1
|
Wilmschen S, Schmitz JE, Kimpel J. Viral Vectors for the Induction of Broadly Neutralizing Antibodies against HIV. Vaccines (Basel) 2019; 7:vaccines7030119. [PMID: 31546894 PMCID: PMC6789710 DOI: 10.3390/vaccines7030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/10/2023] Open
Abstract
Extensive research on generating an efficient HIV vaccine is ongoing. A major aim of HIV vaccines is the induction of long-lasting, broadly neutralizing antibodies (bnAbs) that can confer sterile immunity for a prolonged period of time. Several strategies have been explored to reach this goal, i.e. protein immunization, DNA, or viral vectors, or a combination thereof. In this review, we give an overview of approaches using viral vectors for the induction of HIV-specific bnAbs. Many pre-clinical studies were performed using various replication-competent and -incompetent vectors. Amongst them, poxviral and adenoviral vectors were the most prevalent ones. In many studies, viral vectors were combined with a DNA prime or a protein boost. However, neutralizing antibodies were mainly induced against the homologous HIV-1 vaccine strain or tier 1 viruses, and in rare cases, against tier 2 viruses, indicating the need for improved antigens and vaccination strategies. Furthermore, we also review next generation Env antigens that are currently being used in protein vaccination approaches and point out how they could be utilized in viral vectors.
Collapse
Affiliation(s)
- Sarah Wilmschen
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
2
|
Fernández-Escobar M, Baldanta S, Reyburn H, Guerra S. Use of functional genomics to understand replication deficient poxvirus-host interactions. Virus Res 2016; 216:1-15. [PMID: 26519757 DOI: 10.1016/j.virusres.2015.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
High-throughput genomics technologies are currently being used to study a wide variety of viral infections, providing insight into which cellular genes and pathways are regulated after infection, and how these changes are related, or not, to efficient elimination of the pathogen. This article will focus on how gene expression studies of infections with non-replicative poxviruses currently used as vaccine vectors provide a global perspective of the molecular events associated with the viral infection in human cells. These high-throughput genomics approaches have the potential to lead to the identification of specific new properties of the viral vector or novel cellular targets that may aid in the development of more effective pox-derived vaccines and antivirals.
Collapse
Affiliation(s)
- Mercedes Fernández-Escobar
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain
| | - Sara Baldanta
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain
| | - Hugh Reyburn
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| |
Collapse
|
3
|
Differential induction of apoptosis, interferon signaling, and phagocytosis in macrophages infected with a panel of attenuated and nonattenuated poxviruses. J Virol 2014; 88:5511-23. [PMID: 24599993 DOI: 10.1128/jvi.00468-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Due to the essential role macrophages play in antiviral immunity, it is important to understand the intracellular and molecular processes that occur in macrophages following infection with various strains of vaccinia virus, particularly those used as vaccine vectors. Similarities as well as differences were found in macrophages infected with different poxvirus strains, particularly at the level of virus-induced apoptosis and the expression of immunomodulatory genes, as determined by microarray analyses. Interestingly, the attenuated modified vaccinia Ankara virus (MVA) was particularly efficient in triggering apoptosis and beta interferon (IFN-β) secretion and in inducing changes in the expression of genes associated with increased activation of innate immunity, setting it apart from the other five vaccinia virus strains tested. Taken together, these results increase our understanding of how these viruses interact with human macrophages, at the cellular and molecular levels, and suggest mechanisms that may underlie their utility as recombinant vaccine vectors. IMPORTANCE Our studies clearly demonstrate that there are substantial biological differences in the patterns of cellular gene expression between macrophages infected with different poxvirus strains and that these changes are due specifically to infection with the distinct viruses. For example, a clear induction in IFN-β mRNA was observed after infection with MVA but not with other poxviruses. Importantly, antiviral bioassays confirmed that MVA-infected macrophages secreted a high level of biologically active type I IFN. Similarly, the phagocytic capacity of macrophages was also specifically increased after infection with MVA. Although the main scope of this study was not to test the vaccine potential of MVA as there are several groups in the field working extensively on this aspect, the characteristics/phenotypes we observed at the in vitro level clearly highlight the inherent advantages that MVA possesses in comparison to other poxvirus strains.
Collapse
|
4
|
Sui Y, Gordon S, Franchini G, Berzofsky JA. Nonhuman primate models for HIV/AIDS vaccine development. ACTA ACUST UNITED AC 2013; 102:12.14.1-12.14.30. [PMID: 24510515 DOI: 10.1002/0471142735.im1214s102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of HIV vaccines has been hampered by the lack of an animal model that can accurately predict vaccine efficacy. Chimpanzees can be infected with HIV-1 but are not practical for research. However, several species of macaques are susceptible to the simian immunodeficiency viruses (SIVs) that cause disease in macaques, which also closely mimic HIV in humans. Thus, macaque-SIV models of HIV infection have become a critical foundation for AIDS vaccine development. Here we examine the multiple variables and considerations that must be taken into account in order to use this nonhuman primate (NHP) model effectively. These include the species and subspecies of macaques, virus strain, dose and route of administration, and macaque genetics, including the major histocompatibility complex molecules that affect immune responses, and other virus restriction factors. We illustrate how these NHP models can be used to carry out studies of immune responses in mucosal and other tissues that could not easily be performed on human volunteers. Furthermore, macaques are an ideal model system to optimize adjuvants, test vaccine platforms, and identify correlates of protection that can advance the HIV vaccine field. We also illustrate techniques used to identify different macaque lymphocyte populations and review some poxvirus vaccine candidates that are in various stages of clinical trials. Understanding how to effectively use this valuable model will greatly increase the likelihood of finding a successful vaccine for HIV.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Shari Gordon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| |
Collapse
|
5
|
Antibodies with high avidity to the gp120 envelope protein in protection from simian immunodeficiency virus SIV(mac251) acquisition in an immunization regimen that mimics the RV-144 Thai trial. J Virol 2012; 87:1708-19. [PMID: 23175374 DOI: 10.1128/jvi.02544-12] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8(+) T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIV(mac251) that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4(+) and CD8(+) T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIV(mac251) acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIV(mac251)-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIV(mac251) infectivity in cells that express high levels of α(4)β(7) integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines.
Collapse
|
6
|
Potent and broadly reactive HIV-2 neutralizing antibodies elicited by a vaccinia virus vector prime-C2V3C3 polypeptide boost immunization strategy. J Virol 2010; 84:12429-36. [PMID: 20844029 DOI: 10.1128/jvi.01102-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism.
Collapse
|
7
|
Vaccari M, Poonam P, Franchini G. Phase III HIV vaccine trial in Thailand: a step toward a protective vaccine for HIV. Expert Rev Vaccines 2010; 9:997-1005. [PMID: 20822342 PMCID: PMC7337582 DOI: 10.1586/erv.10.104] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The large human efficacy trail in Thailand, RV144, was concluded in the summer of 2009. This is the first Phase III trial to show limited, but significant, efficacy in preventing HIV acquisition. This trial represents the first sign that a preventive vaccine for HIV may be feasible. The vaccine regimen tested in Thailand consisted of priming with a Canarypox vector carrying three synthetic HIV genes. The priming was followed by booster inoculations with two recombinant envelope proteins from HIV, clade B and E. The need to understand the role in protection from HIV acquisition of the new responses, induced by this vaccine combination, has brought together many researchers with the common goal of improving the development of a safe and effective vaccine for HIV.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Poonam Poonam
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Barnett SW, Burke B, Sun Y, Kan E, Legg H, Lian Y, Bost K, Zhou F, Goodsell A, Zur Megede J, Polo J, Donnelly J, Ulmer J, Otten GR, Miller CJ, Vajdy M, Srivastava IK. Antibody-mediated protection against mucosal simian-human immunodeficiency virus challenge of macaques immunized with alphavirus replicon particles and boosted with trimeric envelope glycoprotein in MF59 adjuvant. J Virol 2010; 84:5975-85. [PMID: 20392857 PMCID: PMC2876657 DOI: 10.1128/jvi.02533-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/18/2010] [Indexed: 12/19/2022] Open
Abstract
We have previously shown that rhesus macaques were partially protected against high-dose intravenous challenge with simian-human immunodeficiency virus SHIV(SF162P4) following sequential immunization with alphavirus replicon particles (VRP) of a chimeric recombinant VEE/SIN alphavirus (derived from Venezuelan equine encephalitis virus [VEE] and the Sindbis virus [SIN]) encoding human immunodeficiency virus type 1 HIV-1(SF162) gp140DeltaV2 envelope (Env) and trimeric Env protein in MF59 adjuvant (R. Xu, I. K. Srivastava, C. E. Greer, I. Zarkikh, Z. Kraft, L. Kuller, J. M. Polo, S. W. Barnett, and L. Stamatatos, AIDS Res. Hum. Retroviruses 22:1022-1030, 2006). The protection did not require T-cell immune responses directed toward simian immunodeficiency virus (SIV) Gag. We extend those findings here to demonstrate antibody-mediated protection against mucosal challenge in macaques using prime-boost regimens incorporating both intramuscular and mucosal routes of delivery. The macaques in the vaccination groups were primed with VRP and then boosted with Env protein in MF59 adjuvant, or they were given VRP intramuscular immunizations alone and then challenged with SHIV(SF162P4) (intrarectal challenge). The results demonstrated that these vaccines were able to effectively protect the macaques to different degrees against subsequent mucosal SHIV challenge, but most noteworthy, all macaques that received the intramuscular VRP prime plus Env protein boost were completely protected. A statistically significant association was observed between the titer of virus neutralizing and binding antibodies as well as the avidity of anti-Env antibodies measured prechallenge and protection from infection. These results highlight the merit of the alphavirus replicon vector prime plus Env protein boost vaccine approach for the induction of protective antibody responses and are of particular relevance to advancing our understanding of the potential correlates of immune protection against HIV infection at a relevant mucosal portal of entry.
Collapse
Affiliation(s)
- Susan W Barnett
- Novartis Vaccines and Diagnostics, 350 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mooij P, Balla-Jhagjhoorsingh SS, Koopman G, Beenhakker N, van Haaften P, Baak I, Nieuwenhuis IG, Kondova I, Wagner R, Wolf H, Gómez CE, Nájera JL, Jiménez V, Esteban M, Heeney JL. Differential CD4+ versus CD8+ T-cell responses elicited by different poxvirus-based human immunodeficiency virus type 1 vaccine candidates provide comparable efficacies in primates. J Virol 2008; 82:2975-88. [PMID: 18184713 PMCID: PMC2258966 DOI: 10.1128/jvi.02216-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 12/13/2007] [Indexed: 12/20/2022] Open
Abstract
Poxvirus vectors have proven to be highly effective for boosting immune responses in diverse vaccine settings. Recent reports reveal marked differences in the gene expression of human dendritic cells infected with two leading poxvirus-based human immunodeficiency virus (HIV) vaccine candidates, New York vaccinia virus (NYVAC) and modified vaccinia virus Ankara (MVA). To understand how complex genomic changes in these two vaccine vectors translate into antigen-specific systemic immune responses, we undertook a head-to-head vaccine immunogenicity and efficacy study in the pathogenic HIV type 1 (HIV-1) model of AIDS in Indian rhesus macaques. Differences in the immune responses in outbred animals were not distinguished by enzyme-linked immunospot assays, but differences were distinguished by multiparameter fluorescence-activated cell sorter analysis, revealing a difference between the number of animals with both CD4(+) and CD8(+) T-cell responses to vaccine inserts (MVA) and those that elicit a dominant CD4(+) T-cell response (NYVAC). Remarkably, vector-induced differences in CD4(+)/CD8(+) T-cell immune responses persisted for more than a year after challenge and even accompanied antigenic modulation throughout the control of chronic infection. Importantly, strong preexposure HIV-1/simian immunodeficiency virus-specific CD4(+) T-cell responses did not prove deleterious with respect to accelerated disease progression. In contrast, in this setting, animals with strong vaccine-induced polyfunctional CD4(+) T-cell responses showed efficacies similar to those with stronger CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Guerra S, Nájera JL, González JM, López-Fernández LA, Climent N, Gatell JM, Gallart T, Esteban M. Distinct gene expression profiling after infection of immature human monocyte-derived dendritic cells by the attenuated poxvirus vectors MVA and NYVAC. J Virol 2007; 81:8707-21. [PMID: 17537851 PMCID: PMC1951336 DOI: 10.1128/jvi.00444-07] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although recombinants based on the attenuated poxvirus vectors MVA and NYVAC are currently in clinical trials, the nature of the genes triggered by these vectors in antigen-presenting cells is poorly characterized. Using microarray technology and various analysis conditions, we compared specific changes in gene expression profiling following MVA and NYVAC infection of immature human monocyte-derived dendritic cells (MDDC). Microarray analysis was performed at 6 h postinfection, since these viruses induced extensive cytopathic effects, rRNA breakdown, and apoptosis at late times postinfection. MVA- and NYVAC-infected MDDC shared upregulation of 195 genes compared to uninfected cells: MVA specifically upregulated 359 genes, and NYVAC upregulated 165 genes. Microarray comparison of NYVAC and MVA infection revealed 544 genes with distinct expression patterns after poxvirus infection and 283 genes specifically upregulated after MVA infection. Both vectors upregulated genes for cytokines, cytokine receptors, chemokines, chemokine receptors, and molecules involved in antigen uptake and processing, including major histocompatibility complex genes. mRNA levels for interleukin 12beta (IL-12beta), beta interferon, and tumor necrosis factor alpha were higher after MVA infection than after NYVAC infection. The expression profiles of transcription factors such as NF-kappaB/Rel and STAT were regulated similarly by both viruses; in contrast, OASL, MDA5, and IRIG-I expression increased only during MVA infection. Type I interferon, IL-6, and Toll-like receptor pathways were specifically induced after MVA infection. Following MVA or NYVAC infection in MDDC, we found similarities as well as differences between these virus strains in the expression of cellular genes with immunological function, which should have an impact when these vectors are used as recombinant vaccines.
Collapse
Affiliation(s)
- Susana Guerra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Guerra S, López-Fernández LA, Pascual-Montano A, Nájera JL, Zaballos A, Esteban M. Host response to the attenuated poxvirus vector NYVAC: upregulation of apoptotic genes and NF-kappaB-responsive genes in infected HeLa cells. J Virol 2006; 80:985-98. [PMID: 16379000 PMCID: PMC1346868 DOI: 10.1128/jvi.80.2.985-998.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 10/10/2005] [Indexed: 11/20/2022] Open
Abstract
NYVAC has been engineered as a safe, attenuated vaccinia virus (VV) vector for use in vaccination against a broad spectrum of pathogens and tumors. Due to the interest in NYVAC-based vectors as vaccines and current phase I/II clinical trials with this vector, there is a need to analyze the human host response to NYVAC infection. Using high-density cDNA microarrays, we found 368 differentially regulated genes after NYVAC infection of HeLa cells. Clustering of the regulated genes identified six discrete gene clusters with altered expression patterns. Clusters 1 to 3 represented 47.5% of the regulated genes, with three patterns of gene activation kinetics, whereas clusters 4 to 6 showed distinct repression kinetics. Quantitative real-time reverse transcription-PCR analysis of selected genes validated the array data. Upregulated transcripts correlated with genes implicated in immune responses, including those encoding interleukin-1 receptor 2 (IL-1R2), IL-6, ISG-15, CD-80, and TNFSF7. NYVAC upregulated several intermediates of apoptotic cascades, including caspase-9, correlating with its ability to induce apoptosis. NYVAC infection also stimulated the expression of NF-kappaB1 and NF-kappaB2 as well as that of NF-kappaB target genes. Expression of the VV host range K1L gene during NYVAC infection prevented NF-kappaB activation, but not the induction of apoptosis. This study is the first overall analysis of the transcriptional response of human cells to NYVAC infection and provides a framework for future functional studies to evaluate this vector and its derivatives as human vaccines.
Collapse
Affiliation(s)
- Susana Guerra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología/CSIC, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
This article gives an overview about the development of an HIV-1 vaccine. Tremendous numbers of papers have been published on this topic during the last 10 years, and this article can only touch on the different directions taken toward the development of an HIV-1 vaccine, and not give a complete overview of the entire field.
Collapse
Affiliation(s)
- James P McGettigan
- Department of Biochemistry and Molecular Pharmacology, Dorrance H. Hamilton Laboratories, Center for Human Virology, Philadelphia, PA 19107-6799, USA
| | | | | |
Collapse
|
13
|
Affiliation(s)
- P J Bock
- Department of Internal Medicine, Division of Infectious Diseases, Graduate Program in Cellular and Molecular Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | |
Collapse
|
14
|
Affiliation(s)
- A M Schultz
- International AIDS Vaccine Initiative, New York, New York, USA.
| | | |
Collapse
|
15
|
Abstract
Development of a prophylactic human immunodeficiency virus type 1 (HIV-1) vaccine is a leading priority in biomedical research. Much of this work has been done with the nonhuman primate model of AIDS. In a historical context, vaccine studies, which use this model, are summarized and discussed.
Collapse
Affiliation(s)
- Stephen M Smith
- Saint Michael's Medical Center and The New Jersey Medical School - UMDNJ, Newark, NJ, USA.
| |
Collapse
|
16
|
Kazanji M, Tartaglia J, Franchini G, de Thoisy B, Talarmin A, Contamin H, Gessain A, de Thé G. Immunogenicity and protective efficacy of recombinant human T-cell leukemia/lymphoma virus type 1 NYVAC and naked DNA vaccine candidates in squirrel monkeys (Saimiri sciureus). J Virol 2001; 75:5939-48. [PMID: 11390595 PMCID: PMC114309 DOI: 10.1128/jvi.75.13.5939-5948.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We assessed the immunogenicities and efficacies of two highly attenuated vaccinia virus-derived NYVAC vaccine candidates encoding the human T-cell leukemia/lymphoma virus type 1 (HTLV-1) env gene or both the env and gag genes in prime-boost pilot regimens in combination with naked DNA expressing the HTLV-1 envelope. Three inoculations of NYVAC HTLV-1 env at 0, 1, and 3 months followed by a single inoculation of DNA env at 9 months protected against intravenous challenge with HTLV-1-infected cells in one of three immunized squirrel monkeys. Furthermore, humoral and cell-mediated immune responses against HTLV-1 Env could be detected in this protected animal. However, priming the animal with a single dose of env DNA, followed by immunization with the NYVAC HTLV-1 gag and env vaccine at 6, 7, and 8 months, protected all three animals against challenge with HTLV-1-infected cells. With this protocol, antibodies against HTLV-1 Env and cell-mediated responses against Env and Gag could also be detected in the protected animals. Although the relative superiority of a DNA prime-NYVAC boost regimen over addition of the Gag component as an immunogen cannot be assessed directly, our findings nevertheless show that an HTLV-1 vaccine approach is feasible and deserves further study.
Collapse
Affiliation(s)
- M Kazanji
- Laboratoire de Rétrovirologie, Institut Pasteur de la Guyane, 23 Av. Pasteur, Cayenne, French Guiana.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Vaccine vectors based on recombinant viruses have great promise to play an important role in the development of an effective HIV-1 vaccine. Within the last 10 years a wide range of viruses have been investigated for their ability to express protein(s) from foreign pathogens and to induce specific immunological responses against these antigen(s) in vivo. Each viral vector has its own unique biological characteristics and thus far none of them has proven to be an ideal candidate as a vaccine vehicle for HIV-1. This review focuses on both replication competent and non-replication competent viral vectors as a potential HIV-1 vaccine. Other approaches for the development of an HIV-1 vaccine are reviewed elsewhere and are beyond the scope of this review.
Collapse
Affiliation(s)
- M J Schnell
- The Dorrance H. Hamilton Laboratories, Center for Human Virology, and the Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, PA19107, USA.
| |
Collapse
|
18
|
Hirsch VM, Lifson JD. Simian immunodeficiency virus infection of monkeys as a model system for the study of AIDS pathogenesis, treatment, and prevention. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:437-77. [PMID: 11013771 DOI: 10.1016/s1054-3589(00)49034-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As presented in this review, there are a number of different models of both natural and experimental infection of monkeys with primate lentiviruses. There are numerous different viruses and multiple different monkey species, making for a potentially large number of different combinations. The fact that each different combination of virus isolate and host macaque species may show different behavior underscores the need to understand the different models and their key features. On the one hand, this diversity of systems underscores the need to provide some standardization of the systems used for certain kinds of studies, such as vaccine evaluations, in order to facilitate the comparison of results obtained in different experiments, but in essentially the same experimental system. On the other hand, the rich diversity of different systems, with different features and behaviors, represents a tremendous resource, among other things allowing the investigator to select the system that best recapitulates particular aspects of human HIV infection for study in a relevant nonhuman primate model. Such studies have provided, and may be expected to continue to provide, important insights to guide HIV treatment and vaccine development in the future.
Collapse
Affiliation(s)
- V M Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, Maryland 20852, USA
| | | |
Collapse
|
19
|
Ignatius R, Marovich M, Mehlhop E, Villamide L, Mahnke K, Cox WI, Isdell F, Frankel SS, Mascola JR, Steinman RM, Pope M. Canarypox virus-induced maturation of dendritic cells is mediated by apoptotic cell death and tumor necrosis factor alpha secretion. J Virol 2000; 74:11329-38. [PMID: 11070033 PMCID: PMC113238 DOI: 10.1128/jvi.74.23.11329-11338.2000] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant avipox viruses are being widely evaluated as vaccines. To address how these viruses, which replicate poorly in mammalian cells, might be immunogenic, we studied how canarypox virus (ALVAC) interacts with primate antigen-presenting dendritic cells (DCs). When human and rhesus macaque monocyte-derived DCs were exposed to recombinant ALVAC, immature DCs were most susceptible to infection. However, many of the infected cells underwent apoptotic cell death, and dying infected cells were engulfed by uninfected DCs. Furthermore, a subset of DCs matured in the ALVAC-exposed DC cultures. DC maturation coincided with tumor necrosis factor alpha (TNF-alpha) secretion and was significantly blocked in the presence of anti-TNF-alpha antibodies. Interestingly, inhibition of apoptosis with a caspase 3 inhibitor also reduced some of the maturation induced by exposure to ALVAC. This indicates that both TNF-alpha and the presence of primarily apoptotic cells contributed to DC maturation. Therefore, infection of immature primate DCs with ALVAC results in apoptotic death of infected cells, which can be internalized by noninfected DCs driving DC maturation in the presence of the TNF-alpha secreted concomitantly by exposed cells. This suggests an important mechanism that may influence the immunogenicity of avipox virus vectors.
Collapse
Affiliation(s)
- R Ignatius
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Patterson LJ, Peng B, Abimiku AG, Aldrich K, Murty L, Markham PD, Kalyanaraman VS, Alvord WG, Tartaglia J, Franchini G, Robert-Guroff M. Cross-protection in NYVAC-HIV-1-immunized/HIV-2-challenged but not in NYVAC-HIV-2-immunized/SHIV-challenged rhesus macaques. AIDS 2000; 14:2445-55. [PMID: 11101054 DOI: 10.1097/00002030-200011100-00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Immunization with attenuated poxvirus-HIV-1 recombinants followed by protein boosting had protected four of eight rhesus macaques from HIV-2SBL6669 challenge. The present study was designed to confirm this result and to conduct the reciprocal cross-protection experiment. METHODS Twenty-four macaques were primed with NYVAC (a genetically attenuated Copenhagen vaccinia strain) recombinants with HIV-1 and HIV-2 env and gag-pol or NYVAC vector alone and boosted with homologous, oligomeric gp160 proteins or adjuvant only. Binding and neutralizing antibodies, cytotoxic T-lymphocytes (CTL) and CD8 T cell antiviral activity (CD8AA) were evaluated. One half of each immunization and control group were intravenously challenged with SHIV(HXB2) the other half was challenged with HIV-2SBL6669,. Protective outcome was assessed by monitoring virus isolation, proviral DNA and plasma viral RNA. RESULTS Both immunization groups developed homologous binding antibodies; however, homologous neutralizing antibodies were only observed in NYVAC-HIV-2-immunized macaques. While no cross-reactive neutralizing antibodies were detected, both immunization groups displayed cross-reactive CTL. Significant CD8AA was observed for only one NYVAC-HIV-2-immunized macaque. Virological assessments verified that both NYVAC-HIV-1 and NYVAC-HIV-2 immunization significantly reduced viral burdens and partially protected against HIV-2 challenge, although cross-protection was not at the level that had been previously reported. Humoral antibody and/or CTL and CD8AA were associated with protection against homologous HIV-2 challenge, while cellular immune responses seemed more important for cross-protection. No significant protection was observed in the SHIV-challenged macaques, although NYVAC-HIV-1 immunization resulted in significantly lower viral burdens compared with controls. CONCLUSIONS Further delineation of cross-reactive mechanisms may aid in the development of a broadly protective vaccine.
Collapse
Affiliation(s)
- L J Patterson
- Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892-5055, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Murphy CG, Lucas WT, Means RE, Czajak S, Hale CL, Lifson JD, Kaur A, Johnson RP, Knipe DM, Desrosiers RC. Vaccine protection against simian immunodeficiency virus by recombinant strains of herpes simplex virus. J Virol 2000; 74:7745-54. [PMID: 10933680 PMCID: PMC112303 DOI: 10.1128/jvi.74.17.7745-7754.2000] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An effective vaccine for AIDS may require development of novel vectors capable of eliciting long-lasting immune responses. Here we report the development and use of replication-competent and replication-defective strains of recombinant herpes simplex virus (HSV) that express envelope and Nef antigens of simian immunodeficiency virus (SIV). The HSV recombinants induced antienvelope antibody responses that persisted at relatively stable levels for months after the last administration. Two of seven rhesus monkeys vaccinated with recombinant HSV were solidly protected, and another showed a sustained reduction in viral load following rectal challenge with pathogenic SIVmac239 at 22 weeks following the last vaccine administration. HSV vectors thus show great promise for being able to elicit persistent immune responses and to provide durable protection against AIDS.
Collapse
Affiliation(s)
- C G Murphy
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115-5716, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Seth A, Ourmanov I, Schmitz JE, Kuroda MJ, Lifton MA, Nickerson CE, Wyatt L, Carroll M, Moss B, Venzon D, Letvin NL, Hirsch VM. Immunization with a modified vaccinia virus expressing simian immunodeficiency virus (SIV) Gag-Pol primes for an anamnestic Gag-specific cytotoxic T-lymphocyte response and is associated with reduction of viremia after SIV challenge. J Virol 2000; 74:2502-9. [PMID: 10684264 PMCID: PMC111738 DOI: 10.1128/jvi.74.6.2502-2509.2000] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1999] [Accepted: 12/08/1999] [Indexed: 11/20/2022] Open
Abstract
The immunogenicity and protective efficacy of a modified vaccinia virus Ankara (MVA) recombinant expressing the simian immunodeficiency virus (SIV) Gag-Pol proteins (MVA-gag-pol) was explored in rhesus monkeys expressing the major histocompatibility complex (MHC) class I allele, MamuA*01. Macaques received four sequential intramuscular immunizations with the MVA-gag-pol recombinant virus or nonrecombinant MVA as a control. Gag-specific cytotoxic T-lymphocyte (CTL) responses were detected in all MVA-gag-pol-immunized macaques by both functional assays and flow cytometric analyses of CD8(+) T cells that bound a specific MHC complex class I-peptide tetramer, with levels peaking after the second immunization. Following challenge with uncloned SIVsmE660, all macaques became infected; however, viral load set points were lower in MVA-gag-pol-immunized macaques than in the MVA-immunized control macaques. MVA-gag-pol-immunized macaques exhibited a rapid and substantial anamnestic CTL response specific for the p11C, C-M Gag epitope. The level at which CTL stabilized after resolution of primary viremia correlated inversely with plasma viral load set point (P = 0.03). Most importantly, the magnitude of reduction in viremia in the vaccinees was predicted by the magnitude of the vaccine-elicited CTL response prior to SIV challenge.
Collapse
Affiliation(s)
- A Seth
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Polacino PS, Stallard V, Klaniecki JE, Pennathur S, Montefiori DC, Langlois AJ, Richardson BA, Morton WR, Benveniste RE, Hu SL. Role of immune responses against the envelope and the core antigens of simian immunodeficiency virus SIVmne in protection against homologous cloned and uncloned virus challenge in Macaques. J Virol 1999; 73:8201-15. [PMID: 10482571 PMCID: PMC112838 DOI: 10.1128/jvi.73.10.8201-8215.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that envelope (gp160)-based vaccines, used in a live recombinant virus priming and subunit protein boosting regimen, protected macaques against intravenous and intrarectal challenges with the homologous simian immunodeficiency virus SIVmne clone E11S. However, the breadth of protection appears to be limited, since the vaccines were only partially effective against intravenous challenge by the uncloned SIVmne. To examine factors that could affect the breadth and the efficacy of this immunization approach, we studied (i) the effect of priming by recombinant vaccinia virus; (ii) the role of surface antigen gp130; and (iii) the role of core antigens (Gag and Pol) in eliciting protective immunity. Results indicate that (i) priming with recombinant vaccinia virus was more effective than subunit antigen in eliciting protective responses; (ii) while both gp130 and gp160 elicited similar levels of SIV-specific antibodies, gp130 was not as effective as gp160 in protection, indicating a possible role for the transmembrane protein in presenting functionally important epitopes; and (iii) although animals immunized with core antigens failed to generate any neutralizing antibody and were infected upon challenge, their virus load was 50- to 100-fold lower than that of the controls, suggesting the importance of cellular immunity or other core-specific immune responses in controlling acute infection. Complete protection against intravenous infection by the pathogenic uncloned SIVmne was achieved by immunization with both the envelope and the core antigens. These results indicate that immune responses to both antigens may contribute to protection and thus argue for the inclusion of multiple antigens in recombinant vaccine designs.
Collapse
Affiliation(s)
- P S Polacino
- Regional Primate Research Center, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liljeqvist S, Ståhl S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 1999; 73:1-33. [PMID: 10483112 DOI: 10.1016/s0168-1656(99)00107-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first scientific attempts to control an infectious disease can be attributed to Edward Jenner, who, in 1796 inoculated an 8-year-old boy with cowpox (vaccinia), giving the boy protection against subsequent challenge with virulent smallpox. Thanks to the successful development of vaccines, many major diseases, such as diphtheria, poliomyelitis and measles, are nowadays kept under control, and in the case of smallpox, the dream of eradication has been fulfilled. Yet, there is a growing need for improvements of existing vaccines in terms of increased efficacy and improved safety, besides the development of completely new vaccines. Better technological possibilities, combined with increased knowledge in related fields, such as immunology and molecular biology, allow for new vaccination strategies. Besides the classical whole-cell vaccines, consisting of killed or attenuated pathogens, new vaccines based on the subunit principle, have been developed, e.g. the Hepatitis B surface protein vaccine and the Haemophilus influenzae type b vaccine. Recombinant techniques are now dominating in the strive for an ideal vaccine, being safe and cheap, heat-stable and easy to administer, preferably single-dose, and capable of inducing broad immune response with life-long memory both in adults and in infants. This review will describe different recombinant approaches used in the development of novel subunit vaccines, including design and production of protein immunogens, the development of live delivery systems and the state-of-the-art for nucleic acids vaccines.
Collapse
Affiliation(s)
- S Liljeqvist
- Department of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | |
Collapse
|
25
|
Gherardi MM, Ramirez JC, Rodríguez D, Rodríguez JR, Sano GI, Zavala F, Esteban M. IL-12 Delivery from Recombinant Vaccinia Virus Attenuates the Vector and Enhances the Cellular Immune Response Against HIV-1 Env in a Dose-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.11.6724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
To develop vaccination strategies against HIV-1 infection aimed to specifically enhance the cell-mediated immunity (CMI), we have engineered vaccinia virus (VV) recombinants expressing HIV-1 Env (rVVenv) and murine IL-12 (rVVlucIL-12) genes or coexpressing both genes (rVVenvIL-12). In mice inoculated with rVVlucIL-12 there is a rapid clearance of the virus, and this correlates with the induction of high levels of IL-12 and IFN-γ in serum and spleen early after infection. Enzyme-linked immunospot analysis of mice inoculated with rVVlucIL-12, revealed a nearly 2-fold increase in the number of specific anti-VV CD8+ T cells compared with that in mice given control rVV, and the serum Ab response was biased in favor of a Th1 response. An enhancement of about 2-fold in the number of anti-gp160 IFN-γ-secreting CD8+ T cells was observed in mice inoculated with rVVenvIL-12, when a dose of 1 × 107 PFU/mouse was used, but this enhancement was not observed when mice were given 5 × 107 PFU. This variation with virus dosage was confirmed in mice immunized simultaneously with different multiplicities of rVV expressing singly the env or IL-12 genes. The highest specific CMI was obtained in mice coadministered a low dose (2 × 104 PFU) of rVVlucIL-12 and 1 × 107 PFU of rVVenv. Our findings provide evidence for specific enhancement of the CMI to HIV-1 Env by the differential expression of IL-12 and env genes delivered from VV recombinants. This approach can be of wide vaccination interest as a means to improve immune responses to other Ags.
Collapse
Affiliation(s)
- M. Magdalena Gherardi
- *Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma, Madrid, Spain; and
| | - Juan C. Ramirez
- *Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma, Madrid, Spain; and
| | - Dolores Rodríguez
- *Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma, Madrid, Spain; and
| | - Juan R. Rodríguez
- *Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma, Madrid, Spain; and
| | - Gen-Ichiro Sano
- †Department of Medical and Molecular Parasitology, New York University Medical Center, New York, NY 10010
| | - Fidel Zavala
- †Department of Medical and Molecular Parasitology, New York University Medical Center, New York, NY 10010
| | - Mariano Esteban
- *Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma, Madrid, Spain; and
| |
Collapse
|
26
|
Polacino P, Stallard V, Klaniecki JE, Montefiori DC, Langlois AJ, Richardson BA, Overbaugh J, Morton WR, Benveniste RE, Hu SL. Limited breadth of the protective immunity elicited by simian immunodeficiency virus SIVmne gp160 vaccines in a combination immunization regimen. J Virol 1999; 73:618-30. [PMID: 9847367 PMCID: PMC103868 DOI: 10.1128/jvi.73.1.618-630.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that immunization with recombinant simian immunodeficiency virus SIVmne envelope (gp160) vaccines protected macaques against an intravenous challenge by the cloned homologous virus, E11S. In this study, we confirmed this observation and found that the vaccines were effective not only against virus grown on human T-cell lines but also against virus grown on macaque peripheral blood mononuclear cells (PBMC). The breadth of protection, however, was limited. In three experiments, 3 of 10 animals challenged with the parental uncloned SIVmne were completely protected. Of the remaining animals, three were transiently virus positive and four were persistently positive after challenge, as were 10 nonimmunized control animals. Protection was not correlated with levels of serum-neutralizing antibodies against the homologous SIVmne or a related virus, SIVmac251. To gain further insight into the protective mechanism, we analyzed nucleotide sequences in the envelope region of the uncloned challenge virus and compared them with those present in the PBMC of infected animals. The majority (85%) of the uncloned challenge virus was homologous to the molecular clone from which the vaccines were made (E11S type). The remaining 15% contained conserved changes in the V1 region (variant types). Control animals infected with this uncloned virus had different proportions of the two genotypes, whereas three of four immunized but persistently infected animals had >99% of the variant types early after infection. These results indicate that the protective immunity elicited by recombinant gp160 vaccines is restricted primarily to the homologous virus and suggest the possibility that immune responses directed to the V1 region of the envelope protein play a role in protection.
Collapse
Affiliation(s)
- P Polacino
- Regional Primate Research Center, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Petry H, Dittmer U, Jones D, Farrar G, Wachter H, Fuchs D, Nisslein T, Jurkiewicz E, Hunsmann G, Stahl-Hennig C, Lüke W. Prechallenge high neutralizing antibodies and long-lasting immune reactivity to gp41 correlate with protection of rhesus monkeys against productive simian immunodeficiency virus infection or disease development. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1998; 19:441-50. [PMID: 9859957 DOI: 10.1097/00042560-199812150-00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To investigate the protective efficacy of various gp130 vaccine preparations, rhesus monkeys were immunized with gp130 oligomers (O-gp130) or two different gp130-monomer preparations (M1-gp130; M2-gp130) and challenged with 50 MID50 of simian immunodeficiency virus (SIV)mac32H. Following challenge the control animals and all animals of the M1- and M2-gp130 group and 1 animal of the O-gp130 group were productively infected, whereas 3 animals of the O-gp130 group resisted the productive virus replication. The protection was correlated with high neutralizing antibodies and a long-lasting immune response to the transmembrane protein gp41. Whereas none of the O-gp130 animals had developed disease symptoms, 3 M1-gp130 animals, 1 M2-gp130 animal, and 2 control animals died as a result of AIDS within 18 months after challenge. Therefore, immunization with virion-derived gp130 oligomers of SIVmac32H can confer protection against the productive infection with SIVmac32H and suppress the development of the AIDS-like disease.
Collapse
Affiliation(s)
- H Petry
- Department of Virology and Immunology, German Primate Center, Göttingen
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Coëffier E, Girard M, Barré-Sinoussi F, Meignier B, Muchmore E, Fultz PN, LeClerc C. Fine specificity of anti-V3 antibodies induced in chimpanzees by HIV candidate vaccines. AIDS Res Hum Retroviruses 1998; 14:1023-34. [PMID: 9718117 DOI: 10.1089/aid.1998.14.1023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fine specificity of the anti-V3 antibody responses induced in chimpanzees immunized by various human immunodeficiency type 1 (HIV-1) candidate vaccines and challenged by heterologous strains of HIV-1 was analyzed by enzyme-linked immunosorbent assay (ELISA) and Pepscan epitope mapping. Two chimpanzees immunized with the recombinant canarypox virus ALVAC-HIV (vCP125) expressing gp160MN and boosted with purified gp160MN/LAI alone, then with both immunogens in combination, were not protected against challenge with HIV-1 SF2. Their sera mainly recognized one epitope of the V3 loop, located in the NH2-terminal half. By contrast, immunization of two other chimpanzees with purified gp160MN/LAI and boosting with a synthetic V3MN peptide elicited a strong anti-V3 antibody response with a broader specificity directed against multiple epitopes all along the V3 loop. These chimpanzees were protected against infection by HIV-1 SF2. However, when these two chimpanzees were challenged later with a HIV-1 clade E strain virus, they became infected. We failed to detect any reactivity with the peptide of the ectodomain of gp41 of sera harvested after immunization with the various immunogens or after challenge with HIV-1 SF2 or HIV-1 90CR402. These results demonstrated that anti-V3 antibodies with a restricted fine specificity were induced in chimpanzees immunized with gp160 purified or expressed by recombinant canarypox confirming our previous results obtained in three different species (human, guinea pig and, macaque). In contrast, a boost with the V3 peptide broadened antibody responses, suggesting that the mode of presentation of the V3 loop to the immune system strongly influences the epitope specificity of the resulting antibody response.
Collapse
Affiliation(s)
- E Coëffier
- Unité de Biologie des Régulations Immunitaires, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
29
|
Benson J, Chougnet C, Robert-Guroff M, Montefiori D, Markham P, Shearer G, Gallo RC, Cranage M, Paoletti E, Limbach K, Venzon D, Tartaglia J, Franchini G. Recombinant vaccine-induced protection against the highly pathogenic simian immunodeficiency virus SIV(mac251): dependence on route of challenge exposure. J Virol 1998; 72:4170-82. [PMID: 9557706 PMCID: PMC109646 DOI: 10.1128/jvi.72.5.4170-4182.1998] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1997] [Accepted: 02/06/1998] [Indexed: 02/07/2023] Open
Abstract
Vaccine protection from infection and/or disease induced by highly pathogenic simian immunodeficiency virus (SIV) strain SIV(mac251) in the rhesus macaque model is a challenging task. Thus far, the only approach that has been reported to protect a fraction of macaques from infection following intravenous challenge with SIV(mac251) was the use of a live attenuated SIV vaccine. In the present study, the gag, pol, and env genes of SIV(K6W) were expressed in the NYVAC vector, a genetically engineered derivative of the vaccinia virus Copenhagen strain that displays a highly attenuated phenotype in humans. In addition, the genes for the alpha and beta chains of interleukin-12 (IL-12), as well as the IL-2 gene, were expressed in separate NYVAC vectors and inoculated intramuscularly, in conjunction with or separate from the NYVAC-SIV vaccine, in 40 macaques. The overall cytotoxic T-lymphocyte (CTL) response was greater, at the expense of proliferative and humoral responses, in animals immunized with NYVAC-SIV and NYVAC-IL-12 than in animals immunized with the NYVAC-SIV vaccine alone. At the end of the immunization regimen, half of the animals were challenged with SIV(mac251) by the intravenous route and the other half were exposed to SIV(mac251) intrarectally. Significantly, five of the eleven vaccinees exposed mucosally to SIV(mac251) showed a transient peak of viremia 1 week after viral challenge and subsequently appeared to clear viral infection. In contrast, all 12 animals inoculated intravenously became infected, but 5 to 6 months after viral challenge, 4 animals were able to control viral expression and appeared to progress to disease more slowly than control animals. Protection did not appear to be associated with any of the measured immunological parameters. Further modulation of immune responses by coadministration of NYVAC-cytokine recombinants did not appear to influence the outcome of viral challenge. The fact that the NYVAC-SIV recombinant vaccine appears to be effective per se in the animal model that best mirrors human AIDS supports the idea that the development of a highly attenuated poxvirus-based vaccine candidate can be a valuable approach to significantly decrease the spread of human immunodeficiency virus (HIV) infection by the mucosal route.
Collapse
Affiliation(s)
- J Benson
- Basic Research Laboratory, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zolla-Pazner S, Lubeck M, Xu S, Burda S, Natuk RJ, Sinangil F, Steimer K, Gallo RC, Eichberg JW, Matthews T, Robert-Guroff M. Induction of neutralizing antibodies to T-cell line-adapted and primary human immunodeficiency virus type 1 isolates with a prime-boost vaccine regimen in chimpanzees. J Virol 1998; 72:1052-9. [PMID: 9444999 PMCID: PMC124577 DOI: 10.1128/jvi.72.2.1052-1059.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Five chimpanzees were immunized by administration of one or more intranasal priming doses of one to three recombinant adenoviruses containing a gp160 insert from human immunodeficiency virus type 1 (HIV-1) MN (HIV-1MN) followed by one or more boosts of recombinant HIV-1SF2 gp120 delivered intramuscularly with MF59 adjuvant. This regimen resulted in humoral immune responses in three of five animals. Humoral responses included immunochemically active anti-H1V-1 antibodies (Abs) directed to recombinant gp120 and neutralizing Abs reactive with T-cell-line-adapted HIV-1MN and HIV-1SF2. In addition, neutralizing activity was detected to the two homologous primary isolates and to two of three heterologous primary isolates which, like the immunizing strains, can use CXCR4 as a coreceptor for infection. The three animals with detectable neutralizing Abs and a fourth exhibiting the best cytotoxic T-lymphocyte response were protected from a low-dose intravenous challenge with a cell-free HIV-1SF2 primary isolate administered 4 weeks after the last boost. Animals were rested for 46 weeks and then rechallenged, without a boost, with an eightfold-higher challenge dose of HIV-1SF2. The three animals with persistent neutralizing Abs were again protected. These data show that a strong, long-lived protective Ab response can be induced with a prime-boost regimen in chimpanzees. The data suggest that in chimpanzees, the presence of neutralizing Abs correlates with protection for animals challenged intravenously with a high dose of a homologous strain of HIV-1, and they demonstrate for the first time the induction of neutralizing Abs to homologous and heterologous primary isolates.
Collapse
|
31
|
Coëffier E, Excler JL, Kieny MP, Meignier B, Moste C, Tartaglia J, Pialoux G, Salmon-Céron D, Leclerc C. Restricted specificity of anti-V3 antibodies induced in humans by HIV candidate vaccines. AIDS Res Hum Retroviruses 1997; 13:1471-85. [PMID: 9390746 DOI: 10.1089/aid.1997.13.1471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We analyzed the fine specificity of anti-V3 antibodies elicited in three different species (human, guinea pig, and macaque) by various HIV candidate vaccines. Following immunization with recombinant canarypox virus expressing gp160MN or with recombinant gp160MN/LAI, this antibody response was shown to be directed against the NH2-terminal region of the V3 loop. Although this response was increased by a prime-boost regimen using immunization with canarypox expressing gp160 followed by an rgp160 boost, its specificity remained restricted mainly to the recognition of this region of the V3 loop. Pepscan analysis of sera confirmed the results obtained by ELISA and allowed the definition of an immunodominant common binding site for these sera located within the sequence NKRKRIHIGPGR. In contrast to these results, a boost with the V3 peptide was shown to broaden the antibody response and pepscan analysis showed that sera from individuals boosted with the V3 synthetic peptide recognize determinants all along the V3 loop. Similar fine specificity of anti-V3 antibodies was obtained in human, guinea pig, and macaque following immunization by a prime-boost regimen using canarypox recombinants expressing gp160 or gp120 and purified rgp160. In contrast, a V3 synthetic peptide boost stimulated the production of antibodies that recognize multiple epitopes within the V3 loop. Because the induction of antibodies that recognize multiple sites in the V3 loop could be of major importance to neutralize different HIV isolates, these results may have implications for the design and selection of HIV candidate vaccines.
Collapse
Affiliation(s)
- E Coëffier
- Unité de Biologie des Régulations Immunitaires, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Poxviruses are widely used for the cytoplasmic expression of recombinant genes in mammalian cells. Recent improvements allow high expression and simplify the integration of multiple foreign genes. Vaccinia virus mutants and other poxviruses that undergo abortive infection in mammalian cells are receiving special attention because of their diminished cytopathic effects and increased safety. New replicating and 'non-replicating' vectors, encoding the bacteriophage T7 RNA polymerase for transcription of recombinant genes, have been engineered.
Collapse
|
33
|
Abstract
Recombinant viruses have been investigated as candidate vaccines, and have also been used extensively as immunological tools. Recent advances in this area include the following: the construction and testing of a recombinant simian immunodeficiency virus encoding human interferon-gamma; the development of new vectors such as recombinant poliovirus; and the generation of polyepitope vaccines. Basic immunological research has benefited from the use of recombinant viruses to further understand the role of molecules such as CD40 ligand, nitric oxide and interleukin-4.
Collapse
Affiliation(s)
- M S Rolph
- Department of Immunology, Max Planck Institute for Infection Biology, Monbijoustrasse 2, D-10117, Berlin, Germany.
| | | |
Collapse
|
34
|
Warren JT, Levinson MA. Preclinical AIDS vaccine development: formal survey of global HIV, SIV, and SHIV in vivo challenge studies in vaccinated nonhuman primates. J Med Primatol 1997; 26:63-81. [PMID: 9271191 DOI: 10.1111/j.1600-0684.1997.tb00321.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J T Warren
- The EMMES Corporation, Potomac, Maryland 20854, USA
| | | |
Collapse
|
35
|
Abstract
Recombinant pox viruses have been generated for vaccination against heterologous pathogens. Amongst these, the following are notable examples. (i) The engineering of the Copenhagen strain of vaccinia virus to express the rabies virus glycoprotein. When applied in baits, this recombinant has been shown to vaccinate the red fox in Europe and raccoons in the United States, stemming the spread of rabies virus infection in the wild. (ii) A fowlpox-based recombinant expressing the Newcastle disease virus fusion and hemagglutinin glycoproteins has been shown to protect commercial broiler chickens for their lifetime when the vaccine was administered at 1 day of age, even in the presence of maternal immunity against either the Newcastle disease virus or the pox vector. (iii) Recombinants of canarypox virus, which is restricted for replication to avian species, have provided protection against rabies virus challenge in cats and dogs, against canine distemper virus, feline leukemia virus, and equine influenza virus disease. In humans, canarypox virus-based recombinants expressing antigens from rabies virus, Japanese encephalitis virus, and HIV have been shown to be safe and immunogenic. (iv) A highly attenuated vaccinia derivative, NYVAC, has been engineered to express antigens from both animal and human pathogens. Safety and immunogenicity of NYVAC-based recombinants expressing the rabies virus glycoprotein, a polyprotein from Japanese encephalitis virus, and seven antigens from Plasmodium falciparum have been demonstrated to be safe and immunogenic in early human vaccine studies.
Collapse
|