2
|
Rizvi S, Raza ST, Mehdi SR, Siddiqi Z, Eba A, Mahdi F. The relationship between Multidrug Resistance Protein 1(rs1045642) and Cholesterol 24-hydroxylase (rs754203) genes polymorphism with type 2 diabetes mellitus. Br J Biomed Sci 2019; 74:30-35. [PMID: 28206854 DOI: 10.1080/09674845.2016.1264212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The involvement of genetic factors like gene polymorphisms has been found to contribute significantly to the development and progression of type 2 diabetes (T2DM). Thousands of single nucleotide polymorphisms in various genes have been found to be associated with risk of T2DM. The present study was aimed to investigate association of Multidrug resistance 1 (MDR1) (rs1045642) and CYP46A1 (rs754203) genes polymorphism with T2DM. SUBJECTS & METHODS Study includes 333 subjects, 183 T2DM cases and 150 healthy controls. Single nucleotide polymorphism was evaluated by PCR-PFLP. Alleles and genotype frequencies between cases and controls were compared using χ2 and Student's t-tests. Odds ratios and 95% confidence intervals were calculated by logistic regression to assess the relative association between disease and genotypes. RESULTS In case of CYP46A1 gene, CC (p < 0.001) and CT (p = 0.001) genotypes and C allele (p < 0.001) were found to be a positive risk factor and TT genotype (p < 0.001) and T allele (p < 0.001) as negative risk factor for T2DM whereas, no association of MDR1 gene was found with T2DM (P values of all genotypes and alleles were greater than 0.001). MDR1 (rs1045642) and CYP46A1 (rs754203) genes polymorphism was not found associated with Fasting Blood Sugar (FBS), Diastolic Blood Pressure (DBP) and Systolic Blood Pressure (SBP). CONCLUSION CYP46A1 gene polymorphism is associated with the risk of T2DM whereas, MDR1 gene polymorphism was not found to confer any risk of T2DM in North Indian Ethnic group.
Collapse
Affiliation(s)
- Saliha Rizvi
- a Department of Biochemistry , Era's Lucknow Medical College and Hospital , Lucknow , India
| | - Syed Tasleem Raza
- a Department of Biochemistry , Era's Lucknow Medical College and Hospital , Lucknow , India
| | - S Riyaz Mehdi
- b Department of Pathology , Era's Lucknow Medical College and Hospital , Lucknow , India
| | - Zeba Siddiqi
- c Department of Medicine , Era's Lucknow Medical College and Hospital , Lucknow , India
| | - Ale Eba
- a Department of Biochemistry , Era's Lucknow Medical College and Hospital , Lucknow , India
| | - Farzana Mahdi
- a Department of Biochemistry , Era's Lucknow Medical College and Hospital , Lucknow , India
| |
Collapse
|
4
|
Wang J, Liu Y, Zhao J, Xu J, Li S, Qin X. P-glycoprotein gene MDR1 polymorphisms and susceptibility to systemic lupus erythematosus in Guangxi population: a case-control study. Rheumatol Int 2017; 37:537-545. [PMID: 28154898 DOI: 10.1007/s00296-017-3652-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
Abstract
The multidrug resistance 1 gene (MDR1) encodes for P-glycoprotein (P-gp), which plays a pathophysiological role in the development of autoimmune diseases, including systemic lupus erythematosus (SLE). Herein, we aimed to investigate the relationship between MDR1 gene polymorphisms and SLE susceptibility in the Chinese Guangxi population. The genotypes of rs1128503 and rs1045642 in MDR1 gene were analyzed using the polymerase chain reaction-restriction fragment length polymorphism method in 283 SLE patients and 247 healthy controls from Guangxi. Direct sequencing method was used to verify the results. Binary logistic regression analyses adjusting for gender and age indicated that subjects carrying the rs1128503 T-allele and TT genotype were at increased risk of SLE when compared to carriers of the C allele and CC genotype, with adjusted ORs of 1.36 (95% CI 1.07-1.74; P = 0.014) and 1.77 (95% CI 1.08-2.88; P = 0.022), respectively. In addition, the risk allele T had a recessive effect (OR 1.49, 95% CI 1.04-2.14, P = 0.029). Subgroup analyses revealed effect modification by age for the presence of the rs1128503 T allele, yielding a significant positive association with SLE in older (≥40 years) subjects (T vs. C allele: OR 1.41, 95% CI 1.01-1.96; P = 0.041; TT vs. CC genotype: OR 1.74, 95% CI 1.07-2.79; P = 0.021). For the first time, we demonstrated that MDR1 rs1128503 polymorphisms were associated with SLE susceptibility in Chinese Guangxi population.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yanqiong Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiangyang Zhao
- Department of Clinical Laboratory, The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Juanjuan Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Xue Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Gbandi E, Goulas A, Sevastianos V, Hadziyannis S, Panderi A, Koskinas J, Papatheodoridis G, Vasiliadis T, Agapakis D, Protopapas A, Ioannidou P, Zacharakis G, Sinakos E, Koutsounas S, Germanidis G. Common ABCB1 polymorphisms in Greek patients with chronic hepatitis C infection: A comparison with hyperlipidemic patients and the general population. Pharmacol Rep 2015; 68:476-82. [PMID: 26922556 DOI: 10.1016/j.pharep.2015.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hepatitis C virus infectivity and replication efficiency appears to be dependent on the lipid content and organization of the plasma membrane of the host cell, as well as of the intracellular membranous web. As there is increasing awareness of a role played by the efflux pump ABCB1 (p-glycoprotein, P-gp) in lipid homeostasis, its function could be a determinant of chronic HCV infection. The aim of the present study was to examine and compare the distribution of common ABCB1 genotypes in patients with chronic HCV infection (n=168), hyperlipidemic patients (n=168) and a control group (n=173), all from Greece. METHODS Participants were genotyped for the ABCB12677G>T/A and 3435C>T polymorphisms with previously reported PCR-RFLP methods. Genotype and allele frequency distributions were compared between the three groups with the χ(2) test of independence. RESULTS The ABCB1 2677GG (ancestral) genotypes were significantly over-represented in patients with chronic hepatitis C compared to controls (39.3% vs. 26.6%, p=0.015 according to the dominant model). A similar result was obtained when hyperlipidemic patients were compared to controls (45.2% vs. 26.6%, p<0.001 according to the dominant model). Comparison of ABCB1 3435C>T genotype and allele distributions provided similar but not as significant differences. Genotype and allele distributions for both ABCB12677G>T/A and 3435C>T were very similar between HCV patients and hyperlipidemic patients. CONCLUSION Our findings imply an influence of ABCB1 polymorphisms on HCV infectivity, possibly through an effect on lipid homeostasis.
Collapse
Affiliation(s)
- Emma Gbandi
- 1st Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Goulas
- 1st Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | - Athanasia Panderi
- 1st Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John Koskinas
- 2nd Academic Department of Internal Medicine, Hippokration Hospital of Athens, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Athens University Medical School, Laikon General Hospital of Athens, Athens, Greece
| | - Themistoklis Vasiliadis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Agapakis
- 1st Propedeutic Department of Internal Medicine, AHEPA Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Protopapas
- 1st Propedeutic Department of Internal Medicine, AHEPA Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Ioannidou
- Department of Gastroenterology, Athens University Medical School, Laikon General Hospital of Athens, Athens, Greece
| | - George Zacharakis
- 2nd Department of Gastroenterology, Evangelismos General Hospital of Athens, Athens, Greece
| | - Emmanuil Sinakos
- 4th Department of Internal Medicine, Aristotle University of Thessaloniki Medical School, Hippokration General Hospital, Thessaloniki, Greece
| | | | - Georgios Germanidis
- 1st Department of Internal Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| |
Collapse
|
6
|
Xiang C, Wang J, Kou X, Chen X, Qin Z, Jiang Y, Sun C, Xu J, Tan W, Jin L, Lin D, He F, Wang H. Pulmonary expression of CYP2A13 and ABCB1 is regulated by FOXA2, and their genetic interaction is associated with lung cancer. FASEB J 2015; 29:1986-98. [PMID: 25667220 DOI: 10.1096/fj.14-264580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/24/2014] [Indexed: 01/04/2023]
Abstract
Inhaled xenobiotics such as tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are mainly metabolized by phase I oxidase cytochrome P450, family 2, subfamily A, polypeptide 13 (CYP2A13), phase II conjugate UDP glucuronosyltransferase 2 family, polypeptide B17 (UGT2B17), and phase III transporter ATP-binding cassette, subfamily B (MDR/TAP), member 1 (ABCB1), with genetic polymorphisms implicated in lung cancer. Their genetic interaction and pulmonary expression regulation are largely unknown. We analyzed joint association for CYP2A13 and ABCB1 polymorphisms in 2 independent lung cancer case populations (669 and 566 patients) and 1 common control population (749 subjects), and characterized the trans-acting function of the lung development-related transcription factor forkhead box A2 (FOXA2). We undertook FOXA2 overexpression and down-regulation in lung epithelial cell lines, analyzed functional impact on the transactivation of CYP2A13, UGT2B17, and ABCB1, and measured correlation for their expressions in lung tissues. We found a substantial reduction in cancer risk (OR 0.39; 95% CI 0.25-0.61; Pinteraction = 0.029) associated with combined genotypes for CYP2A13 R257C and a functionary regulatory variant in the cis element of ABCB1 synergistically targeted by GATA binding protein 6 and FOXA2. Genetic manipulation of FOXA2 consistently influenced its binding to and transactivation of the promoters of CYP2A13, UGT2B17, and ABCB1, whose mRNA and protein expressions were all consistently correlated with those of FOXA2 in both tumorous and normal lung tissues. We therefore establish FOXA2 as a core transcriptional modulator for pulmonary xenobiotic metabolic pathways and uncover an etiologically relevant interaction between CYP2A13 and ABCB1, furthering our understanding of expression and function of the xenobiotic metabolism system.
Collapse
Affiliation(s)
- Chan Xiang
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jiucun Wang
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaochen Kou
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiabin Chen
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhaoyu Qin
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yan Jiang
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chang Sun
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jibin Xu
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen Tan
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li Jin
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dongxin Lin
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fuchu He
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| | - Haijian Wang
- *State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China; Department of Etiology and Carcinogenesis, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China; and State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|