1
|
Jabbar S, Mathews P, Wang X, Sundaramoorthy P, Chu E, Piryani SO, Ding S, Shen X, Doan PL, Kang Y. Thioredoxin-1 regulates self-renewal and differentiation of murine hematopoietic stem cells through p53 tumor suppressor. Exp Hematol Oncol 2022; 11:83. [PMID: 36316713 PMCID: PMC9624023 DOI: 10.1186/s40164-022-00329-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/28/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Thioredoxin-1 (TXN1) is one of the major cellular antioxidants in mammals and is involved in a wide range of physiological cellular responses. However, little is known about the roles and the underlying molecular mechanisms of TXN1 in the regulation of hematopoietic stem/progenitor cells (HSPCs). METHODS TXN1 conditional knockout mice (ROSA-CreER-TXN1fl/fl) and TXN1fl/fl control mice were used. The mice were treated with tamoxifen and the number and biological functions of HSPCs were measured by flow cytometry, PCR and western blot. Limiting dilution competitive transplantation with sorted HSCs and serial transplantations were performed to assess the effects of TXN1 knockout on HSC self-renewal and long-term reconstitutional capacity. RNA sequencing (RNA-seq) was performed to investigate the downstream molecular pathways of TXN1 deletion in murine HSPCs. CRISPR/Cas9 knockout experiments were performed in vitro in EML murine hematopoietic stem/progenitor cell line to investigate the effects of TXN1 and/or TP53 deletion on cell survival, senescence and colony forming units. TP53 protein degradation assay, CHiP PCR and PGL3 firefly/renilla reporter assay were performed. The effects of TXN1 on various molecular pathways relevant to HSC radiation protection were examined in vitro and in vivo. RESULTS TXN1-TP53 tumor suppressor axis regulates HSPC biological fitness. Deletion of TXN1 in HSPCs using in vivo and in vitro models activates TP53 signaling pathway, and attenuates HSPC capacity to reconstitute hematopoiesis. Furthermore, we found that knocking out of TXN1 renders HSPCs more sensitive to radiation and treatment with recombinant TXN1 promotes the proliferation and expansion of HSPCs. CONCLUSIONS Our findings suggest that TXN1-TP53 axis acts as a regulatory mechanism in HSPC biological functions. Additionally, our study demonstrates the clinical potential of TXN1 for enhancing hematopoietic recovery in hematopoietic stem cell transplant and protecting HSPCs from radiation injury.
Collapse
Affiliation(s)
- Shaima Jabbar
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Parker Mathews
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Xiaobei Wang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Pasupathi Sundaramoorthy
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Emily Chu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Sadhna O Piryani
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27710, USA
| | - Phuong L Doan
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA
- Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, School of Medicine, Duke University Medical Center, 2400 Pratt Street, Suite 5000, Durham, NC, DUMC 396127710, USA.
- Duke Cancer Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022; 19:1079-1101. [PMID: 36056148 PMCID: PMC9508259 DOI: 10.1038/s41423-022-00902-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractThe immune-inflammatory response is associated with increased nitro-oxidative stress. The aim of this mechanistic review is to examine: (a) the role of redox-sensitive transcription factors and enzymes, ROS/RNS production, and the activity of cellular antioxidants in the activation and performance of macrophages, dendritic cells, neutrophils, T-cells, B-cells, and natural killer cells; (b) the involvement of high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), paraoxonase-1 (PON1), and oxidized phospholipids in regulating the immune response; and (c) the detrimental effects of hypernitrosylation and chronic nitro-oxidative stress on the immune response. The redox changes during immune-inflammatory responses are orchestrated by the actions of nuclear factor-κB, HIF1α, the mechanistic target of rapamycin, the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, mitogen-activated protein kinases, 5' AMP-activated protein kinase, and peroxisome proliferator-activated receptor. The performance and survival of individual immune cells is under redox control and depends on intracellular and extracellular levels of ROS/RNS. They are heavily influenced by cellular antioxidants including the glutathione and thioredoxin systems, nuclear factor erythroid 2-related factor 2, and the HDL/ApoA1/PON1 complex. Chronic nitro-oxidative stress and hypernitrosylation inhibit the activity of those antioxidant systems, the tricarboxylic acid cycle, mitochondrial functions, and the metabolism of immune cells. In conclusion, redox-associated mechanisms modulate metabolic reprogramming of immune cells, macrophage and T helper cell polarization, phagocytosis, production of pro- versus anti-inflammatory cytokines, immune training and tolerance, chemotaxis, pathogen sensing, antiviral and antibacterial effects, Toll-like receptor activity, and endotoxin tolerance.
Collapse
|
3
|
Mohammadi F, Soltani A, Ghahremanloo A, Javid H, Hashemy SI. The thioredoxin system and cancer therapy: a review. Cancer Chemother Pharmacol 2019; 84:925-935. [PMID: 31367788 DOI: 10.1007/s00280-019-03912-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/25/2019] [Indexed: 12/01/2022]
Abstract
Thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH are key members of the Trx system that is involved in redox regulation and antioxidant defense. In recent years, several researchers have provided information about the roles of the Trx system in cancer development and progression. These reports indicated that many tumor cells express high levels of Trx and TrxR, which can be responsible for drug resistance in tumorigenesis. Inhibition of the Trx system may thus contribute to cancer therapy and improving chemotherapeutic agents. There are now a number of effective natural and synthetic inhibitors with chemotherapy applications possessing antitumor activity ranging from oxidative stress induction to apoptosis. In this article, we first described the features and functions of the Trx system and then reviewed briefly its correlations with cancer. Finally, we summarized the present knowledge about the Trx/TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Fariba Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Sanzo-Machuca Á, Monje Moreno JM, Casado-Navarro R, Karakuzu O, Guerrero-Gómez D, Fierro-González JC, Swoboda P, Muñoz MJ, Garsin DA, Pedrajas JR, Barrios A, Miranda-Vizuete A. Redox-dependent and redox-independent functions of Caenorhabditis elegans thioredoxin 1. Redox Biol 2019; 24:101178. [PMID: 30953965 PMCID: PMC6449771 DOI: 10.1016/j.redox.2019.101178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/15/2019] [Accepted: 03/24/2019] [Indexed: 11/19/2022] Open
Abstract
Thioredoxins (TRX) are traditionally considered as enzymes catalyzing redox reactions. However, redox-independent functions of thioredoxins have been described in different organisms, although the underlying molecular mechanisms are yet unknown. We report here the characterization of the first generated endogenous redox-inactive thioredoxin in an animal model, the TRX-1 in the nematode Caenorhabditis elegans. We find that TRX-1 dually regulates the formation of an endurance larval stage (dauer) by interacting with the insulin pathway in a redox-independent manner and the cGMP pathway in a redox-dependent manner. Moreover, the requirement of TRX-1 for the extended longevity of worms with compromised insulin signalling or under calorie restriction relies on TRX-1 redox activity. In contrast, the nuclear translocation of the SKN-1 transcription factor and increased LIPS-6 protein levels in the intestine upon trx-1 deficiency are strictly redox-independent. Finally, we identify a novel function of C. elegans TRX-1 in male food-leaving behaviour that is redox-dependent. Taken together, our results position C. elegans as an ideal model to gain mechanistic insight into the redox-independent functions of metazoan thioredoxins, overcoming the limitations imposed by the embryonic lethal phenotypes of thioredoxin mutants in higher organisms. C. elegans expressing endogenous “redox-dead” TRX-1 are viable. The extended lifespan extension of worm daf-2 and eat-2 mutants and the food-leaving behaviour of C. elegans males requires a redox-active TRX-1. The SKN-1 nuclear translocation and increased lips-6 expression upon TRX-1 deficiency is redox-independent. TRX-1 regulates dauer formation by both redox-dependent and redox-independent mechanisms. C. elegans is an ideal model to interrogate on the molecular mechanisms underlying the redox-independent functions of metazoan thioredoxins.
Collapse
Affiliation(s)
- Ángela Sanzo-Machuca
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | | | - Rafael Casado-Navarro
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain; Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Ozgur Karakuzu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - David Guerrero-Gómez
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain
| | | | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, 14183, Huddinge, Sweden
| | - Manuel J Muñoz
- Department of Genetics, Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - José Rafael Pedrajas
- Grupo de Bioquímica y Señalización Celular, Departamento de Biología Experimental, Universidad de Jaén, 23071, Jaén, Spain
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.
| |
Collapse
|
5
|
Davies JMS, Cillard J, Friguet B, Cadenas E, Cadet J, Cayce R, Fishmann A, Liao D, Bulteau AL, Derbré F, Rébillard A, Burstein S, Hirsch E, Kloner RA, Jakowec M, Petzinger G, Sauce D, Sennlaub F, Limon I, Ursini F, Maiorino M, Economides C, Pike CJ, Cohen P, Salvayre AN, Halliday MR, Lundquist AJ, Jakowec NA, Mechta-Grigoriou F, Mericskay M, Mariani J, Li Z, Huang D, Grant E, Forman HJ, Finch CE, Sun PY, Pomatto LCD, Agbulut O, Warburton D, Neri C, Rouis M, Cillard P, Capeau J, Rosenbaum J, Davies KJA. The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 2017; 39:499-550. [PMID: 29270905 PMCID: PMC5745211 DOI: 10.1007/s11357-017-0002-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.
Collapse
Affiliation(s)
- Joanna M S Davies
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Josiane Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Bertrand Friguet
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Enrique Cadenas
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Rachael Cayce
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Andrew Fishmann
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - David Liao
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon,ENS de Lyon, CNRS, 69364, Lyon Cedex 07, France
| | - Frédéric Derbré
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Amélie Rébillard
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Steven Burstein
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Etienne Hirsch
- INSERM UMR 1127-CNRS UMR 7225, Institut du cerveau et de la moelle épinière-ICM Thérapeutique Expérimentale de la Maladie de Parkinson, Université Pierre et Marie Curie, 75651, Paris Cedex 13, France
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, 91105, USA
| | - Michael Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giselle Petzinger
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Delphine Sauce
- Chronic infections and Immune ageing, INSERM U1135, Hopital Pitie-Salpetriere, Pierre et Marie Curie University, 75013, Paris, France
| | | | - Isabelle Limon
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Christina Economides
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Neurobiology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anne Negre Salvayre
- Lipid peroxidation, Signalling and Vascular Diseases INSERM U1048, 31432, Toulouse Cedex 4, France
| | - Matthew R Halliday
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Adam J Lundquist
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicolaus A Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Mathias Mericskay
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire-Inserm UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry, Paris, France
| | - Jean Mariani
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Zhenlin Li
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - David Huang
- Department of Radiation Oncology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Ellsworth Grant
- Department of Oncology & Hematology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Henry J Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - David Warburton
- Children's Hospital of Los Angeles, Developmental Biology, Regenerative Medicine and Stem Cell Therapeutics program and the Center for Environmental Impact on Global Health Across the Lifespan at The Saban Research Institute, Los Angeles, CA, 90027, USA
- Department of Pediatrics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Neri
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Mustapha Rouis
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Pierre Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Jacqueline Capeau
- DR Saint-Antoine UMR_S938, UPMC, Inserm Faculté de Médecine, Université Pierre et Marie Curie, 75012, Paris, France
| | - Jean Rosenbaum
- Scientific Service of the Embassy of France in the USA, Consulate General of France in Los Angeles, Los Angeles, CA, 90025, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA.
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA.
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| |
Collapse
|
6
|
Couchie D, Vaisman B, Abderrazak A, Mahmood DFD, Hamza MM, Canesi F, Diderot V, El Hadri K, Nègre-Salvayre A, Le Page A, Fulop T, Remaley AT, Rouis M. Human Plasma Thioredoxin-80 Increases With Age and in ApoE -/- Mice Induces Inflammation, Angiogenesis, and Atherosclerosis. Circulation 2017; 136:464-475. [PMID: 28473446 DOI: 10.1161/circulationaha.117.027612] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 04/26/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Thioredoxin (TRX)-1, a ubiquitous 12-kDa protein, exerts antioxidant and anti-inflammatory effects. In contrast, the truncated form, called TRX80, produced by macrophages induces upregulation of proinflammatory cytokines. TRX80 also promotes the differentiation of mouse peritoneal and human macrophages toward a proinflammatory M1 phenotype. METHODS TRX1 and TRX80 plasma levels were determined with a specific ELISA. A disintegrin and metalloproteinase domain-containing protein (ADAM)-10, ADAM-17, and ADAM-10 activities were measured with SensoLyte 520 ADAM10 Activity Assay Kit, Fluorimetric, and InnoZyme TACE Activity Kit, respectively. Western immunoblots were performed with specific antibodies to ADAM-10 or ADAM-17. Angiogenesis study was evaluated in vitro with human microvascular endothelial cells-1 and in vivo with the Matrigel plug angiogenesis assay in mice. The expression of macrophage phenotype markers was investigated with real-time polymerase chain reaction. Phosphorylation of Akt, mechanistic target of rapamycin, and 70S6K was determined with specific antibodies. The effect of TRX80 on NLRP3 inflammasome activity was evaluated by measuring the level of interleukin-1β and -18 in the supernatants of activated macrophages with ELISA. Hearts were used for lesion surface evaluation and immunohistochemical studies, and whole descending aorta were stained with Oil Red O. For transgenic mice generation, the human scavenger receptor (SR-A) promoter/enhancer was used to drive macrophage-specific expression of human TRX80 in mice. RESULTS In this study, we observed a significant increase of plasma levels of TRX80 in old subjects compared with healthy young subjects. In parallel, an increase in expression and activity of ADAM-10 and ADAM-17 in old peripheral blood mononuclear cells compared with those of young subjects was observed. Furthermore, TRX80 was found to colocalize with tumor necrosis factor-α, a macrophage M1 marker, in human atherosclerotic plaque. In addition, TRX80 induced the expression of murine M1 macrophage markers through Akt2/mechanistic target of rapamycin-C1/70S6K pathway and activated the inflammasome NLRP3, leading to the release of interleukin-1β and -18, potent atherogenic cytokines. Moreover, TRX80 exerts a powerful angiogenic effect in both in vitro and in vivo mouse studies. Finally, transgenic mice that overexpress human TRX80 specifically in macrophages of apoE-/- mice have a significant increase of aortic atherosclerotic lesions. CONCLUSIONS TRX80 showed an age-dependent increase in human plasma. In mouse models, TRX80 was associated with a proinflammatory status and increased atherosclerosis.
Collapse
Affiliation(s)
- Dominique Couchie
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Boris Vaisman
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Amna Abderrazak
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Dler Faieeq Darweesh Mahmood
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Magda M Hamza
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Fanny Canesi
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Vimala Diderot
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Khadija El Hadri
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Anne Nègre-Salvayre
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Aurélie Le Page
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Tamas Fulop
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Alan T Remaley
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.)
| | - Mustapha Rouis
- From Biological Adaptation and Ageing (B2A), CNRS UMR-8256/INSERM ERL U-1164, Biological Institute Paris-Seine, Sorbonne University, Paris, France (D.C., A.A., D.F.D.M., M.M.H., F.C., V.D., K.E.H., M.R.); Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (B.V., A.T.R.): Institut des Maladies Métaboliques et Cardiovasculaires (12 MC), INSERM UMR 1048, Toulouse, France (A.N.-S.); and Centre de Recherche sur le Vieillissement, Service Gériatrique, Département de Médecine, Université de Sherbrooke, Quebec, Canada (A.L.P., T.F.).
| |
Collapse
|
7
|
Bhatia M, McGrath KL, Di Trapani G, Charoentong P, Shah F, King MM, Clarke FM, Tonissen KF. The thioredoxin system in breast cancer cell invasion and migration. Redox Biol 2015; 8:68-78. [PMID: 26760912 PMCID: PMC4712318 DOI: 10.1016/j.redox.2015.12.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 11/24/2022] Open
Abstract
Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. Over expression of thioredoxin in MDA-MB-231 cells enhanced cell invasion in vitro. Thioredoxin inhibition reduced cell invasion and migration of MDA-MB-231 cells. Addition of thioredoxin enhanced migration of MDA-MB-231 cells in vitro. Auranofin treatment inhibited MDA-MB-231 cell migration and clonogenic activity. High Trx1 and TrxR1 expression is associated with a poor breast cancer prognosis.
Collapse
Affiliation(s)
- Maneet Bhatia
- School of Natural Sciences, Griffith University, Nathan, Brisbane, Qld. 4111, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld. 4111, Australia
| | - Kelly L McGrath
- School of Natural Sciences, Griffith University, Nathan, Brisbane, Qld. 4111, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld. 4111, Australia
| | - Giovanna Di Trapani
- School of Natural Sciences, Griffith University, Nathan, Brisbane, Qld. 4111, Australia
| | - Pornpimol Charoentong
- Biocenter, Division of Bioinformatics, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Fenil Shah
- School of Natural Sciences, Griffith University, Nathan, Brisbane, Qld. 4111, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld. 4111, Australia
| | - Mallory M King
- School of Natural Sciences, Griffith University, Nathan, Brisbane, Qld. 4111, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld. 4111, Australia
| | - Frank M Clarke
- School of Natural Sciences, Griffith University, Nathan, Brisbane, Qld. 4111, Australia
| | - Kathryn F Tonissen
- School of Natural Sciences, Griffith University, Nathan, Brisbane, Qld. 4111, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, Qld. 4111, Australia
| |
Collapse
|
8
|
Abstract
Thioredoxin (Trx) is an inflammation-inducible small oxidoreductase protein ubiquitously expressed in all organisms. Trx acts both intracellularly and extracellularly and is involved in a wide range of physiological cellular responses. Inside the cell, Trx alleviates oxidative stress by scavenging reactive oxygen species (ROS), regulates a variety of redox-sensitive signaling pathways as well as ROS-independent genes, and exerts cytoprotective effects. Outside the cell, Trx acts as growth factors or cytokines and promotes cell growth and many other cellular responses. Trx is also implicated in tumorigenesis. Trx is a proto-oncogene and is overexpressed in many cancers and correlates with poor prognosis. Trx stimulates cancer cell survival, promotes tumor angiogenesis, and inhibits both spontaneous apoptosis and drug-induced apoptosis. Inhibitors targeting Trx pathway provide a promising therapeutic strategy for cancer prevention and intervention. More recently, data from our laboratory demonstrate an important role of Trx in expanding long-term repopulating hematopoietic stem cells. In this chapter, we first provide an overview of Trx including its isoforms, compartmentation, and functions. We then discuss the roles of Trx in hematologic malignancies. Finally, we summarize the most recent findings from our lab on the use of Trx to enhance hematopoietic reconstitution following hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Ningfei An
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yubin Kang
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Current address: Division of Hematologic Malignancy and Cellular Therapy/Adult BMT, Department of Medicine, Duke University Medical Center, North Carolina, USA.
| |
Collapse
|
9
|
Mahmood DFD, Abderrazak A, Couchie D, Lunov O, Diderot V, Syrovets T, Slimane MN, Gosselet F, Simmet T, Rouis M, El Hadri K. Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis. J Cell Physiol 2013; 228:1577-83. [PMID: 23335265 DOI: 10.1002/jcp.24319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 01/04/2013] [Indexed: 01/07/2023]
Abstract
Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin-1 (Trx-1) is an oxidative stress-limiting protein with anti-inflammatory and anti-apoptotic properties. In contrast, its truncated form (Trx-80) exerts pro-inflammatory effects. Here we analyzed whether Trx-80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro-inflammatory phenotype. Trx-80 at 1 µg/ml significantly attenuated the polarization of anti-inflammatory M2 macrophages induced by exposure to either IL-4 at 15 ng/ml or IL-4/IL-13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL-10. By contrast, in LPS-challenged macrophages, Trx-80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF-α and MCP-1. When Trx-80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL-4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx-80. Moreover, the Trx-80 treatment led to a significantly increased aortic lesion area. The ability of Trx-80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases.
Collapse
Affiliation(s)
- Dler Faieeq Darweesh Mahmood
- Unité de Recherche, UR-04, Vieillissement, Stress et Inflammation, Bât. A-6è étage-Case courrier 256, Université Pierre et Marie Curie, Paris Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
11
|
Ungerstedt J, Du Y, Zhang H, Nair D, Holmgren A. In vivo redox state of human thioredoxin and redox shift by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Free Radic Biol Med 2012; 53:2002-7. [PMID: 23010496 DOI: 10.1016/j.freeradbiomed.2012.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/14/2012] [Accepted: 09/16/2012] [Indexed: 11/27/2022]
Abstract
The cytosolic thioredoxin (Trx1) system is essential for maintaining a reduced intracellular environment, via reduced Trx1 acting as a general protein disulfide reductase. Trx1 is implicated in cell signaling such as proliferation, DNA synthesis, enzyme activation, cell cycle regulation, transcription, gene activation, and prevention of apoptosis. Human Trx1 contains the active-site cysteines, Cys32 and Cys35, and three additional structural cysteines, Cys62, Cys69, and Cys73, that regulate Trx1 structure and activity via a second disulfide formation, S-glutathionylation or S-nitrosylation. The present study uses an electrophoretic redox Western blot method to analyze the oxidation state of Trx1 in vivo separating the protein-changed isoform following alkylation with iodoacetic acid in 8M urea. Treatment with the histone deacetylase inhibitor SAHA increased Trx1 inhibitor thioredoxin interacting protein (Txnip) levels, decreased Trx1 activity, and switched the Trx1 oxidation state toward a more oxidized one, as a result of complex formation with Trx1, and increased reactive oxygen species (ROS). SAHA is currently in clinical trials for cancer treatment, and one possible mechanism for its anticancer effect is via effects on the Trx1 system. Determining the exact oxidation state of human cytosolic Trx1 may be useful in developing and evaluating cancer drugs and antioxidant agents.
Collapse
Affiliation(s)
- J Ungerstedt
- Hematology and Regenerative Medicine Center, Institute for Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
12
|
Farina AR, Cappabianca L, DeSantis G, Ianni ND, Ruggeri P, Ragone M, Merolle S, Tonissen KF, Gulino A, Mackay AR. Thioredoxin stimulates MMP-9 expression, de-regulates the MMP-9/TIMP-1 equilibrium and promotes MMP-9 dependent invasion in human MDA-MB-231 breast cancer cells. FEBS Lett 2011; 585:3328-36. [DOI: 10.1016/j.febslet.2011.09.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/12/2011] [Accepted: 09/16/2011] [Indexed: 11/30/2022]
|
13
|
Thiol regulation of pro-inflammatory cytokines and innate immunity: protein S-thiolation as a novel molecular mechanism. Biochem Soc Trans 2011; 39:1268-72. [DOI: 10.1042/bst0391268] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inflammation or inflammatory cytokines and oxidative stress have often been associated, and thiol antioxidants, particularly glutathione, have often been seen as possible anti-inflammatory mediators. However, whereas several cytokine inhibitors have been approved for drug use in chronic inflammatory diseases, this has not happened with antioxidant molecules. We outline the complexity of the role of protein thiol–disulfide oxidoreduction in the regulation of immunity and inflammation, the underlying molecular mechanisms (such as protein glutathionylation) and the key enzyme players such as Trx (thioredoxin) or Grx (glutaredoxin).
Collapse
|
14
|
Abstract
Dr. Arne Holmgren (Ph.D., 1968) is recognized here as a redox pioneer, because he has published at least one article on redox biology that has been cited over 1000 times and has published at least 10 articles, each cited over 100 times. He is widely known for his seminal discoveries and in-depth studies of thioredoxins, thioredoxin reductases, and glutaredoxins. Dr. Holmgren, active throughout his career at Karolinska Institutet, Sweden, has led the field of research about these classes of proteins for more than 45 years, continuously building upon his sequence determination of Escherichia coli thioredoxin in the late 1960s and discovery of the thioredoxin fold in the 1970s. He discovered and named glutaredoxin and he determined the structure and function of several members of these glutathione-dependent disulfide oxidoreductases. He still continues to broaden the frontiers of knowledge of thioredoxin and glutaredoxin systems. The thioredoxin fold is today recognized as one of the most common protein folds and the intriguing complexity of redox systems, redox signaling, and redox control of cellular function is constantly increasing. The legacy of Dr. Holmgren's research is therefore highly relevant and important also in the context of present science. In a tribute to his work, questions need to be addressed toward the physiological importance of redox signaling and the impact of glutaredoxin and thioredoxin systems on health and disease. Dr. Holmgren helped lay the foundation for the redox biology field and opened new vistas in the process. He is truly a redox pioneer.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Cortes-Bratti X, Bassères E, Herrera-Rodriguez F, Botero-Kleiven S, Coppotelli G, Andersen JB, Masucci MG, Holmgren A, Chaves-Olarte E, Frisan T, Avila-Cariño J. Thioredoxin 80-activated-monocytes (TAMs) inhibit the replication of intracellular pathogens. PLoS One 2011; 6:e16960. [PMID: 21365006 PMCID: PMC3041819 DOI: 10.1371/journal.pone.0016960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/09/2011] [Indexed: 12/18/2022] Open
Abstract
Background Thioredoxin 80 (Trx80) is an 80 amino acid natural cleavage product of Trx, produced primarily by monocytes. Trx80 induces differentiation of human monocytes into a novel cell type, named Trx80-activated-monocytes (TAMs). Principal Findings In this investigation we present evidence for a role of TAMs in the control of intracellular bacterial infections. As model pathogens we have chosen Listeria monocytogenes and Brucella abortus which replicate in the cytosol and the endoplasmic reticulum respectively. Our data indicate that TAMs efficiently inhibit intracellular growth of both L. monocytogenes and B. abortus. Further analysis shows that Trx80 activation prevents the escape of GFP-tagged L. monocytogenes into the cytosol, and induces accumulation of the bacteria within the lysosomes. Inhibition of the lysosomal activity by chloroquine treatment resulted in higher replication of bacteria in TAMs compared to that observed in control cells 24 h post-infection, indicating that TAMs kill bacteria by preventing their escape from the endosomal compartments, which progress into a highly degradative phagolysosome. Significance Our results show that Trx80 potentiates the bactericidal activities of professional phagocytes, and contributes to the first line of defense against intracellular bacteria.
Collapse
Affiliation(s)
- Ximena Cortes-Bratti
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eugénie Bassères
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fabiola Herrera-Rodriguez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología Universidad de Costa Rica, San José, Costa Rica
| | | | - Giuseppe Coppotelli
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jens B. Andersen
- Department of Microbiology and Risk Assessment, National Food Institute, Soeborg, Denmark
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología Universidad de Costa Rica, San José, Costa Rica
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (TF); (JA)
| | - Javier Avila-Cariño
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (TF); (JA)
| |
Collapse
|
16
|
Bernal-Bayard J, Ramos-Morales F. Salmonella type III secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin. J Biol Chem 2009; 284:27587-95. [PMID: 19690162 DOI: 10.1074/jbc.m109.010363] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salmonella enterica encodes two virulence-related type III secretion systems in Salmonella pathogenicity islands 1 and 2, respectively. These systems mediate the translocation of protein effectors into the eukaryotic host cell, where they alter cell signaling and manipulate host cell functions. However, the precise role of most effectors remains unknown. Using a genetic screen, we identified the small, reduction/oxidation-regulatory protein thioredoxin as a mammalian binding partner of the Salmonella effector SlrP. The interaction was confirmed by affinity chromatography and coimmunoprecipitation. In vitro, SlrP was able to mediate ubiquitination of ubiquitin and thioredoxin. A Cys residue conserved in other effectors of the same family that also possess E3 ubiquitin ligase activity was essential for this catalytic function. Stable expression of SlrP in HeLa cells resulted in a significant decrease of thioredoxin activity and in an increase of cell death. The physiological significance of these results was strengthened by the finding that Salmonella was able to trigger cell death and inhibit thioredoxin activity in HeLa cells several hours post-infection. This study assigns a functional role to the Salmonella effector SlrP as a binding partner and an E3 ubiquitin ligase for mammalian thioredoxin.
Collapse
Affiliation(s)
- Joaquín Bernal-Bayard
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Sevilla, Spain
| | | |
Collapse
|
17
|
Hashemy SI, Holmgren A. Regulation of the Catalytic Activity and Structure of Human Thioredoxin 1 via Oxidation and S-Nitrosylation of Cysteine Residues. J Biol Chem 2008; 283:21890-8. [DOI: 10.1074/jbc.m801047200] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Lemarechal H, Anract P, Beaudeux JL, Bonnefont-Rousselot D, Ekindjian OG, Borderie D. Expression and extracellular release of Trx80, the truncated form of thioredoxin, by TNF-alpha- and IL-1beta-stimulated human synoviocytes from patients with rheumatoid arthritis. Clin Sci (Lond) 2007; 113:149-55. [PMID: 17447898 DOI: 10.1042/cs20070067] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thioredoxin (Trx) plays several important roles, through changes to sulfhydryl reactions and protein interactions, in controlling cellular signalling processes in RA (rheumatoid arthritis). Trx80, the 10 kDa C-terminal truncated form of Trx, is a potent mitogenic cytokine and is involved in the Th1 response. In the present study, we have investigated the ability of synoviocytes from five RA patients to induce Trx80 after ex vivo stimulation by the pro-inflammatory cytokines IL-1beta (interleukin-1beta) and TNF-alpha (tumour necrosis factor-alpha) or by H(2)O(2). Synoviocytes from five OA (osteoarthritis) patients were used as controls. Immunoprecipitation assays using two different antibodies showed that RA, but not OA, cells expressed intact Trx80 protein in culture even when not stimulated. Treatment with pro-inflammatory cytokines alone or in combination enhanced this basal production and induced the extracellular release of Trx80 by all of the RA cells tested. Under our experimental conditions, the rate of Trx80 release from RA cells was approx. 30% of the total Trx produced. In contrast, Trx80 was not detected in response to H(2)O(2) in RA or OA synoviocyte lysates and their respective culture supernatants, indicating that the oxidative process induced by H(2)O(2) in synoviocytes was unable to modify Trx80 release. Moreover, Trx80 induced synoviocyte proliferation as evaluated by [(3)H]thymidine incorporation. These results highlight the effect of the inflammatory process on the release of both Trx and Trx80 from RA synoviocytes, and suggest that the cytokine-induced increase in Trx80 cell release may constitute a link between inflammation and the immune system in RA.
Collapse
Affiliation(s)
- Hervé Lemarechal
- Biochemistry Laboratory, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Thioredoxin and glutaredoxin systems in mammalian cells utilize thiol and selenol groups to maintain a reducing intracellular redox state acting as antioxidants and reducing agents in redox signaling with oxidizing reactive oxygen species. During the last decade, the functional roles of thioredoxin in particular have continued to expand, also including novel functions such as a secreted growth factor or a chemokine for immune cells. The role of thioredoxin and glutaredoxin in antioxidant defense and the role of thioredoxin in controlling recruitment of inflammatory cells offer potential use in clinical therapy. The fundamental differences between bacterial and mammalian thioredoxin reductases offer new principles for treatment of infections. Clinical drugs already in use target the active site selenol in thioredoxin reductases, inducing cell death in tumor cells. Thioredoxin and binding proteins (ASK1 and TBP2) appear to control apoptosis or metabolic states such as carbohydrate and lipid metabolism related to diseases such as diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Christopher Horst Lillig
- The Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
20
|
Abstract
Thioredoxin (Trx), NADPH and thioredoxin reductase (TrxR) comprise a thioredoxin system which exists in nearly all living cells. It functions in thiol-dependent thiol-disulfide exchange reactions crucial to control of the reduced intracellular redox environment, cellular growth, defense against oxidative stress or control of apoptosis and has multi-facetted roles in mammalian cells including implications in cancer. Eg reduced Trx activates DNA binding of transcription factors and is involved in antioxidant defense through repair of oxidatively damaged proteins or as an electron donor to peroxiredoxins. The Trx system functions in synthesis of deoxyribonucleotides for DNA synthesis, both replication and repair, by ribonucleotide reductase. Trx and truncated Trx (Trx80) act in modulation of immune cell function. TrxR isoforms in the cytosol and the mitochondria are essential selenoenzymes with a selenocysteine in the active site. These enzymes display a remarkably broad substrate specificity but are also targets for existing chemotherapeutic drugs. Mammalian TrxR enzymes are linked to selenium metabolism as a result of being selenoproteins, but can also directly reduce low molecular selenium compounds like selenite and have been implicated in the chemoprevention effects of selenium against cancer. Numerous scientific reports describe higher expression of Trx and TrxR in some, but not all tumors. Some data suggest that high Trx could be linked to resistance to chemotherapies while others suggest that high Trx and TrxR may induce apoptosis and reduce the mitotic index of certain tumors linked to the p53 dependent cell death. Recent data suggest that TrxR is essential for the carcinogenic process and invasive phenotype of cancer. Both Trx and TrxR have been regarded as interesting targets for chemotherapy.
Collapse
Affiliation(s)
- Elias S J Arnér
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | |
Collapse
|
21
|
Nakamura H, Masutani H, Yodoi J. Extracellular thioredoxin and thioredoxin-binding protein 2 in control of cancer. Semin Cancer Biol 2006; 16:444-51. [PMID: 17095246 DOI: 10.1016/j.semcancer.2006.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thioredoxin-1 (TRX) is a redox-active protein with multiple intracellular and extracellular functions. Intracellular redox balance is maintained by the TRX family and its related molecules. Extracellular TRX shows cytoprotective effects, while truncated Trx80 has more mitogenic activity. Exogenously administered TRX does not promote the growth of cancer in vivo and shows anti-chemotactic effect for neutrophils and anti-inflammatory functions. Thioredoxin is released from cells in response to oxidative stress and TRX levels in plasma or serum are good markers for oxidative stress associated with cancer. Thioredoxin-binding protein 2 (TBP-2) is an endogenous negative regulator of TRX and a tumor suppressor.
Collapse
Affiliation(s)
- Hajime Nakamura
- Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
22
|
Abstract
Oxidative stresses are largely mediated by intracellular protein oxidations by reactive oxygen species (ROS). Host cells are equipped with antioxidants that scavenge ROS. The cellular reduction/oxidation (redox) balance is maintained by ROS and antioxidants. Accumulating evidence suggests that the redox balance plays an important role in cellular signaling through the redox modification of cysteine residues in various important components of the signal transduction pathway. Thioredoxin (TRX) is a small protein playing important roles in cellular responses, including cell growth, cell cycle, gene expression, and apoptosis, to maintain the redox circumstance. Moreover, many recent papers have shown that the redox regulation by TRX is deeply involved in the pathogenesis of various oxidative stress-associated disorders. This review focuses on TRX and its related molecules, and discusses the role of TRX-dependent redox regulation in oxidative stress-induced signal transduction.
Collapse
Affiliation(s)
- Norihiko Kondo
- Department of Biological Responses, Institute for Virus Research, Kyoto University, Translational Research Center Kyoto University Hospital, Kyoto, Japan
| | | | | | | |
Collapse
|
23
|
Ohashi S, Nishio A, Nakamura H, Kido M, Ueno S, Uza N, Inoue S, Kitamura H, Kiriya K, Asada M, Tamaki H, Matsuura M, Kawasaki K, Fukui T, Watanabe N, Nakase H, Yodoi J, Okazaki K, Chiba T. Protective roles of redox-active protein thioredoxin-1 for severe acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2006; 290:G772-81. [PMID: 16322089 DOI: 10.1152/ajpgi.00425.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Severe acute pancreatitis is a disease with high mortality, and infiltration of inflammatory cells and reactive oxygen species have a crucial role in the pathophysiology of this disease. Thioredoxin-1 (TRX-1) is an endogenous redox-active multifunctional protein with antioxidant and anti-inflammatory effects. TRX-1 is induced in various inflammatory conditions and shows cytoprotective effects. The aim of the present study was to clarify the protective roles of TRX-1 in the host defense mechanism against severe acute pancreatitis. Experimental acute pancreatitis was induced by intraperitoneal administration of cerulein, a CCK analog, and aggravated by lipopolysaccharide injection in transgenic mice overexpressing human TRX-1 (hTRX-1) and control C57BL/6 mice. Transgenic overexpression of hTRX-1 strikingly attenuated the severity of experimental acute pancreatitis. TRX-1 overexpression suppressed neutrophil infiltration as determined by myeloperoxidase activity, oxidative stress as determined by malondialdehyde concentration, and cytoplasmic degradation of inhibitor of kappaB-alpha, thereby suppressing proinflammatory cytokines, tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6; a neutrophil chemoattractant, keratinocyte-derived chemokine; and inducible nitric oxide synthase in the pancreas. Administration of recombinant hTRX-1 also suppressed neutrophil infiltration, reduced the inflammation of the pancreas and the lung, and improved the mortality rate. The present study suggests that TRX-1 has potent antioxidant and anti-inflammatory actions in experimental acute pancreatitis and might be a new therapeutic strategy to improve the prognosis of severe acute pancreatitis.
Collapse
Affiliation(s)
- Shinya Ohashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Institute for Virus Research, Kyoto University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bernhagen J. Macrophage migration and function: from recruitment in vascular disease to redox regulation in the immune and neuroendocrine networks. Antioxid Redox Signal 2005; 7:1182-8. [PMID: 16115021 DOI: 10.1089/ars.2005.7.1182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|