, Fullen J. Highly attenuated HIV type 2 recombinant poxviruses, but not HIV-2 recombinant Salmonella vaccines, induce long-lasting protection in rhesus macaques. AIDS Res Hum Retroviruses 1995; 11:909-20. [PMID: 7492438 DOI: 10.1089/aid.1995.11.909] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Immunization schemes employing priming with vector-based vaccine candidates followed by subunit booster administrations have been explored and shown to have merit in the human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus systems. In this study, we have assessed the priming capacity of highly attenuated poxvirus vector (NYVAC and ALVAC)-based HIV-2 recombinants, as well as Salmonella typhimurium HIV-2 recombinants in rhesus macaques. ALVAC- and NYVAC-based vaccine candidates expressing the HIV-2 gag, pol, and env genes or NYVAC-based recombinants expressing either gp160 or gp120 were used to immunize rhesus macaques in combination protocols with alum-adjuvanted HIV-2 rgp160. Following intravenous challenge exposure with 100 infectious doses of the HIV-2SBL6669 parental virus genotype mixture, seven of eight animals were protected from infection. The seven protected animals were rechallenged 6 months postprimary challenge, without additional booster inoculations, with the same dose of the HIV-2SBL6669 parental virus. Five of the seven animals remained protected against HIV-2 infection at 6 months following the second challenge. In contrast, oral immunization with recombinant Salmonella expressing the HIV-2 gag and the gp120 portion of the envelope either alone or in combination with alum-adjuvanted rgp160 failed to confer protection. These results suggest that the NYVAC- and ALVAC-based recombinants may confer long-lasting protection and that these two highly attenuated poxvirus vaccine vectors may represent promising candidates for developing an acquired immunodeficiency syndrome vaccine.
Collapse
Affiliation(s)
- G Franchini
- Laboratory of Tumor Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kent SJ, Corey L, Agy MB, Morton WR, McElrath MJ, Greenberg PD. Cytotoxic and proliferative T cell responses in HIV-1-infected Macaca nemestrina. J Clin Invest 1995; 95:248-56. [PMID: 7814622 PMCID: PMC295418 DOI: 10.1172/jci117647] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Macaca nemestrina has been described as an animal model for acute HIV-1 infection. This animal, unlike most infected humans, appears to contain HIV-1 replication. Therefore analysis of HIV-1-specific proliferative and cytotoxic T lymphocyte (CTL) responses following HIV-1 challenge of M. nemestrina may provide information into the role of such responses in both the control of acute HIV infection and protective immunity. Although CD4+ T cell responses to HIV-1 are generally difficult to detect in HIV-1-infected humans, early and persistent CD4+ T cell proliferative responses to HIV-1 antigens were detected in all HIV-1-inoculated M. nemestrina. HIV-1-specific CD8+ CTL responses were evaluated in PBMC by stimulation with autologous cells expressing HIV-1 genes, limiting dilution precursor frequency analysis, and T cell cloning. CTL reactive with gag, env, and nef were present 4-8 wk after infection, and persisted to 140 wk after infection. The presence of both CD4+ and CD8+ T cell responses before and after clearance of HIV-1 viremia is consistent with a role for these responses in the successful control of HIV-1 viral replication observed in M. nemestrina. Further studies of T cell immunity in these animals that resist disease should provide insights into the immunobiology of HIV-1 infection.
Collapse
Affiliation(s)
- S J Kent
- Department of Medicine, University of Washington, Seattle 98195
| | | | | | | | | | | |
Collapse
|
12
|
Schlienger K, Montefiori DC, Mancini M, Rivière Y, Tiollais P, Michel ML. Vaccine-induced neutralizing antibodies directed in part to the simian immunodeficiency virus (SIV) V2 domain were unable to protect rhesus monkeys from SIV experimental challenge. J Virol 1994; 68:6578-88. [PMID: 7521918 PMCID: PMC237078 DOI: 10.1128/jvi.68.10.6578-6588.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The potential of the simian immunodeficiency virus (SIV) variable 2 (V2) domain as an effective region to boost SIV-neutralizing antibodies and to protect against live SIV challenge was tested in rhesus macaques. In this study, two rhesus macaques were primed with vaccinia virus recombinants expressing the surface glycoprotein gp140 of SIVmac and were given booster injections with the SIVmac V2 domain presented by a highly immunogenic carrier, the hepatitis B surface antigen (HBsAg). The two vaccinated macaques exhibited SIV-neutralizing antibodies after primer injections that were enhanced by the V2/HBsAg injections. Part of these SIV-neutralizing antibodies were directed specifically to the V2 region, as shown by neutralization-blocking experiments. However, despite having consistent SIV-neutralizing antibody titers, animals were not protected against homologous challenge with BK28, the molecular clone of SIVmac251. No SIV envelope-specific cellular cytotoxic response was detected throughout the immunization protocol, suggesting that neutralizing antibodies directed to SIV envelope gp140 and especially to the V2 domain were unable on their own to protect against SIV challenge. Furthermore, the vaccinees seemed to have higher viral loads than control animals after challenge, raising the question of whether neutralizing antibodies induced by vaccination and directed to the SIV envelope selected viral escape mutants, as shown previously in SIV-infected macaques. This mechanism is certainly worthy of intensive investigation and raises some concern for SIV envelope-targeted immunization.
Collapse
Affiliation(s)
- K Schlienger
- Unité de Recombinaison et Expression Génétique, Institut National de la Santé et de la Recherche Médicale U163, Paris, France
| | | | | | | | | | | |
Collapse
|
13
|
Benveniste RE, Roodman ST, Hill RW, Knott WB, Ribas JL, Lewis MG, Eddy GA. Infectivity of titered doses of simian immunodeficiency virus clone E11S inoculated intravenously into rhesus macaques (Macaca mulatta). J Med Primatol 1994; 23:83-8. [PMID: 7966238 DOI: 10.1111/j.1600-0684.1994.tb00106.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The macaque infectious dose (MID) of a single-cell clone of simian immunodeficiency virus isolated from a pig-tailed macaque (SIV/Mne clone E11S) was determined in rhesus macaques (Macaca mulatta). Twenty-one macaques were inoculated with 10-fold dilutions of the virus stock (three or four animals per dose). The virologic and clinical status of these animals was monitored for 26 weeks. The 25% MID (MID25) occurred at a 10(5)-fold dilution of the viral stock.
Collapse
Affiliation(s)
- R E Benveniste
- Laboratory of Viral Carcinogenesis, National Cancer Institute, Frederick, MD 21702-1201
| | | | | | | | | | | | | |
Collapse
|
14
|
Stott EJ. Towards a vaccine against AIDS: lessons from simian immunodeficiency virus vaccines. Curr Top Microbiol Immunol 1994; 188:221-37. [PMID: 7924428 DOI: 10.1007/978-3-642-78536-8_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- E J Stott
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, UK
| |
Collapse
|
15
|
Hu S, Stallard V, Abrams K, Barber GN, Kuller L, Langlois AJ, Morton WR, Benveniste RE. Protection of vaccinia‐primed macaques against SIV
mne
infection by combination immunization with recombinant vaccinia virus and SIV
mne
gp160. J Med Primatol 1993. [DOI: 10.1111/j.1600-0684.1993.tb00645.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Shiu‐Lok Hu
- Bristol‐Myers Squibb Pharmaceutical Research InstituteSeattleWA
- Washington Regional Primate Research CenterUniversity of WashingtonSeattleWA
| | - Virginia Stallard
- Washington Regional Primate Research CenterUniversity of WashingtonSeattleWA
| | - Kraig Abrams
- Washington Regional Primate Research CenterUniversity of WashingtonSeattleWA
| | - Glen N. Barber
- Washington Regional Primate Research CenterUniversity of WashingtonSeattleWA
| | - LaRene Kuller
- Washington Regional Primate Research CenterUniversity of WashingtonSeattleWA
| | | | - William R. Morton
- Washington Regional Primate Research CenterUniversity of WashingtonSeattleWA
| | | |
Collapse
|
16
|
Murphey-Corb M, Ohkawa S, Davison-Fairburn B, Martin LN, Baskin GB, Langlois AJ, McIntee M, Narayan O, Gardner MB. A formalin-fixed whole SIV vaccine induces protective responses that are cross-protective and durable. AIDS Res Hum Retroviruses 1992; 8:1475-8. [PMID: 1466986 DOI: 10.1089/aid.1992.8.1475] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M Murphey-Corb
- Tulane Regional Primate Research Center, Covington, LA 70434
| | | | | | | | | | | | | | | | | |
Collapse
|