1
|
Gadaleta D, Garcia de Lomana M, Serrano-Candelas E, Ortega-Vallbona R, Gozalbes R, Roncaglioni A, Benfenati E. Quantitative structure-activity relationships of chemical bioactivity toward proteins associated with molecular initiating events of organ-specific toxicity. J Cheminform 2024; 16:122. [PMID: 39501321 PMCID: PMC11539312 DOI: 10.1186/s13321-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
The adverse outcome pathway (AOP) concept has gained attention as a way to explore the mechanism of chemical toxicity. In this study, quantitative structure-activity relationship (QSAR) models were developed to predict compound activity toward protein targets relevant to molecular initiating events (MIE) upstream of organ-specific toxicities, namely liver steatosis, cholestasis, nephrotoxicity, neural tube closure defects, and cognitive functional defects. Utilizing bioactivity data from the ChEMBL 33 database, various machine learning algorithms, chemical features and methods to assess prediction reliability were compared and applied to develop robust models to predict compound activity. The results demonstrate high predictive performance across multiple targets, with balanced accuracy exceeding 0.80 for the majority of models. Furthermore, stability checks confirmed the consistency of predictive performance across multiple training-test splits. The results obtained by using QSAR predictions to identify known markers of adversities highlighted the utility of the models for risk assessment and for prioritizing compounds for further experimental evaluation.Scientific contributionThe work describes the development of QSAR models as tools for screening chemicals with potential systemic toxicity, thus contributing to resource savings and providing indications for further better-targeted testing. This study provides advances in the field of computational modeling of MIEs and information from AOP which is still relatively young and unexplored. The comprehensive modeling procedure is highly generalizable, and offers a robust framework for predicting a wide range of toxicological endpoints.
Collapse
Affiliation(s)
- Domenico Gadaleta
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Marina Garcia de Lomana
- Bayer AG, Machine Learning Research, Research & Development, Pharmaceuticals, Berlin, Germany
| | - Eva Serrano-Candelas
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Paterna, Valencia, Spain
| | - Rita Ortega-Vallbona
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Paterna, Valencia, Spain
| | - Rafael Gozalbes
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Paterna, Valencia, Spain
| | - Alessandra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
2
|
Banerjee A, Kar S, Roy K, Patlewicz G, Charest N, Benfenati E, Cronin MTD. Molecular similarity in chemical informatics and predictive toxicity modeling: from quantitative read-across (q-RA) to quantitative read-across structure-activity relationship (q-RASAR) with the application of machine learning. Crit Rev Toxicol 2024; 54:659-684. [PMID: 39225123 DOI: 10.1080/10408444.2024.2386260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
This article aims to provide a comprehensive critical, yet readable, review of general interest to the chemistry community on molecular similarity as applied to chemical informatics and predictive modeling with a special focus on read-across (RA) and read-across structure-activity relationships (RASAR). Molecular similarity-based computational tools, such as quantitative structure-activity relationships (QSARs) and RA, are routinely used to fill the data gaps for a wide range of properties including toxicity endpoints for regulatory purposes. This review will explore the background of RA starting from how structural information has been used through to how other similarity contexts such as physicochemical, absorption, distribution, metabolism, and elimination (ADME) properties, and biological aspects are being characterized. More recent developments of RA's integration with QSAR have resulted in the emergence of novel models such as ToxRead, generalized read-across (GenRA), and quantitative RASAR (q-RASAR). Conventional QSAR techniques have been excluded from this review except where necessary for context.
Collapse
Affiliation(s)
- Arkaprava Banerjee
- Department of Pharmaceutical Technology, Drug Theoretics and Cheminformatics (DTC) Laboratory, Jadavpur University, Kolkata, India
| | - Supratik Kar
- Department of Chemistry and Physics, Chemometrics & Molecular Modeling Laboratory, Kean University, Union, NJ, USA
| | - Kunal Roy
- Department of Pharmaceutical Technology, Drug Theoretics and Cheminformatics (DTC) Laboratory, Jadavpur University, Kolkata, India
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nathaniel Charest
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
3
|
Rodríguez-Belenguer P, March-Vila E, Pastor M, Mangas-Sanjuan V, Soria-Olivas E. Usage of model combination in computational toxicology. Toxicol Lett 2023; 389:34-44. [PMID: 37890682 DOI: 10.1016/j.toxlet.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
New Approach Methodologies (NAMs) have ushered in a new era in the field of toxicology, aiming to replace animal testing. However, despite these advancements, they are not exempt from the inherent complexities associated with the study's endpoint. In this review, we have identified three major groups of complexities: mechanistic, chemical space, and methodological. The mechanistic complexity arises from interconnected biological processes within a network that are challenging to model in a single step. In the second group, chemical space complexity exhibits significant dissimilarity between compounds in the training and test series. The third group encompasses algorithmic and molecular descriptor limitations and typical class imbalance problems. To address these complexities, this work provides a guide to the usage of a combination of predictive Quantitative Structure-Activity Relationship (QSAR) models, known as metamodels. This combination of low-level models (LLMs) enables a more precise approach to the problem by focusing on different sub-mechanisms or sub-processes. For mechanistic complexity, multiple Molecular Initiating Events (MIEs) or levels of information are combined to form a mechanistic-based metamodel. Regarding the complexity arising from chemical space, two types of approaches were reviewed to construct a fragment-based chemical space metamodel: those with and without structure sharing. Metamodels with structure sharing utilize unsupervised strategies to identify data patterns and build low-level models for each cluster, which are then combined. For situations without structure sharing due to pharmaceutical industry intellectual property, the use of prediction sharing, and federated learning approaches have been reviewed. Lastly, to tackle methodological complexity, various algorithms are combined to overcome their limitations, diverse descriptors are employed to enhance problem definition and balanced dataset combinations are used to address class imbalance issues (methodological-based metamodels). Remarkably, metamodels consistently outperformed classical QSAR models across all cases, highlighting the importance of alternatives to classical QSAR models when faced with such complexities.
Collapse
Affiliation(s)
- Pablo Rodríguez-Belenguer
- Research Programme on Biomedical Informatics (GRIB), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain; Department of Pharmacy and Pharmaceutical Technology and Parasitology, Universitat de València, 46100 Valencia, Spain
| | - Eric March-Vila
- Research Programme on Biomedical Informatics (GRIB), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain
| | - Manuel Pastor
- Research Programme on Biomedical Informatics (GRIB), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Hospital del Mar Medical Research Institute, 08003 Barcelona, Spain
| | - Victor Mangas-Sanjuan
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Universitat de València, 46100 Valencia, Spain; Interuniversity Research Institute for Molecular Recognition and Technological Development, Universitat Politècnica de València, 46100 Valencia, Spain
| | - Emilio Soria-Olivas
- IDAL, Intelligent Data Analysis Laboratory, ETSE, Universitat de València, 46100 Valencia, Spain.
| |
Collapse
|
4
|
Cronin MTD, Belfield SJ, Briggs KA, Enoch SJ, Firman JW, Frericks M, Garrard C, Maccallum PH, Madden JC, Pastor M, Sanz F, Soininen I, Sousoni D. Making in silico predictive models for toxicology FAIR. Regul Toxicol Pharmacol 2023; 140:105385. [PMID: 37037390 DOI: 10.1016/j.yrtph.2023.105385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
In silico predictive models for toxicology include quantitative structure-activity relationship (QSAR) and physiologically based kinetic (PBK) approaches to predict physico-chemical and ADME properties, toxicological effects and internal exposure. Such models are used to fill data gaps as part of chemical risk assessment. There is a growing need to ensure in silico predictive models for toxicology are available for use and reproducible. This paper describes how the FAIR (Findable, Accessible, Interoperable, Reusable) principles, developed for data sharing, have been applied to in silico predictive models. In particular, this investigation has focussed on how the FAIR principles could be applied to improved regulatory acceptance of predictions from such models. Eighteen principles have been developed that cover all aspects of FAIR. It is intended that FAIRification of in silico predictive models for toxicology will increase their use and acceptance.
Collapse
Affiliation(s)
- Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK.
| | - Samuel J Belfield
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Katharine A Briggs
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Holbeck, Leeds, LS11 5PS, UK
| | - Steven J Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Markus Frericks
- BASF SE, APD/ET - Li 444, Speyerer St 2, 67117, Limburgerhof, Germany
| | - Clare Garrard
- ELIXIR, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Peter H Maccallum
- ELIXIR, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Manuel Pastor
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dept. of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ferran Sanz
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dept. of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Inari Soininen
- Synapse Research Management Partners SL, Calle Velazquez 94, planta 1, 28006, Madrid, Spain
| | - Despoina Sousoni
- ELIXIR, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| |
Collapse
|
5
|
Firman JW, Ebbrell DJ, Bauer FJ, Sapounidou M, Hodges G, Campos B, Roberts J, Gutsell S, Thomas PC, Bonnell M, Cronin MTD. Construction of an In Silico Structural Profiling Tool Facilitating Mechanistically Grounded Classification of Aquatic Toxicants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17805-17814. [PMID: 36445296 PMCID: PMC9775196 DOI: 10.1021/acs.est.2c03736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The performance of chemical safety assessment within the domain of environmental toxicology is often impeded by a shortfall of appropriate experimental data describing potential hazards across the many compounds in regular industrial use. In silico schemes for assigning aquatic-relevant modes or mechanisms of toxic action to substances, based solely on consideration of chemical structure, have seen widespread employment─including those of Verhaar, Russom, and later Bauer (MechoA). Recently, development of a further system was reported by Sapounidou, which, in common with MechoA, seeks to ground its classifications in understanding and appreciation of molecular initiating events. Until now, this Sapounidou scheme has not seen implementation as a tool for practical screening use. Accordingly, the primary purpose of this study was to create such a resource─in the form of a computational workflow. This exercise was facilitated through the formulation of 183 structural alerts/rules describing molecular features associated with narcosis, chemical reactivity, and specific mechanisms of action. Output was subsequently compared relative to that of the three aforementioned alternative systems to identify strengths and shortcomings as regards coverage of chemical space.
Collapse
Affiliation(s)
- James W. Firman
- School
of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
| | - David J. Ebbrell
- School
of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
| | - Franklin J. Bauer
- KREATiS
SAS, 23 rue du Creuzat, ZAC de St-Hubert 38080, L′Isle d′Abeau, France
| | - Maria Sapounidou
- School
of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
| | - Geoff Hodges
- Safety
and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, Bedfordshire, U.K.
| | - Bruno Campos
- Safety
and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, Bedfordshire, U.K.
| | - Jayne Roberts
- Safety
and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, Bedfordshire, U.K.
| | - Steve Gutsell
- Safety
and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, Bedfordshire, U.K.
| | - Paul C. Thomas
- KREATiS
SAS, 23 rue du Creuzat, ZAC de St-Hubert 38080, L′Isle d′Abeau, France
| | - Mark Bonnell
- Science
and Risk Assessment Directorate, Environment
& Climate Change Canada, 351 St. Joseph Blvd, Gatineau, Quebec K1A 0H3, Canada
| | - Mark T. D. Cronin
- School
of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
| |
Collapse
|
6
|
Cronin MTD, Bauer FJ, Bonnell M, Campos B, Ebbrell DJ, Firman JW, Gutsell S, Hodges G, Patlewicz G, Sapounidou M, Spînu N, Thomas PC, Worth AP. A scheme to evaluate structural alerts to predict toxicity - Assessing confidence by characterising uncertainties. Regul Toxicol Pharmacol 2022; 135:105249. [PMID: 36041585 PMCID: PMC9585125 DOI: 10.1016/j.yrtph.2022.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022]
Abstract
Structure-activity relationships (SARs) in toxicology have enabled the formation of structural rules which, when coded as structural alerts, are essential tools in in silico toxicology. Whilst other in silico methods have approaches for their evaluation, there is no formal process to assess the confidence that may be associated with a structural alert. This investigation proposes twelve criteria to assess the uncertainty associated with structural alerts, allowing for an assessment of confidence. The criteria are based around the stated purpose, description of the chemistry, toxicology and mechanism, performance and coverage, as well as corroborating and supporting evidence of the alert. Alerts can be given a confidence assessment and score, enabling the identification of areas where more information may be beneficial. The scheme to evaluate structural alerts was placed in the context of various use cases for industrial and regulatory applications. The analysis of alerts, and consideration of the evaluation scheme, identifies the different characteristics an alert may have, such as being highly specific or generic. These characteristics may determine when an alert can be used for specific uses such as identification of analogues for read-across or hazard identification. Structural alerts are useful tools for predictive toxicology. 12 criteria to evaluate structural alerts have been identified. A strategy to determine confidence of structural alerts is presented. Different use cases require different characteristics of structural alerts. A Scheme to Evaluate Structural Alerts to Predict Toxicity – Assessing Confidence By Characterising Uncertainties.
Collapse
Affiliation(s)
- Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Franklin J Bauer
- KREATiS SAS, 23 rue du Creuzat, ZAC de St-Hubert, 38080, L'Isle d'Abeau, France
| | - Mark Bonnell
- Science and Risk Assessment Directorate, Environment & Climate Change Canada, 351 St. Joseph Blvd, Gatineau, Quebec, K1A 0H3, Canada
| | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, MK44 1LQ, UK
| | - David J Ebbrell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, MK44 1LQ, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire, MK44 1LQ, UK
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure (CCTE), US Environmental Protection Agency, 109 TW Alexander Dr, RTP, NC, 27709, USA
| | - Maria Sapounidou
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Nicoleta Spînu
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Paul C Thomas
- KREATiS SAS, 23 rue du Creuzat, ZAC de St-Hubert, 38080, L'Isle d'Abeau, France
| | - Andrew P Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
7
|
Crofton KM, Bassan A, Behl M, Chushak YG, Fritsche E, Gearhart JM, Marty MS, Mumtaz M, Pavan M, Ruiz P, Sachana M, Selvam R, Shafer TJ, Stavitskaya L, Szabo DT, Szabo ST, Tice RR, Wilson D, Woolley D, Myatt GJ. Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 22:100223. [PMID: 35844258 PMCID: PMC9281386 DOI: 10.1016/j.comtox.2022.100223] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Neurotoxicology is the study of adverse effects on the structure or function of the developing or mature adult nervous system following exposure to chemical, biological, or physical agents. The development of more informative alternative methods to assess developmental (DNT) and adult (NT) neurotoxicity induced by xenobiotics is critically needed. The use of such alternative methods including in silico approaches that predict DNT or NT from chemical structure (e.g., statistical-based and expert rule-based systems) is ideally based on a comprehensive understanding of the relevant biological mechanisms. This paper discusses known mechanisms alongside the current state of the art in DNT/NT testing. In silico approaches available today that support the assessment of neurotoxicity based on knowledge of chemical structure are reviewed, and a conceptual framework for the integration of in silico methods with experimental information is presented. Establishing this framework is essential for the development of protocols, namely standardized approaches, to ensure that assessments of NT and DNT based on chemical structures are generated in a transparent, consistent, and defendable manner.
Collapse
Affiliation(s)
| | - Arianna Bassan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova,
Italy
| | - Mamta Behl
- Division of the National Toxicology Program, National
Institutes of Environmental Health Sciences, Durham, NC 27709, USA
| | - Yaroslav G. Chushak
- Henry M Jackson Foundation for the Advancement of Military
Medicine, Wright-Patterson AFB, OH 45433, USA
| | - Ellen Fritsche
- IUF – Leibniz Research Institute for Environmental
Medicine & Medical Faculty Heinrich-Heine-University, Düsseldorf,
Germany
| | - Jeffery M. Gearhart
- Henry M Jackson Foundation for the Advancement of Military
Medicine, Wright-Patterson AFB, OH 45433, USA
| | | | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, US
Department of Health and Human Services, Atlanta, GA, USA
| | - Manuela Pavan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova,
Italy
| | - Patricia Ruiz
- Agency for Toxic Substances and Disease Registry, US
Department of Health and Human Services, Atlanta, GA, USA
| | - Magdalini Sachana
- Environment Health and Safety Division, Environment
Directorate, Organisation for Economic Co-Operation and Development (OECD), 75775
Paris Cedex 16, France
| | - Rajamani Selvam
- Office of Clinical Pharmacology, Office of Translational
Sciences, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug
Administration (FDA), Silver Spring, MD 20993, USA
| | - Timothy J. Shafer
- Biomolecular and Computational Toxicology Division, Center
for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC,
USA
| | - Lidiya Stavitskaya
- Office of Clinical Pharmacology, Office of Translational
Sciences, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug
Administration (FDA), Silver Spring, MD 20993, USA
| | | | | | | | - Dan Wilson
- The Dow Chemical Company, Midland, MI 48667, USA
| | | | - Glenn J. Myatt
- Instem, Columbus, OH 43215, USA
- Corresponding author.
(G.J. Myatt)
| |
Collapse
|
8
|
Prediction of the Neurotoxic Potential of Chemicals Based on Modelling of Molecular Initiating Events Upstream of the Adverse Outcome Pathways of (Developmental) Neurotoxicity. Int J Mol Sci 2022; 23:ijms23063053. [PMID: 35328472 PMCID: PMC8954925 DOI: 10.3390/ijms23063053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
Developmental and adult/ageing neurotoxicity is an area needing alternative methods for chemical risk assessment. The formulation of a strategy to screen large numbers of chemicals is highly relevant due to potential exposure to compounds that may have long-term adverse health consequences on the nervous system, leading to neurodegeneration. Adverse Outcome Pathways (AOPs) provide information on relevant molecular initiating events (MIEs) and key events (KEs) that could inform the development of computational alternatives for these complex effects. We propose a screening method integrating multiple Quantitative Structure–Activity Relationship (QSAR) models. The MIEs of existing AOP networks of developmental and adult/ageing neurotoxicity were modelled to predict neurotoxicity. Random Forests were used to model each MIE. Predictions returned by single models were integrated and evaluated for their capability to predict neurotoxicity. Specifically, MIE predictions were used within various types of classifiers and compared with other reference standards (chemical descriptors and structural fingerprints) to benchmark their predictive capability. Overall, classifiers based on MIE predictions returned predictive performances comparable to those based on chemical descriptors and structural fingerprints. The integrated computational approach described here will be beneficial for large-scale screening and prioritisation of chemicals as a function of their potential to cause long-term neurotoxic effects.
Collapse
|
9
|
Ponting DJ, Burns MJ, Foster RS, Hemingway R, Kocks G, MacMillan DS, Shannon-Little AL, Tennant RE, Tidmarsh JR, Yeo DJ. Use of Lhasa Limited Products for the In Silico Prediction of Drug Toxicity. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2425:435-478. [PMID: 35188642 DOI: 10.1007/978-1-0716-1960-5_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lhasa Limited have had a role in the in silico prediction of drug and other chemical toxicity for over 30 years. This role has always been multifaceted, both as a provider of predictive software such as Derek Nexus, and as an honest broker for the sharing of proprietary chemical and toxicity data. A changing regulatory environment and the drive for the Replacement, Reduction and Refinement (the 3Rs) of animal testing have led both to increased acceptance of in silico predictions and a desire for the sharing of data to reduce duplicate testing. The combination of these factors has led to Lhasa Limited providing a suite of products and coordinating numerous data-sharing consortia that do indeed facilitate a significant reduction in the testing burden that companies would otherwise be laboring under. Many of these products and consortia can be organized into workflows for specific regulatory use cases, and it is these that will be used to frame the narrative in this chapter.
Collapse
|
10
|
Paini A, Campia I, Cronin MT, Asturiol D, Ceriani L, Exner TE, Gao W, Gomes C, Kruisselbrink J, Martens M, Meek MB, Pamies D, Pletz J, Scholz S, Schüttler A, Spînu N, Villeneuve DL, Wittwehr C, Worth A, Luijten M. Towards a qAOP framework for predictive toxicology - Linking data to decisions. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 21:100195. [PMID: 35211660 PMCID: PMC8850654 DOI: 10.1016/j.comtox.2021.100195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022]
Abstract
The adverse outcome pathway (AOP) is a conceptual construct that facilitates organisation and interpretation of mechanistic data representing multiple biological levels and deriving from a range of methodological approaches including in silico, in vitro and in vivo assays. AOPs are playing an increasingly important role in the chemical safety assessment paradigm and quantification of AOPs is an important step towards a more reliable prediction of chemically induced adverse effects. Modelling methodologies require the identification, extraction and use of reliable data and information to support the inclusion of quantitative considerations in AOP development. An extensive and growing range of digital resources are available to support the modelling of quantitative AOPs, providing a wide range of information, but also requiring guidance for their practical application. A framework for qAOP development is proposed based on feedback from a group of experts and three qAOP case studies. The proposed framework provides a harmonised approach for both regulators and scientists working in this area.
Collapse
Affiliation(s)
- Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ivana Campia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - David Asturiol
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Thomas E. Exner
- Edelweiss Connect GmbH, Technology Park Basel, Basel, Switzerland
| | - Wang Gao
- Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | | | | | | | | | - David Pamies
- Department of Physiology, Lausanne and Swiss Centre for Applied Human Toxicology (SCAHT), University of Lausanne, Lausanne, Switzerland
| | - Julia Pletz
- Liverpool John Moores University, Liverpool, United Kingdom
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research GmbH – UFZ, Leipzig, Germany
| | - Andreas Schüttler
- Helmholtz Centre for Environmental Research GmbH – UFZ, Leipzig, Germany
| | - Nicoleta Spînu
- Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel L. Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | | | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
11
|
Alexander-White C, Bury D, Cronin M, Dent M, Hack E, Hewitt NJ, Kenna G, Naciff J, Ouedraogo G, Schepky A, Mahony C, Europe C. A 10-step framework for use of read-across (RAX) in next generation risk assessment (NGRA) for cosmetics safety assessment. Regul Toxicol Pharmacol 2022; 129:105094. [PMID: 34990780 DOI: 10.1016/j.yrtph.2021.105094] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/12/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
This paper presents a 10-step read-across (RAX) framework for use in cases where a threshold of toxicological concern (TTC) approach to cosmetics safety assessment is not possible. RAX builds on established approaches that have existed for more than two decades using chemical properties and in silico toxicology predictions, by further substantiating hypotheses on toxicological similarity of substances, and integrating new approach methodologies (NAM) in the biological and kinetic domains. NAM include new types of data on biological observations from, for example, in vitro assays, toxicogenomics, metabolomics, receptor binding screens and uses physiologically-based kinetic (PBK) modelling to inform about systemic exposure. NAM data can help to substantiate a mode/mechanism of action (MoA), and if similar chemicals can be shown to work by a similar MoA, a next generation risk assessment (NGRA) may be performed with acceptable confidence for a data-poor target substance with no or inadequate safety data, based on RAX approaches using data-rich analogue(s), and taking account of potency or kinetic/dynamic differences.
Collapse
Affiliation(s)
- Camilla Alexander-White
- MKTox & Co Ltd, 36 Fairford Crescent, Downhead Park, Milton Keynes, Buckinghamshire, MK15 9AQ, UK.
| | - Dagmar Bury
- L'Oreal Research & Innovation, 9 Rue Pierre Dreyfus, 92110, Clichy, France
| | - Mark Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 AF, UK
| | - Matthew Dent
- Unilever, Safety & Environmental Assurance Centre, Colworth House, Sharnbrook, Bedfordshire, MK44 1ET, UK
| | - Eric Hack
- ScitoVation, Research Triangle Park, Durham, NC, USA
| | - Nicola J Hewitt
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium
| | - Gerry Kenna
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium
| | - Jorge Naciff
- The Procter & Gamble Company, Cincinnati, OH, 45040, USA
| | - Gladys Ouedraogo
- L'Oreal Research & Innovation, 1 Avenue Eugène Schueller, Aulnay sous bois, France
| | | | | | - Cosmetics Europe
- Cosmetics Europe, 40 Avenue Hermann-Debroux, 1160, Brussels, Belgium.
| |
Collapse
|
12
|
Yang C, Cronin MTD, Arvidson KB, Bienfait B, Enoch SJ, Heldreth B, Hobocienski B, Muldoon-Jacobs K, Lan Y, Madden JC, Magdziarz T, Marusczyk J, Mostrag A, Nelms M, Neagu D, Przybylak K, Rathman JF, Park J, Richarz AN, Richard AM, Ribeiro JV, Sacher O, Schwab C, Vitcheva V, Volarath P, Worth AP. COSMOS next generation - A public knowledge base leveraging chemical and biological data to support the regulatory assessment of chemicals. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 19:100175. [PMID: 34405124 PMCID: PMC8351204 DOI: 10.1016/j.comtox.2021.100175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022]
Abstract
The COSMOS Database (DB) was originally established to provide reliable data for cosmetics-related chemicals within the COSMOS Project funded as part of the SEURAT-1 Research Initiative. The database has subsequently been maintained and developed further into COSMOS Next Generation (NG), a combination of database and in silico tools, essential components of a knowledge base. COSMOS DB provided a cosmetics inventory as well as other regulatory inventories, accompanied by assessment results and in vitro and in vivo toxicity data. In addition to data content curation, much effort was dedicated to data governance - data authorisation, characterisation of quality, documentation of meta information, and control of data use. Through this effort, COSMOS DB was able to merge and fuse data of various types from different sources. Building on the previous effort, the COSMOS Minimum Inclusion (MINIS) criteria for a toxicity database were further expanded to quantify the reliability of studies. COSMOS NG features multiple fingerprints for analysing structure similarity, and new tools to calculate molecular properties and screen chemicals with endpoint-related public profilers, such as DNA and protein binders, liver alerts and genotoxic alerts. The publicly available COSMOS NG enables users to compile information and execute analyses such as category formation and read-across. This paper provides a step-by-step guided workflow for a simple read-across case, starting from a target structure and culminating in an estimation of a NOAEL confidence interval. Given its strong technical foundation, inclusion of quality-reviewed data, and provision of tools designed to facilitate communication between users, COSMOS NG is a first step towards building a toxicological knowledge hub leveraging many public data systems for chemical safety evaluation. We continue to monitor the feedback from the user community at support@mn-am.com.
Collapse
Key Words
- AOP, Adverse Outcome Pathway
- Analogue selection
- CERES, Chemical Evaluation and Risk Estimation System
- CFSAN, Center for Food Safety and Applied Nutrition
- CMS-ID, COSMOS Identification Number
- COSMOS DB, COSMOS Database
- COSMOS MINIS, Minimum Inclusion Criteria of Studies in COSMOS DB
- COSMOS NG, COSMOS Next Generation
- CRADA, Cooperative Research and Development Agreement
- CosIng, Cosmetic Ingredient Database
- DART, Developmental & Reproductive Toxicity
- DB, Database
- DST, Dempster Shafer Theory
- Database
- ECHA, European Chemicals Agency
- EFSA, European Food Safety Authority
- Guided workflow
- HESS, Hazard Evaluation Support System
- HNEL, Highest No Effect Level
- HTS, High throughput screening
- ILSI, International Life Sciences Institute
- IUCLID, International Uniform Chemical Information Database
- Knowledge hub
- LEL, Lowest Effect Level
- LOAEL, Lowest Observed Adverse Effect Level
- LogP, Logarithm of the octanol:water partition coefficient
- NAM, New Approach Methodology
- NGRA, Next Generation Risk-Assessment
- NITE, National Institute of Technology and Evaluation (Japan)
- NOAEL, No Observed Adverse Effect Level
- NTP, National Toxicology Program
- OECD, Organisation for Economic Co-operation and Development
- OpenFoodTox, EFSA’s OpenFoodTox database
- PAFA, Priority-based Assessment of Food Additive database
- PK/TK, Pharmacokinetics/Toxicokinetics
- Public database
- QA, Quality Assurance
- QC, Quality Control
- REACH, Registration, Evaluation, Authorisation and Restriction of Chemicals
- SCC, Science Committee on Cosmetics (EU)
- SCCNFP, Scientific Committee of Cosmetic Products and Non-food Products intended for Consumers (EU)
- SCCP, Scientific Committee on Consumer Products (EU)
- SCCS, Scientific Committee on Consumer Safety (EU)
- Study reliability
- TTC, Threshold of Toxicological Concern
- ToxRefDB, Toxicity Reference Database
- Toxicity
- US EPA, United States Environmental Protection Agency
- US FDA, United States Food and Drug Administration
Collapse
Affiliation(s)
- C Yang
- MN-AM, Columbus, OH, USA
- MN-AM Nürnberg, Germany
| | - M T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | | | | | - S J Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - B Heldreth
- Cosmetic Ingredient Review, Washington, DC, USA
| | | | | | - Y Lan
- University of Bradford, UK
| | - J C Madden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | | | | | | | - M Nelms
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | | | - K Przybylak
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - J F Rathman
- MN-AM, Columbus, OH, USA
- The Ohio State University, Columbus OH, USA
| | | | - A-N Richarz
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | | | | | | | | | - V Vitcheva
- MN-AM, Columbus, OH, USA
- MN-AM Nürnberg, Germany
| | | | - A P Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
13
|
Sapounidou M, Ebbrell DJ, Bonnell MA, Campos B, Firman JW, Gutsell S, Hodges G, Roberts J, Cronin MTD. Development of an Enhanced Mechanistically Driven Mode of Action Classification Scheme for Adverse Effects on Environmental Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1897-1907. [PMID: 33478211 DOI: 10.1021/acs.est.0c06551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study developed a novel classification scheme to assign chemicals to a verifiable mechanism of (eco-)toxicological action to allow for grouping, read-across, and in silico model generation. The new classification scheme unifies and extends existing schemes and has, at its heart, direct reference to molecular initiating events (MIEs) promoting adverse outcomes. The scheme is based on three broad domains of toxic action representing nonspecific toxicity (e.g., narcosis), reactive mechanisms (e.g., electrophilicity and free radical action), and specific mechanisms (e.g., associated with enzyme inhibition). The scheme is organized at three further levels of detail beyond broad domains to separate out the mechanistic group, specific mechanism, and the MIEs responsible. The novelty of this approach comes from the reference to taxonomic diversity within the classification, transparency, quality of supporting evidence relating to MIEs, and that it can be updated readily.
Collapse
Affiliation(s)
- Maria Sapounidou
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - David J Ebbrell
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Mark A Bonnell
- Science and Risk Assessment Directorate, Environment & Climate Change Canada, 351 St. Joseph Blvd, Gatineau, Quebec K1A 0H3, Canada
| | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - James W Firman
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Steve Gutsell
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Jayne Roberts
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, U.K
| | - Mark T D Cronin
- School of Pharmacy and Bimolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| |
Collapse
|
14
|
Madden JC, Enoch SJ, Paini A, Cronin MTD. A Review of In Silico Tools as Alternatives to Animal Testing: Principles, Resources and Applications. Altern Lab Anim 2020; 48:146-172. [PMID: 33119417 DOI: 10.1177/0261192920965977] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Across the spectrum of industrial sectors, including pharmaceuticals, chemicals, personal care products, food additives and their associated regulatory agencies, there is a need to develop robust and reliable methods to reduce or replace animal testing. It is generally recognised that no single alternative method will be able to provide a one-to-one replacement for assays based on more complex toxicological endpoints. Hence, information from a combination of techniques is required. A greater understanding of the time and concentration-dependent mechanisms, underlying the interactions between chemicals and biological systems, and the sequence of events that can lead to apical effects, will help to move forward the science of reducing and replacing animal experiments. In silico modelling, in vitro assays, high-throughput screening, organ-on-a-chip technology, omics and mathematical biology, can provide complementary information to develop a complete picture of the potential response of an organism to a chemical stressor. Adverse outcome pathways (AOPs) and systems biology frameworks enable relevant information from diverse sources to be logically integrated. While individual researchers do not need to be experts across all disciplines, it is useful to have a fundamental understanding of what other areas of science have to offer, and how knowledge can be integrated with other disciplines. The purpose of this review is to provide those who are unfamiliar with predictive in silico tools, with a fundamental understanding of the underlying theory. Current applications, software, barriers to acceptance, new developments and the use of integrated approaches are all discussed, with additional resources being signposted for each of the topics.
Collapse
Affiliation(s)
- Judith C Madden
- School of Pharmacy and Biomolecular Sciences, 4589Liverpool John Moores University, Liverpool, UK
| | - Steven J Enoch
- School of Pharmacy and Biomolecular Sciences, 4589Liverpool John Moores University, Liverpool, UK
| | - Alicia Paini
- 99013European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, 4589Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
15
|
Spinu N, Cronin MTD, Enoch SJ, Madden JC, Worth AP. Quantitative adverse outcome pathway (qAOP) models for toxicity prediction. Arch Toxicol 2020; 94:1497-1510. [PMID: 32424443 PMCID: PMC7261727 DOI: 10.1007/s00204-020-02774-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/04/2020] [Indexed: 01/06/2023]
Abstract
The quantitative adverse outcome pathway (qAOP) concept is gaining interest due to its potential regulatory applications in chemical risk assessment. Even though an increasing number of qAOP models are being proposed as computational predictive tools, there is no framework to guide their development and assessment. As such, the objectives of this review were to: (i) analyse the definitions of qAOPs published in the scientific literature, (ii) define a set of common features of existing qAOP models derived from the published definitions, and (iii) identify and assess the existing published qAOP models and associated software tools. As a result, five probabilistic qAOPs and ten mechanistic qAOPs were evaluated against the common features. The review offers an overview of how the qAOP concept has advanced and how it can aid toxicity assessment in the future. Further efforts are required to achieve validation, harmonisation and regulatory acceptance of qAOP models.
Collapse
Affiliation(s)
- Nicoleta Spinu
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Steven J Enoch
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Judith C Madden
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Andrew P Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
16
|
Desprez B, Birk B, Blaauboer B, Boobis A, Carmichael P, Cronin MT, Curie R, Daston G, Hubesch B, Jennings P, Klaric M, Kroese D, Mahony C, Ouédraogo G, Piersma A, Richarz AN, Schwarz M, van Benthem J, van de Water B, Vinken M. A mode-of-action ontology model for safety evaluation of chemicals: Outcome of a series of workshops on repeated dose toxicity. Toxicol In Vitro 2019; 59:44-50. [DOI: 10.1016/j.tiv.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
|
17
|
Spinu N, Bal-Price A, Cronin MTD, Enoch SJ, Madden JC, Worth AP. Development and analysis of an adverse outcome pathway network for human neurotoxicity. Arch Toxicol 2019; 93:2759-2772. [DOI: 10.1007/s00204-019-02551-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022]
|
18
|
Cronin MT, Richarz AN, Schultz TW. Identification and description of the uncertainty, variability, bias and influence in quantitative structure-activity relationships (QSARs) for toxicity prediction. Regul Toxicol Pharmacol 2019; 106:90-104. [DOI: 10.1016/j.yrtph.2019.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023]
|
19
|
Cronin MT, Madden JC, Yang C, Worth AP. Unlocking the potential of in silico chemical safety assessment - A report on a cross-sector symposium on current opportunities and future challenges. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 10:38-43. [PMID: 31218266 PMCID: PMC6559213 DOI: 10.1016/j.comtox.2018.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
In silico chemical safety assessment can support the evaluation of hazard and risk following potential exposure to a substance. A symposium identified a number of opportunities and challenges to implement in silico methods, such as quantitative structure-activity relationships (QSARs) and read-across, to assess the potential harm of a substance in a variety of exposure scenarios, e.g. pharmaceuticals, personal care products, and industrial chemicals. To initiate the process of in silico safety assessment, clear and unambiguous problem formulation is required to provide the context for these methods. These approaches must be built on data of defined quality, while acknowledging the possibility of novel data resources tapping into on-going progress with data sharing. Models need to be developed that cover appropriate toxicity and kinetic endpoints, and that are documented appropriately with defined uncertainties. The application and implementation of in silico models in chemical safety requires a flexible technological framework that enables the integration of multiple strands of data and evidence. The findings of the symposium allowed for the identification of priorities to progress in silico chemical safety assessment towards the animal-free assessment of chemicals.
Collapse
Affiliation(s)
- Mark T.D. Cronin
- Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Judith C. Madden
- Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Chihae Yang
- Molecular Networks GmbH, Neumeyerstraße 28, 90411 Nürnberg, Germany
| | - Andrew P. Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
20
|
The importance of mathematical modelling in chemical risk assessment and the associated quantification of uncertainty. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2018.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Mellor C, Marchese Robinson R, Benigni R, Ebbrell D, Enoch S, Firman J, Madden J, Pawar G, Yang C, Cronin M. Molecular fingerprint-derived similarity measures for toxicological read-across: Recommendations for optimal use. Regul Toxicol Pharmacol 2019; 101:121-134. [DOI: 10.1016/j.yrtph.2018.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/09/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
|
22
|
Pletz J, Enoch SJ, Jais DM, Mellor CL, Pawar G, Firman JW, Madden JC, Webb SD, Tagliati CA, Cronin MTD. A critical review of adverse effects to the kidney: mechanisms, data sources, and in silico tools to assist prediction. Expert Opin Drug Metab Toxicol 2018; 14:1225-1253. [PMID: 30345815 DOI: 10.1080/17425255.2018.1539076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The kidney is a major target for toxicity elicited by pharmaceuticals and environmental pollutants. Standard testing which often does not investigate underlying mechanisms has proven not to be an adequate hazard assessment approach. As such, there is an opportunity for the application of computational approaches that utilize multiscale data based on the Adverse Outcome Pathway (AOP) paradigm, coupled with an understanding of the chemistry underpinning the molecular initiating event (MIE) to provide a deep understanding of how structural fragments of molecules relate to specific mechanisms of nephrotoxicity. Aims covered: The aim of this investigation was to review the current scientific landscape related to computational methods, including mechanistic data, AOPs, publicly available knowledge bases and current in silico models, for the assessment of pharmaceuticals and other chemicals with regard to their potential to elicit nephrotoxicity. A list of over 250 nephrotoxicants enriched with, where possible, mechanistic and AOP-derived understanding was compiled. Expert opinion: Whilst little mechanistic evidence has been translated into AOPs, this review identified a number of data sources of in vitro, in vivo, and human data that may assist in the development of in silico models which in turn may shed light on the interrelationships between nephrotoxicity mechanisms.
Collapse
Affiliation(s)
- Julia Pletz
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Steven J Enoch
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Diviya M Jais
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Claire L Mellor
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Gopal Pawar
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - James W Firman
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Judith C Madden
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Steven D Webb
- b Department of Applied Mathematics , Liverpool John Moores University , Liverpool , UK
| | - Carlos A Tagliati
- c Departamento de Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Mark T D Cronin
- a School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| |
Collapse
|