1
|
FCGR3A gene duplication, FcγRIIb-232TT and FcγRIIIb-HNA1a associate with an increased risk of vertical acquisition of HIV-1. PLoS One 2022; 17:e0273933. [PMID: 36084039 PMCID: PMC9462732 DOI: 10.1371/journal.pone.0273933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Background Some mother-to-child transmission (MTCT) studies suggest that allelic variations of Fc gamma receptors (FcγR) play a role in infant HIV-1 acquisition, but findings are inconsistent. To address the limitations of previous studies, the present study investigates the association between perinatal HIV-1 transmission and FcγR variability in three cohorts of South African infants born to women living with HIV-1. Methods This nested case-control study combines FCGR genotypic data from three perinatal cohorts at two hospitals in Johannesburg, South Africa. Children with perinatally-acquired HIV-1 (cases, n = 395) were compared to HIV-1-exposed uninfected children (controls, n = 312). All study participants were black South Africans and received nevirapine for prevention of MTCT. Functional variants were genotyped using a multiplex ligation-dependent probe amplification assay, and their representation compared between groups using logistic regression analyses. Results FCGR3A gene duplication associated with HIV-1 acquisition (OR = 10.27; 95% CI 2.00–52.65; P = 0.005) as did the FcγRIIb-232TT genotype even after adjusting for FCGR3A copy number and FCGR3B genotype (AOR = 1.72; 95%CI 1.07–2.76; P = 0.024). The association between FcγRIIb-232TT genotype and HIV-1 acquisition was further strengthened (AOR = 2.28; 95%CI 1.11–4.69; P = 0.024) if adjusted separately for FCGR2C c.134-96C>T. Homozygous FcγRIIIb-HNA1a did not significantly associate with HIV-1 acquisition in a univariate model (OR = 1.42; 95%CI 0.94–2.16; P = 0.098) but attained significance after adjustment for FCGR3A copy number and FCGR2B genotype (AOR = 1.55; 95%CI 1.01–2.38; P = 0.044). Both FcγRIIb-232TT (AOR = 1.83; 95%CI 1.13–2.97; P = 0.014) and homozygous FcγRIIIb-HNA1a (AOR = 1.66; 95%CI 1.07–2.57; P = 0.025) retained significance when birthweight and breastfeeding were added to the model. The common FCGR2A and FCGR3A polymorphisms did not associate with HIV-1 acquisition. Conclusions Collectively, our findings suggest that the FcγRIIb-232TT genotype exerts a controlling influence on infant susceptibility to HIV-1 infection. We also show a role for less studied variants–FCGR3A duplication and homozygous HNA1a. These findings provide additional insight into a role for FcγRs in HIV-1 infection in children.
Collapse
|
2
|
Lassaunière R, Tiemessen CT. FcγR Genetic Variation and HIV-1 Vaccine Efficacy: Context And Considerations. Front Immunol 2021; 12:788203. [PMID: 34975881 PMCID: PMC8714752 DOI: 10.3389/fimmu.2021.788203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
Receptors for the crystallisable fragment (Fc) of immunoglobulin (Ig) G, Fcγ receptors (FcγRs), link the humoral and cellular arms of the immune response, providing a diverse armamentarium of antimicrobial effector functions. Findings from HIV-1 vaccine efficacy trials highlight the need for further study of Fc-FcR interactions in understanding what may constitute vaccine-induced protective immunity. These include host genetic correlates identified within the low affinity Fcγ-receptor locus in three HIV-1 efficacy trials – VAX004, RV144, and HVTN 505. This perspective summarizes our present knowledge of FcγR genetics in the context of findings from HIV-1 efficacy trials, and draws on genetic variation described in other contexts, such as mother-to-child HIV-1 transmission and HIV-1 disease progression, to explore the potential contribution of FcγR variability in modulating different HIV-1 vaccine efficacy outcomes. Appreciating the complexity and the importance of the collective contribution of variation within the FCGR gene locus is important for understanding the role of FcγRs in protection against HIV-1 acquisition.
Collapse
Affiliation(s)
- Ria Lassaunière
- Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- *Correspondence: Caroline T. Tiemessen, ; Ria Lassaunière,
| | - Caroline T. Tiemessen
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Caroline T. Tiemessen, ; Ria Lassaunière,
| |
Collapse
|
3
|
Lamptey H, Bonney EY, Adu B, Kyei GB. Are Fc Gamma Receptor Polymorphisms Important in HIV-1 Infection Outcomes and Latent Reservoir Size? Front Immunol 2021; 12:656894. [PMID: 34017334 PMCID: PMC8129575 DOI: 10.3389/fimmu.2021.656894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Fc gamma receptors (FcγR) are cell surface glycoproteins which trigger specific effector-cell responses when cross-linked with the Fc portions of immunoglobulin (IgG) antibodies. During HIV-1 infection, the course of disease progression, ART response, and viral reservoir size vary in different individuals. Several factors may account for these differences; however, Fc gamma receptor gene polymorphisms, which influence receptor binding to IgG antibodies, are likely to play a key role. FcγRIIa (CD32) was recently reported as a potential marker for latent HIV reservoir, however, this assertion is still inconclusive. Whether FcγR polymorphisms influence the size of the viral reservoir, remains an important question in HIV cure studies. In addition, potential cure or viral suppression methods such as broadly neutralizing antibody (bNAbs) may depend on FcγRs to control the virus. Here, we discuss the current evidence on the potential role played by FcγR polymorphisms in HIV-1 infection, treatment and vaccine trial outcomes. Importantly, we highlight contrasting findings that may be due to multiple factors and the relatively limited data from African populations. We recommend further studies especially in sub-Saharan Africa to confirm the role of FcγRIIa in the establishment of latent reservoir and to determine their influence in therapies involving bNAbs.
Collapse
Affiliation(s)
- Helena Lamptey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Y. Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - George B. Kyei
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, MO, United States
- Medical and Scientific Research Centre, University of Ghana Medical Centre, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Talathi SP, Shaikh NN, Pandey SS, Saxena VA, Mamulwar MS, Thakar MR. FcγRIIIa receptor polymorphism influences NK cell mediated ADCC activity against HIV. BMC Infect Dis 2019; 19:1053. [PMID: 31842762 PMCID: PMC6916223 DOI: 10.1186/s12879-019-4674-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-specific Antibody Dependent Cell Cytotoxicity (ADCC) has shown to be important in HIV control and resistance. The ADCC is mediated primarily by natural killer cell activated through the binding of FcγRIIIa receptor to the Fc portion of antibody bound to the antigen expressed on the infected cells. However, no data is available on the influence of the polymorphism in FcγRIIIa receptor on HIV-specific ADCC response. METHODS The Sanger's method of sequencing was used to sequence the exon of FcγRIIIa receptor while the ADCC activity was determined using NK cell activation assay. The polymorphism in FcγRIIIa receptor was assessed in HIV-infected Indian individuals with or without HIV-specific ADCC antibodies and its influence on the magnitude of HIV-specific ADCC responses was analyzed. RESULTS Two polymorphisms: V176F (rs396991) and Y158H (rs396716) were observed. The Y158H polymorphism is reported for the first time in Indian population. Both, V176F (V/V genotype) (p = 0.004) and Y158H (Y/H genotype) (p = 0.032) were found to be significantly associated with higher magnitude of HIV-specific ADCC response. CONCLUSION The study underscores the role of polymorphism in the FcγRIIIa receptor on HIV-specific ADCC response and suggests that the screening of the individuals for FcγRIIIa-V176F and Y158H polymorphisms could be useful for prediction of efficient treatment in monoclonal antibody-based therapies aimed at ADCC in HIV infection.
Collapse
Affiliation(s)
- Sneha Pramod Talathi
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Nawaj Najir Shaikh
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Sudhanshu Shekhar Pandey
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Vandana Ashish Saxena
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India
| | - Megha Sunil Mamulwar
- Department of Epidemiology, National AIDS Research Institute, Pune, 411026, India
| | - Madhuri Rajeev Thakar
- Department of Immunology, National AIDS Research Institute, Plot No. 73, G-Block, MIDC, Bhosari, Pune, Maharashtra, 411026, India.
| |
Collapse
|
5
|
Current advances in HIV vaccine preclinical studies using Macaque models. Vaccine 2019; 37:3388-3399. [PMID: 31088747 DOI: 10.1016/j.vaccine.2019.04.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model's true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.
Collapse
|
6
|
Geraghty DE, Thorball CW, Fellay J, Thomas R. Effect of Fc Receptor Genetic Diversity on HIV-1 Disease Pathogenesis. Front Immunol 2019; 10:970. [PMID: 31143176 PMCID: PMC6520634 DOI: 10.3389/fimmu.2019.00970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022] Open
Abstract
Fc receptor (FcR) genes collectively have copy number and allelic polymorphisms that have been implicated in multiple inflammatory and autoimmune diseases. This variation might also be involved in etiology of infectious diseases. The protective role of Fc-mediated antibody-function in HIV-1 immunity has led to the investigation of specific polymorphisms in FcR genes on acquisition, disease progression, and vaccine efficacy in natural history cohorts. The purpose of this review is not only to explore these known HIV-1 host genetic associations, but also to re-evaluate them in the context of genome-wide data. In the current era of effective anti-retroviral therapy, the potential impact of such variation on post-treatment cohorts cannot go unheeded and is discussed here in the light of current findings. Specific polymorphisms associating with HIV-1 pathogenesis have previously been genotyped by assays that captured only the single-nucleotide polymorphism (SNP) of interest without relative information of neighboring variants. With recent technological advances, variation within these genes can now be characterized using next-generation sequencing, allowing precise annotation of the whole chromosomal region. We herein also discuss updates in the annotation of common FcR variants that have been previously associated with HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Christian W Thorball
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rasmi Thomas
- U. S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| |
Collapse
|
7
|
Connolly S, Wall KM, Tang J, Yu T, Kilembe W, Kijak G, Allen S, Hunter E. Fc-gamma receptor IIA and IIIA variants in two African cohorts: Lack of consistent impact on heterosexual HIV acquisition, viral control, and disease progression. Virology 2018; 525:132-142. [PMID: 30278383 PMCID: PMC6343481 DOI: 10.1016/j.virol.2018.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022]
Abstract
Human Fc-gamma receptors (FcγRs) FcγRIIA and FcγRIIIA contain amino acid variants with both high and low affinities for IgG that modulate antibody-mediated effector functions. Recent HIV vaccine trials suggested that these FcγR variants can influence susceptibility to HIV infection, which prompted us to fully assess the role of FcγR variants on HIV acquisition, viral control, and disease progression in two longitudinal heterosexual transmission cohorts with HIV subtypes A and C as the major circulating viruses. For 836 participants, molecular genotyping resolved genetic variations encoding the FcγRIIA (131 H/R) and FcγRIIIA (158 V/F) single nucleotide polymorphisms. Kaplan-Meier curves, Cox proportional hazards models, and linear regression models did not reveal any clear or consistent FcγR association with time to HIV acquisition, viral load in early infection, or extent of CD4 + T-cell decline over time after infection. Overall, previous epidemiological findings on FcγR variants and vaccine efficacy are not readily applicable to heterosexual HIV transmission.
Collapse
Affiliation(s)
- Sarah Connolly
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | - Kristin M Wall
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, United States
| | | | - Gustavo Kijak
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, United States
| | - Susan Allen
- Zambia-Emory HIV Research Project, Lusaka, Zambia; Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, United States
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
8
|
Li L, Liu Y, Gorny MK. Association of Diverse Genotypes and Phenotypes of Immune Cells and Immunoglobulins With the Course of HIV-1 Infection. Front Immunol 2018; 9:2735. [PMID: 30534128 PMCID: PMC6275200 DOI: 10.3389/fimmu.2018.02735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Disease progression among HIV-1-infected individuals varies widely, but the mechanisms underlying this variability remains unknown. Distinct disease outcomes are the consequences of many factors working in concert, including innate and adaptive immune responses, cell-mediated and humoral immunity, and both genetic and phenotypic factors. Current data suggest that these multifaceted aspects in infected individuals should be considered as a whole, rather than as separate unique elements, and that analyses must be performed in greater detail in order to meet the requirements of personalized medicine and guide optimal vaccine design. However, the wide adoption of antiretroviral therapy (ART) influences the implementation of systematic analyses of the HIV-1-infected population. Consequently, fewer data will be available for acquisition in the future, preventing the comprehensive investigations required to elucidate the underpinnings of variability in disease outcome. This review seeks to recapitulate the distinct genotypic and phenotypic features of the immune system, focusing in particular on comparing the surface proteins of immune cells among individuals with different HIV infection outcomes.
Collapse
Affiliation(s)
- Liuzhe Li
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Yan Liu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
9
|
Wines BD, Billings H, Mclean MR, Kent SJ, Hogarth PM. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field. Curr HIV Res 2018; 15:202-215. [PMID: 28322167 PMCID: PMC5543561 DOI: 10.2174/1570162x15666170320112247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 12/23/2022]
Abstract
Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections.
Collapse
Affiliation(s)
- Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| | - Hugh Billings
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia
| | - Milla R Mclean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Victoria, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Vic 3004, Australia.,Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia.,Department of Pathology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
10
|
Milligan C, Richardson BA, John-Stewart G, Nduati R, Overbaugh J. FCGR2A and FCGR3A Genotypes in Human Immunodeficiency Virus Mother-to-Child Transmission. Open Forum Infect Dis 2015; 2:ofv149. [PMID: 26613093 PMCID: PMC4653957 DOI: 10.1093/ofid/ofv149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022] Open
Abstract
Background. Fc-mediated effector functions have been suggested to influence human immunodeficiency virus (HIV) acquisition and disease progression. Analyzing the role of host Fc gamma receptor (FcγR) polymorphisms on HIV outcome in mother-to-child transmission (MTCT) will increase our understanding of how host genetics may alter immune responses in prevention, therapy, and disease. This study analyzed the impact of FCGR2A and FCGR3A genotypes on MTCT in a cohort in which Fc-mediated antibody functions are predictive of infant HIV outcome. Methods. Human immunodeficiency virus-positive mothers and their infants from a historical MTCT cohort were genotyped for FCGR2A and FCGR3A. We assessed the impact of these genotypes on transmission and acquisition of HIV and disease progression using χ(2) tests, survival analyses, and logistic regression. Results. Among 379 mother-infant pairs, infant FCGR2A and FCGR3A genotypes were not associated with infant HIV infection or disease progression. Maternal FCGR2A was not associated with transmission, but there was a trend between maternal FCGR3A genotype and transmission (P = .07). When dichotomizing mothers into FCGR3A homozygotes and heterozygotes, heterozygotes had a 64.5% higher risk of transmission compared with homozygotes (P = .02). This risk was most evident in the early breastfeeding window, but a trend was only observed when restricting analyses to breastfeeding mothers (hazards ratio, 1.64; P = .064). Conclusions. Infant FCGR2A and FCGR3A genotypes were not associated with HIV infection or disease progression, and, thus, host FcγR genotype may not significantly impact vaccination or therapeutic regimens that depend on Fc-mediated antibody functions. Maternal FCGR3A genotype may influence early breastfeeding transmission risk, but more studies should be conducted to clarify this association and its mechanism.
Collapse
Affiliation(s)
- Caitlin Milligan
- Division of Human Biology ; Medical Scientist Training Program , University of Washington School of Medicine ; Departments of Global Health
| | - Barbra A Richardson
- Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center ; Departments of Global Health ; Biostatistics
| | - Grace John-Stewart
- Departments of Global Health ; Medicine ; Epidemiology ; Pediatrics , University of Washington , Seattle
| | - Ruth Nduati
- Department of Pediatrics and Child Health , University of Nairobi , Kenya
| | - Julie Overbaugh
- Division of Human Biology ; Medical Scientist Training Program , University of Washington School of Medicine
| |
Collapse
|