1
|
Murphy T, Dias GP, Thuret S. Effects of diet on brain plasticity in animal and human studies: mind the gap. Neural Plast 2014; 2014:563160. [PMID: 24900924 PMCID: PMC4037119 DOI: 10.1155/2014/563160] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023] Open
Abstract
Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake), intermittent fasting (IF, every-other-day feeding), and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs) on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer's disease-with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function.
Collapse
Affiliation(s)
- Tytus Murphy
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Gisele Pereira Dias
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Sandrine Thuret
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
2
|
Walsh ME, Shi Y, Van Remmen H. The effects of dietary restriction on oxidative stress in rodents. Free Radic Biol Med 2014; 66:88-99. [PMID: 23743291 PMCID: PMC4017324 DOI: 10.1016/j.freeradbiomed.2013.05.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.
Collapse
Affiliation(s)
- Michael E Walsh
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | - Yun Shi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245; South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
3
|
Diet and aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:741468. [PMID: 22928085 PMCID: PMC3425961 DOI: 10.1155/2012/741468] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 11/17/2022]
Abstract
Nutrition has important long-term consequences for health that are not only limited to the individual but can be passed on to the next generation. It can contribute to the development and progression of chronic diseases thus effecting life span. Caloric restriction (CR) can extend the average and maximum life span and delay the onset of age-associated changes in many organisms. CR elicits coordinated and adaptive stress responses at the cellular and whole-organism level by modulating epigenetic mechanisms (e.g., DNA methylation, posttranslational histone modifications), signaling pathways that regulate cell growth and aging (e.g., TOR, AMPK, p53, and FOXO), and cell-to-cell signaling molecules (e.g., adiponectin). The overall effect of these adaptive stress responses is an increased resistance to subsequent stress, thus delaying age-related changes and promoting longevity. In human, CR could delay many diseases associated with aging including cancer, diabetes, atherosclerosis, cardiovascular disease, and neurodegenerative diseases. As an alternative to CR, several CR mimetics have been tested on animals and humans. At present, the most promising alternatives to the use of CR in humans seem to be exercise, alone or in combination with reduced calorie intake, and the use of plant-derived polyphenol resveratrol as a food supplement.
Collapse
|
4
|
Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr J 2011; 10:107. [PMID: 21981968 PMCID: PMC3200169 DOI: 10.1186/1475-2891-10-107] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/07/2011] [Indexed: 01/15/2023] Open
Abstract
Considerable interest has been shown in the ability of caloric restriction (CR) to improve multiple parameters of health and to extend lifespan. CR is the reduction of caloric intake - typically by 20 - 40% of ad libitum consumption - while maintaining adequate nutrient intake. Several alternatives to CR exist. CR combined with exercise (CE) consists of both decreased caloric intake and increased caloric expenditure. Alternate-day fasting (ADF) consists of two interchanging days; one day, subjects may consume food ad libitum (sometimes equaling twice the normal intake); on the other day, food is reduced or withheld altogether. Dietary restriction (DR) - restriction of one or more components of intake (typically macronutrients) with minimal to no reduction in total caloric intake - is another alternative to CR. Many religions incorporate one or more forms of food restriction. The following religious fasting periods are featured in this review: 1) Islamic Ramadan; 2) the three principal fasting periods of Greek Orthodox Christianity (Nativity, Lent, and the Assumption); and 3) the Biblical-based Daniel Fast. This review provides a summary of the current state of knowledge related to CR and DR. A specific section is provided that illustrates related work pertaining to religious forms of food restriction. Where available, studies involving both humans and animals are presented. The review includes suggestions for future research pertaining to the topics of discussion.
Collapse
Affiliation(s)
- John F Trepanowski
- Cardiorespiratory/Metabolic Laboratory, The University of Memphis, Memphis, TN 38152, USA
| | | | | | | | | |
Collapse
|
5
|
Roark AM, Bjorndal KA, Bolten AB, Leeuwenburgh C. Biochemical indices as correlates of recent growth in juvenile green turtles (Chelonia mydas). JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 2009; 376:59-67. [PMID: 20161581 PMCID: PMC2808034 DOI: 10.1016/j.jembe.2009.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nucleic acid and protein concentrations and their ratios are increasingly used as correlates of nutritional condition and growth in marine species. However, their application in studies of reptile growth has not yet been validated. The green turtle (Chelonia mydas) is an endangered marine reptile for which assessing population health requires knowledge of demographic parameters such as individual growth rates. The purpose of this study was to evaluate a number of biochemical indices ([DNA], [RNA], RNA:DNA ratio, [protein], protein:DNA ratio, and RNA:protein ratio) in liver, heart, and blood as potential predictors of recent growth rate in juvenile green turtles under controlled feeding conditions. Intake of juvenile green turtles was manipulated over twelve weeks to obtain a range of growth rates. With the exception of [RNA](blood), [DNA](heart), and [protein]:[DNA](liver), all biochemical indices demonstrated significant linear relationships with growth rate during the last 1.5 weeks of the study. The best single predictors of recent growth were hepatic [RNA] and [RNA]:[protein], which explained 66% and 49%, respectively, of the variance in growth. Contrary to expectations, these two indices were negatively correlated with growth rate. To investigate the possibility that hepatic [RNA] was higher in slow-growing turtles because of elevated expression of antioxidant genes, we quantified glutathione peroxidase activity and total antioxidant potential. Both measures of antioxidant function were affected by intake and growth histories, but these effects did not explain our results for hepatic RNA and protein concentrations. We developed a model that predicted 68% of the variance in specific growth rate (SGR) with the equation SGR = -0.913(ln[RNA](liver)) + 17.689(Condition Index) + 4.316. In addition, our findings that [DNA] and [RNA]:[DNA] for blood were significantly correlated with SGR demonstrate the potential utility of minimally invasive tissue sampling that could facilitate instantaneous population monitoring.
Collapse
Affiliation(s)
- Alison M. Roark
- Archie Carr Center for Sea Turtle Research, Department of Zoology, University of Florida, Box, 118525, Gainesville, FL 32611, USA
| | - Karen A. Bjorndal
- Archie Carr Center for Sea Turtle Research, Department of Zoology, University of Florida, Box, 118525, Gainesville, FL 32611, USA
| | - Alan B. Bolten
- Archie Carr Center for Sea Turtle Research, Department of Zoology, University of Florida, Box, 118525, Gainesville, FL 32611, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatrics, College of Medicine, University of Florida Institute on, Aging Genomics and Biomarkers Core, Biochemistry of Aging Laboratory, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
|
7
|
Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. ACTA ACUST UNITED AC 2008; 59:293-315. [PMID: 18845187 DOI: 10.1016/j.brainresrev.2008.09.002] [Citation(s) in RCA: 392] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/11/2008] [Accepted: 09/12/2008] [Indexed: 12/18/2022]
Abstract
Both calorie restriction and the ketogenic diet possess broad therapeutic potential in various clinical settings and in various animal models of neurological disease. Following calorie restriction or consumption of a ketogenic diet, there is notable improvement in mitochondrial function, a decrease in the expression of apoptotic and inflammatory mediators and an increase in the activity of neurotrophic factors. However, despite these intriguing observations, it is not yet clear which of these mechanisms account for the observed neuroprotective effects. Furthermore, limited compliance and concern for adverse effects hamper efforts at broader clinical application. Recent research aimed at identifying compounds that can reproduce, at least partially, the neuroprotective effects of the diets with less demanding changes to food intake suggests that ketone bodies might represent an appropriate candidate. Ketone bodies protect neurons against multiple types of neuronal injury and are associated with mitochondrial effects similar to those described during calorie restriction or ketogenic diet treatment. The present review summarizes the neuroprotective effects of calorie restriction, of the ketogenic diet and of ketone bodies, and compares their putative mechanisms of action.
Collapse
Affiliation(s)
- Marwan Maalouf
- Department of Neurobiology, David Geffen School of Medicine, University of California, 63-323 CH5, Box 951763, Los Angeles, CA 90095-1763, USA.
| | | | | |
Collapse
|
8
|
Kavazis AN, DeRuisseau KC, McClung JM, Whidden MA, Falk DJ, Smuder AJ, Sugiura T, Powers SK. Diaphragmatic proteasome function is maintained in the ageing Fisher 344 rat. Exp Physiol 2007; 92:895-901. [PMID: 17631517 DOI: 10.1113/expphysiol.2007.038307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The diaphragm is the most important inspiratory muscle in mammals and is essential for normal ventilation. Therefore, maintenance of diaphragm function is critical to overall health throughout the lifespan. Evidence indicates that the ubiquitin proteasome pathway (UPP) function is diminished in locomotor skeletal muscle of ageing animals, but the function of the UPP in the senescent diaphragm has not yet been studied. Diaphragms were harvested from 6- and 24- to 26-month-old Fisher 344 rats (n = 8 per group), and a comprehensive assessment of key components of the UPP, proteasome activity and ubiquitin-conjugating enzyme activity was performed. Gene expression and diaphragmatic protein levels of several key proteasome components are not altered in the diaphragm by ageing. Furthermore and most importantly, the senescent diaphragm exhibited no age-related changes in the content of endogenous ubiquitin-protein conjugates or 20S proteasome activity. In conclusion, in contrast to locomotor skeletal muscle, proteasome function and ubiquitin-conjugating enzyme activity are preserved during senescence in diaphragm. A more thorough understanding of the divergent molecular mechanisms and pathways regulating the UPP in different skeletal muscles could lead to the enhancement of therapeutic strategies aimed at improving morbidity and mortality outcomes in different clinical populations.
Collapse
Affiliation(s)
- Andreas N Kavazis
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Leeuwenburgh C, Prolla TA. Genetics, redox signaling, oxidative stress, and apoptosis in mammalian aging. Antioxid Redox Signal 2006; 8:503-5. [PMID: 16677094 DOI: 10.1089/ars.2006.8.503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|